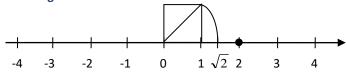

ALGEBRA


1 Strukturelles Denken

Zahlenmenge

N= {0, 1, 2, 3,}
Z = {, -2, -1, 0, 1, 2,}
$\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in Z, b \neq 0 \right\}$
π = 314159, e = 2.718
R= Rationale und Irrationale Zahlen
C

Zahlengerade

Betrag

Schreibweise: |x|

Definition: Der Betrag einer Zahl, ist der Abstand zum Nullpunkt.

$$|x| = \begin{cases} x, wenn \ x \ge 0 \\ -x, wenn \ x < 0 \end{cases}$$

Anwendung eines Betrags

x-3 = 7	1. Fall	x-3	≥ 0	x - 3 = x - 3	x - 3 = 7	$L_1 = \{10\}$
	2. Fall	x-3	< 0	x-3 = -(x-3)	3 - x = 7	$L_2 = \{-4\}$

Intervalle

Intervalle			
Intervall	Schreibweise		Intervalldarstellung
Geschlossenes Intervall	[-1; 3]	$-1 \le x \le 3$	3 -4 -3 -2 -1 0 1 2 3 4
Offenes Intervall] - 3; 2[-3 < x < 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Linksoffenes Intervall]0;4]	$0 < x \le 4$	-4 -3 -2 -1 0 1 2 3 4
Rechtsoffenes Intervall	[0; 4[$0 \le x < 4$	-4 -3 -2 -1 0 1 2 3 4
Unendliche Intervalle]2;∞[2 < <i>x</i> < ∞	-4 -3 -2 -1 0 1 2 3 4

Zehnerpotenzen

Zennerpotenzen						
10 ¹⁸	Trillion	Exa	E	10 ⁻¹⁸	Atto	а
10 ¹⁵	Billiarde	Peta	Р	10 ⁻¹⁵	Femto	f
10 ¹²	Billion	Tera	Т	10 ⁻¹²	Piko	р
10 ⁹	Milliarde	Giga	G	10 -9	Nano	n
10 ⁶	Million	Mega	М	10 ⁻⁶	Mikro	μ
10 ³	Tausend	Kilo	k	10 ⁻³	Mili	m
10 ²	Hundert	Hekto	g	10 ⁻²	Zenti	С
10 ¹	Zehn	Deka	da	10 ⁻¹	Dezi	d

BMS ZF Druckdatum: 14.10.18 Mathematik

Mengen				
	A =	A ist		
	{ x	die Menge aller x		
$A = \{ x \mid x \in N \text{ und } 1 < x < 8 \}$		für die gilt		
,	$x \in N \text{ und } 1 < x < 8$	x ist eine natürliche Zahl, die grösser als 1 und		
		kleiner als 8 ist.		

Leere Menge	ø	{ } ≠ {0}	Eine "leere Menge" ist eine Menge, die keine Elemente enthält
Teilmenge	<u> </u>	T⊂A	Liegt das Element der Menge T in A, dann sagen wir T ist eine Teilmenge von A
Teilmenge allgemein	⊆	T⊆A	A selbst ist eine Teilmenge von A. Die leere Menge ist eine Teilmenge von A
Element von	€	$1 \in N$	1 ist ein Element von N
kein Element von	∉	1 ∉ N	-1 ist kein Element von N
Schnittmenge	\cap	$A \cap B = \left\{ x \mid x \in A \text{ und } x \in B \right\}$	Die Menge aller Elemente, die in A und in B liegen, nennen wir die Schnittmenge
Vereinigungs- menge	U	$A \cup B = \left\{ x \mid x \in A \text{ oder } x \in B \right\}$	Die Menge aller Elemente, die in A oder B liegen, nennen wir die Vereinigungsmenge
Differenzmenge	١	$A \setminus B = \left\{ x \mid x \in A \text{ und } x \notin B \right\}$	A ohne B
Grundmenge	G		Die Menge, aus der Einsetzungen für die Variablen vorgegeben werden
Definitionsmenge	D		Die Menge aller Elemente, für die ein Term definiert ist

Grundrechenarten

Stufe		Rechenart		Umkehrung
I	Addition	Summand + Summand = Summe	Subtraktion	Minuend – Subtrahend = Differenz
	a + b = b + a	Kommutativgesetz	$a - b \neq b - a$	Kommutativgesetz
	(a+b)+c= $a+(b+c)$	Assoziativgesetz	$(a-b)-c \neq a-(b-c)$	Assoziativgesetz
	a + 0 = a	Neutralelement	a - 0 = a	Neutralelement
	a + (-a) = 0	Gegenzahl (Inverses)	b - a = b + (-a)	Addition der Gegenzahl
Ш	Multiplikation	Faktor*Faktor=Produkt	Division	Dividend/Divisor=Quotient
	a * b = b * a	Kommutativgesetz	$\frac{a}{b} \neq \frac{b}{a}$	Kommutativgesetz
	(a*b)*c = a*(b*c)	Assoziativgesetz	$\frac{\frac{a}{b}}{c} = \frac{a}{\frac{b}{c}}$	Assoziativgesetz
	a * 1 = a	Neutralelement	$\frac{a}{1} = a$	Neutralelement
	$a*\frac{1}{a}=1$	Kehrwert (Inverses)	$\frac{b}{a} = b * \frac{1}{a}$	Multiplikation mit dem Kehrwert
	a * 0 = 0	Ein Produkt ist Null, wenn min. ein Faktor Null ist.	$\frac{b}{0}$ = undefiniert	Division durch Null ist nicht definiert
III	Potenz	$b = a^x$ Basis ^{Faktor}	Radizieren	$a = \sqrt[x]{b}$
	$a^1 = a$	Neutralelement	Logarithmieren	$x = \log_a(b)$

Reihenfolge der Rechenoperationen

- 1. Klammer
- 2. Punkt vor Strich
- 3. Potenzieren vor Multiplizieren

Vorzeichen einer Potenz	-2 ⁴ =-16	(-2) ⁴ = 16	→ Für negative Basen braucht es eine Klammer
Bruchstriche	Der Bruchstrich wirkt wie eine Klammer		
Summen in Brüche	Über Summen k	kürzen nur die	Dummen

Elem	entare	Reche	nregeln
LICIII			

-(-a) = a Die Gegenzahl von (-a) ist a	
--	--

Marcel Meschenmoser Seite 2 von 9

-a=(-1)*a	Das Vorzeichen kann durch den Faktor (-1) ersetzt werden
-ab=-(a*b)=(-a)*b=a*(-b)	Multiplizieren mit (-1) heisst Gegenzahlbildung
$(-a)^*(-b) = ab \qquad \frac{-a}{-b} = \frac{a}{b}$	Minus mal Minus gibt Plus
$-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}$	Ein Minuszeihen vor einem Quotienten, ändert entweder das Vorzeichen des Zählers oder das Vorzeichen des Nenners

Klammerregeln

Auflösen von Plusklammern	6a + (5b - 2a) = 6a + 5a - 2a	können weggelassen werden
Auflösen von Minusklammern	6a - (5b - 2a) = 6a - 5a + 2a	Zeichen in Klammer tauschen
Geschaltete Klammern	6a - [3c - (5b - 2a)] = 6a - 3c + 5b - 2a	Klammer von innen auflösen
Ausmultiplizieren	6 (b + a) = 6b + 6a $6 (b * a) = 6ba$	
Ausmultiplizieren II	(a+b)(c+d) = ac + ad + bc + bd	

Binome & Vieta

1.	$(a+b)(a+b) = (\mathbf{a}+\mathbf{b})^2$	$a^2 + ab + ab + b^2 = a^2 + 2ab + b^2$		
2.	$(a - b)(a - b) = (a - b)^2$	$a^2 - ab - ab + b^2 = a^2 - 2ab + b^2$		
3.	$(\mathbf{a} + \mathbf{b})(\mathbf{a} - \mathbf{b})$	$a^2 - ab + ab - b^2 = \mathbf{a^2 - b^2}$		
Vieta	$(\mathbf{x} + \mathbf{a})(\mathbf{x} + \mathbf{b})$	$x^2 + (a + b)x + a * b$		
		$x^2 + B * x + A$ $A = a * b$ $B = a + b$		

Faktorisieren (Ausklammern)

Ausklammern	$a * x^{2} * y - a * b * x^{3} = ax^{2}(y - bx)$
Stufenweises Ausklammern	ax + ay + bx + by = a(x + y) + b(x + y) = (x + y) * (a + b)

Memo 1: Faktorisieren

Gemeinsame Faktoren ausklammern		a * x + b * x - c * x = x(a + b - c)		
2. Stufenweises Ausklammern $a * x +$		b * x + a * y + b * y = x * (a + b) + y * (a + b) = (a + b)(x + y)		
3. Binomstruktur 1		$a^2 + 2ab + b^2 = (a+b)^2$		
4. Binomstruktur 2		$a^2 - 2ab + b^2 = (a - b)^2$		
5. Binomstruktur 3		$a^2 - b^2 = (a+b)(a-b)$		
6. Vieta Struktur		$x^{2} + (a + b)x + a * b = (x + a)(x + b)$		
7. Faktor erraten und Division ausführen		Faktoren erraten		

Bruchterme

kürzen	$\frac{Z * F}{N * F} = \frac{Z}{N} \qquad \frac{Z + F}{N + F} \neq \frac{Z}{N}$	erweitern	$\frac{Z}{N} = \frac{Z * F}{N * F}$
Addition I	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Addition II	$Z_1 Z_2 Z_1 * N_2 + Z_2 * N_1$
	$\frac{1}{N} + \frac{1}{N} - \frac{1}{N}$		$\frac{1}{N_1} + \frac{1}{N_2} - \frac{1}{N_1 * N_2}$
Multiplikation	Z F Z * F	Division	Z_1 , Z_2 Z_1 , N_2 $Z_1 * N_2$
	$\overline{N} * \overline{F} - \overline{N * F}$		$\frac{1}{N_1} / \frac{1}{N_2} - \frac{1}{N_1} \cdot \frac{1}{Z_2} - \frac{1}{N_1 \cdot Z_2}$
Minuszeichen	$-\frac{a}{-}\frac{-a}{-}\frac{-a}{-}\frac{a}{-}$		
	b - bb		

Memo 2: Addition von ungleichnamigen Brüchen

- 1. Brüche vollständig kürzen
- 2. kgV (kleinstes gemeinsames Vielfachen) der Nenner berechnen
- 3. Zähler erweitern für Hauptnenner

Marcel Meschenmoser Seite 3 von 9

Fallunterscheidung:

-1 -	a – 3	$ \leq 0$
------	-------	------------

Fall 1	$a - 3 \ge 0 \rightarrow a - 3 = a - 3$		$R_1 = [3; \infty[$		
	$-1 - (a - 3) \le 0$	$a \ge 2$	$D_1 = [2; \infty[$	$L_1 = R_1 \cap D_1$	$L_1 = [3; \infty[$
Fall 2	$a - 3 < 0 \rightarrow a - 3 = 3 - a$		$R_1 =]-\infty;3[$		
	$-1 - (3 - a) \le 0$	$a \leq 4$	$D_1 =]-\infty;4]$	$L_1 = R_1 \cap D_1$	$L_1 =]-\infty;3[$
				$L = L_1 \cup L_1$	$L =]-\infty;\infty[$

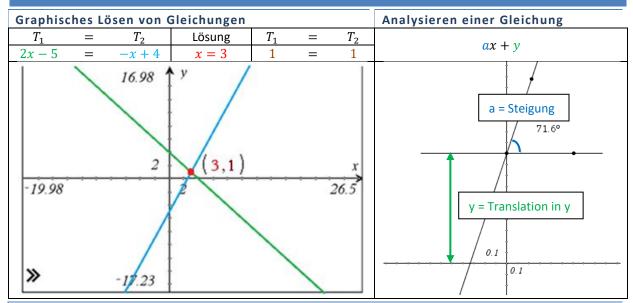
Memo 3: Divisionsalgorithmus

Beispiel	Beispiel mit Parameter			
$(x^2 + 2x + 1)/(x + 1) = x + 1$ $x^2 + x$	$(x^4 - x^3 + x^2 - x + a)$: $(x - 2) = x^3 + x^2 + 3x + 5$			
$\begin{vmatrix} x + x \\ x + 1 \end{vmatrix}$	$\frac{x^4 - 2x^3}{x^4 - 2x^3}$			
x+1	$x^3 + x^2 - x + a$			
0	$\frac{x^3 - 2x^2}{}$			
	$3x^2 - x + a$	10 + a = 0	\rightarrow	<u>a = -10</u>
	$3x^2 - 6x$			
	5x + a			
	<u>5x – 10</u>			
	10 + a (Rest)			

Memo 4: Potenzieren

Multiplizieren	Gleiche Basen	$a^m * a^n = a^{m+n}$	
	Gleiche Exponenten	$a^n * b^n = (a * b)^n$	
Dividieren Gleiche Basen		$\frac{a^m}{a^n} = a^{m-n}$	
	Gleiche Exponenten	$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$	
Potenzieren		$(a^m)^n = (a^n)^m = a^{m*n}$	
Spezialfälle		$a^0 = 1 \qquad a^1 = a$	
Negative Exponenten		$\frac{a^{-n}}{1} = \frac{1}{a^n}$ $\left(\frac{a}{b}\right)^{-2} = \left(\frac{b}{a}\right)^2 2a^{-2} = \frac{2}{a^2}$	
Vorzeichen		$(-a)^4 = a^4 \qquad -a^4 \neq a^4$	
Gerade Exponenten		$(a-b)^2 = (b-a)^2 (a-b)^3 \neq (b-a)^3$	

Merke: Es gibt keine Potenzgesetze für Addition und Subtraktion


Memo 5: Wurzeln (Radizieren) und Potenzieren

Definition		Darstellung von Wurzeln als Potenzen
	n = Wurzelexponent	
$\sqrt[n]{a^m}$	a = Radikand	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$
	m = Potenz	·

Pascal'sches Dreieck & Binome

Marcel Meschenmoser Seite 4 von 9

Äquivalenzumformungen

Addivarenzumformungen							
l lunda uma um a		В		İ			
Umformung	Gleichung	Umformung	Lösungsmenge	Gleichung	Lösungsmenge		
Division mit Variable	$x^2 = 2x$	$x^2 - 2x = 0$ $x(x - 2) = 0$	$L_A = \{0,2\}$	x = 2	$L_{B} = \{2\}$	X	
Radizieren	$x^2 = 4$	$x^{2} - 4 = 0$ $(x + 2)(x - 2) = 0$	$L_A = \{2, -2\}$	x = 2	$L_B = \{2\}$	X	
Subtraktion mit x^2	$x^2 + x = x^2 + 2$	$x^{2} - x^{2} + x - 2 = 0$ $x - 2 = 0$	$L_A = \{2\}$	x = 2	$L_B = \{2\}$		
Division mit $(x + 6)$	(x-3)(x+6) = 0	-	$L_A = \{3,6\}$	(x-3)=0	$L_{B} = \{3\}$	X	

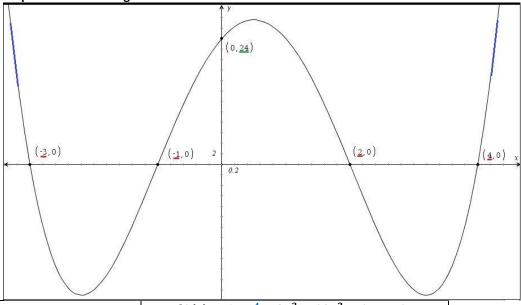
Gleichungssysteme

Grundgleichung	Einsetzmethode	Gleichsetzmethode	Additions-/Subtraktionsmethode
$\begin{vmatrix} 2x + y = 5 \\ x + 2y = 5 \end{vmatrix}$	$\begin{vmatrix} y = 5 - 2x \\ x + 2y = 5 \end{vmatrix}$	$\begin{vmatrix} y = 5 - 2x \\ y = \frac{5 - x}{2} \end{vmatrix}$	
	x + 2(5 - 2x) = 5		
		$5 - 2x = \frac{5 - x}{2}$	
	Gleichung nach y	Gleichungen nach y auflösen.	Gleichung multiplizieren und dann
	auflösen. Einsetzen.	Gleichsetzen	addieren/subtrahieren sodass
			Variable wegfällt.

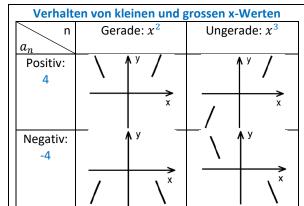
Interpretation

interpretation			
Algebraisch	x = 6	5 = 6	0 = 0
Geometrisch		g	g = h
Lösungen	eine Lösung	keine Lösungen	unendlich viele Lösungen
$g: y = m_1 * x + q_1$	$m_1 \neq m_2$	$m_1 = m_2$	$m_1=m_2$
$h: y = m_2 * x + q_2$	q_{1},q_{2} beliebig	$q_1 \neq q_2$	$q_1 = q_2$

Marcel Meschenmoser Seite 5 von 9


2.1 Polynome

Definition	$p(x) = a_n * x^n + a_{n-1} * x^{n-1} + a_2 * x^2 + a_1 * x + a_0$
allgemeines Polynom 4ten Grades	$p(x) = a_4 * x^4 + a_3 * x^3 + a_2 * x^2 + a_1 * x + a_0$
Polynom 4ten Grades	$p(x) = x^4 - 2x^3 - 13x^2 + 14x + 24$
	$n = 4$; $a_4 = 1$; $a_3 = -2$; $a_2 = -13$; $a_1 = 14$; $a_0 = 24$


Wertetabelle

p(x)	p(-4)	p(-3)	p(-2)	p(-1)	p(0)	<i>p</i> (1)	p(2)	p(3)	p(4)	<i>p</i> (5)
$x^4 - 2x^3 - 13x^2 + 14x + 24$	144	0	-24	0	24	24	0	-24	0	144

Graphische Darstellung

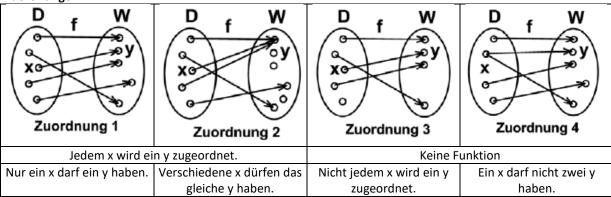
Polynom	$f1(x) = 1 * x^4 - 2x^3 - 13x^2 + 14x + 24$
Linearfaktorenzerlegung	f1(x) = (x-4) * (x-2) * (x+1) * (x+3)

Null Faktore	Null Faktoren (y nullsetzen)				
Schnittpunkt	Berührungspunkt				
(x+1)	$(x+1)^2$				
$(x+1)^3$	$(x+1)^4$				
(-4,0)	(-1,0)				
y-Achsen Schnittpunkt					
$f1(0x) = 0x^4 - 0x^3 - 0x^2 + 0x + 24$					
f1(0x)=24					

Spezielle Punkte

Gegeben: Punkt (4|6), Schnittpunkt mit -Achse $N_1(6|0)$ und $N_2(-2|0)$

Ansatz 1: $y = a_2 * x^2 + a_1 * x + a_0$	Ansatz 2: $y = a(x - b)(x + c)$
$\begin{vmatrix} y(4) = 6 \\ y(6) = 0 \\ y(-2) = 0 \end{vmatrix} \rightarrow a_1 = 2 \\ a_2 = -\frac{1}{2} \\ a_0 = 6$	y = a(x-6)(x+2) und $y(4) = 66 = a(4-6)(4+2) \rightarrow a = -\frac{1}{2}$
$y = -\frac{1}{2} * x^2 + 2x + 6$	$y = -\frac{1}{2}(x-6)(x+2)$


Änderungen

Spiegelung an der Y-Achse	$y = (x+2)^2$	$y = (-x + 2)^2 \text{ oder } (x - 2)^2$
Translation in X-Richtung nach links	$y = (x+2)^2$	$y = (x+4)^2$
Translation in X-Richtung nach rechts	$y = (x+2)^2$	$y = (x - 2)^2$

Marcel Meschenmoser Seite 6 von 9

2.2 Funktionales Denken

Zuordnungen

	veise einer Funktion f	Graph einer Funkt	
L $D \to W$	D = Definitionsbereich	C (n(ulu)), ((u) d c n)	G_f = Graph
$\int : x \to y$	W = Wertebereich	$G_f = \{P(x y) y = f(x) \text{ und } x \in D_f\}$	D_f = Definitionsmenge

Ungleichung zweier Funktionen

Ongleichung zweier Funktionen						
Funktionsungleichung						
Graph						
Algebraisch	1 Fall:	$D_1 =$	$x \ge 4$	$-\frac{1}{2}(x-4) + 4 < \left(\frac{1}{2}x + \frac{1}{2}\right)$	1) – 2	$x > 7$ $Z_1 =]7; \infty[$
	2 Fall:	$D_2 =$	-2 < x < 4	$-\frac{1}{2}(-x+4)+4 < \left(\frac{1}{2}x + \frac{1}{2}x +$	-1) -2	$3 < 0$ $Z_2 = \{\}$
	3 Fall:	$D_3 =$	<i>x</i> < -2	$-\frac{1}{2}(-x+4)+4 < \left(-\frac{1}{2}x-\frac{1}{2$	- 1) - 2	$x < -5$ $Z_3 =]-\infty; -5[$
		$L_1 = D_1$	$\cap Z_1$	$L_2 = D_2 \cap Z_2$	L_3	$= D_3 \cap Z_3$
	L	$=L_1 \cup$	$L_2 \cup L_3$	$L =]-\infty; -5$	[∪]7;∞	·[

Zwei Punkte zu einer Geraden

Gegeben	$P_1(-1 -2)$	$P_2(-5 2)$
Ansatz	y = m * x + q	P(x y)
Lösung	$\begin{vmatrix} -2 = -1 * x + q \\ 2 = -5 * x + a \end{vmatrix}$	

Senkrechte / Parallele Gerade

$m_1 = m_2$	parallel
$m_1 * m_2 = -1$	senkrecht

Schneiden von zwei Geraden

Gegeben	$y_1 = -1 * x + 4$
	$y_2 = 2 * x + 1$
Ansatz	$y_1 = y_2$
Lösung	-1 * x + 4 = 2 * x + 1

Lineares Optimieren

ieai	es optimieren		
1.	Variablen setzen	$x = \dots$	$y = \dots$
2.	Ungleichungen aufstellen	$A: 4x + 6y \le 300$	$y \le -\frac{2}{3}x + 50$
	(nach y auflösen)	$B: 6x + 5y \le 370$	$y \le -\frac{6}{5}x + 74$
	!Achtung umgekehrte Proportionalität!	C: $0x + 8y \le 240$	$y \leq 30$
3.	Zielfunktion aufstellen	Z = 8x + 9y	
	(nach y auflösen, Z nullsetzen)	$y = -\frac{8}{9}x + \frac{Z}{9}$	$y = -\frac{8}{9}x$

- 4. Ungleichungen und Zielfunktion aufzeichnen, Planungspolygon markieren
- 5. Zielfunktion verschieben (maximal, minimal)

Marcel Meschenmoser

2.3 Funktionstypen

	Graph	Funktion		kleiner 1	grösser 1	minus		kleiner 0	grösser 0
ır		$y = f(x) = x$ $y = m * x + q$ $m = \frac{\Delta y}{\Delta x}$		*	*	• - -	q	+	^
Linear	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS<l< td=""><td>**</td><td>*-</td><td>ं •</td><td>-+-></td><td>++-</td></l<>			* *	*-	ं •		-+->	+ +-
Betrag		y = f(x) = x $y = a * b * x + c + d$	а	*	*	• <u>;</u>	С	++	+ +-
	∞		b	- *	* *	ं : ●	d	++	+
Quadratisch		$y = f(x) = x^{2}$ $y = a_{2} * x^{2} + a_{1} * x + a_{0}$	а	*	*	• <u>;</u>	b	++	+ +
Quadr	∞	$y = a * (x + b)^{2} + c$ $y = a * (x - x_{1}) * (x - x_{2})$					С	++	+
Kehrwert		$y = f(x) = \frac{1}{x}$	а				С		
Keh	∞	$y = \frac{a}{b * x + c} + d$	b				d		
Trigonometrie		$y = f(x) = \sin(x)$ $y = f(x) = \cos(x)$ $y = f(x) = \tan(x)$	а	*	*	• <u>†</u> ∘	С	++	+ +-
Trigon		$y = a * \sin(b * x + c) + d$ $y = a * \cos(b * x + c) + d$ $y = a * \tan(b * x + c) + d$	b	* >	← *	ं : ●	d	+	+
Exponent		$y = f(x) = 2^{x}$ $y = a * q^{b*x+c} + d$	а	*	*	• <u>;</u>	С	++	+ +
	®	$y = A * Q + A$ $y = A * B^{x}$ $y = A * e^{\lambda * x}$	b	- **	* *	- -:-	d	+	+
Wurzel									
>									

Marcel Meschenmoser

3 Logarithmen

 $a^x = b$ $x = \log_a(b)$ "Logarithmus zur Basis a von b"

Verschiedene Logarithmen

10-er Logarithmus	Dekadischer Logarithmus	$\log(x) = \log_{10}(x)$	
2-er Logarithmus	Binärlogarithmus	$lb(x) = \log_2(x)$	
natürliche Logarithmus	Logarithmus naturalis	$ln(x) = log_e(x)$	(e = Eulersche Zahl ~ 2,718)

Spezialfälle

999		
1.	$a^{\log_a(b)} = b$	
2.	$\log_a(1) = 0$	$a^{0} = 1$
3.	$\log_a(a) = 1$	$a^1 = a$
4.	$\log_a(a^x) = x$	$a^x = a^x$

Rechengesetze

1.	$\log(u * v) = \log(u) + \log(v)$
2.	$\log\left(\frac{u}{v}\right) = \log(u) - \log(v)$
3.	$\log\left(\frac{1}{v}\right) = -\log(v)$
4.	$\log(b^n) = n * \log(b)$

Nummerusvergleich

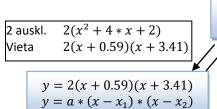
$$\log_6(a) = 2 \quad (2 = \log_6(6^2))$$

 $\log_6(a) = \log_6(6^2)$

Umrechnungen

• 6			
Exponenten-Vergleich	$a^{T_1(x)} = a^{T_2(x)}$	$T_1(x) = T_2(x)$	
Logarithmieren (Bei Produkten)	a*b=c*d	$\log(a*b) = \log(c*d)$	
Substitution	$4^x + 3 * 2^x = 88 \qquad u = 2^x$	$u^{2} + 3 * u - 88 = 0$ $(u + 11) * (u - 8) = 0$	
Basiswechsel	$\log_a(b)$	$\frac{\log_c(b)}{\log_c(a)}$	

4 Exponentialfunktion


	a, A	Anfangswert
$y = a * q^{b*x+c} + d$ $y = A * B^x$	q, B, <i>e</i>	Wachstumsfaktor = $\left(1 + \frac{p}{100}\right)$, p = Zins $(q, B > 1 = Zunahme)$; $(q, B < 1 = Abnahme)$
$v = A * e^{\lambda * x}$	<i>b</i> , λ	Zeiteinheit bis Vervielfachung, $-\lambda = Abnahme$
,	С	Zeit auf null setzen
	d	Nicht teilnehmender Bestand

5 Quadratische Funktion

$y = x^2$	(Normalparabel)			
$y = (2x)^2 = 2^2 * x^2$	Eine Stauchung in X um Faktor 2 ist eine Streckung in Y am Faktor 4.			
$y = a_2 * x^2 + a_1 * x + a_0$	Polynom-Ansatz	a_0 Schnittpunkt mit Y, a_2 Öffnung		
$y = a * (x - x_1) * (x - x_2)$	Linearfaktor-Ansatz	x_1, x_2 sind die Nullstellen		
$y = a * (x - b)^2 + c$	Scheitelform-Ansatz	Scheitelpunkt $S(b c)$		

$y = a * x^2 + b * x + c$	b^2-4ac		$D < 0 \rightarrow 2L\ddot{o}sungen$ $D = 0; \rightarrow 1 L\ddot{o}sung$ (Tangente) $D > 0; \rightarrow 0 L\ddot{o}sungen$
$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$\frac{-b}{2a}$	X-Koordinate des Scheitelpunkts	

Umrechnungen

$$y = 2 * x^{2} + 8 * x + 4$$
$$y = a_{2} * x^{2} + a_{1} * x + a_{0}$$

2 auskl. $2(x^2 + 4 * x + 2)$ Binom $2((x + 2)^2 - 2)$ 2 einkl. $2(x + 2)^2 - 4$

$$y = 2 * (x + 2)^{2} - 4$$

 $y = a * (x + b)^{2} + c$

Marcel Meschenmoser Seite 9 von 9