
KIP - AUFGABEN

Übung 1 – Two-Bar-Truss

Gegeben

$$\rho = 8000 \frac{kg}{m^3}$$

$$E = 200 \frac{kN}{mm^2}$$

$$Kosten = 3 \frac{CHF}{kg}$$

$$\sigma_Z = 1 \frac{kN}{mm^2}$$

$$\sigma_D = 1 \frac{kN}{mm^2}$$

$$\delta \le 1cm$$

$$\sigma \le \sigma_Z$$

$$\sigma \ge -\sigma_D$$

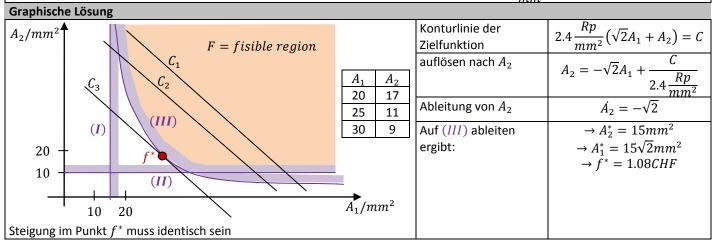
Gesucht

NLP:

$$K_{min}(A_1, A_2)$$

Näherungen

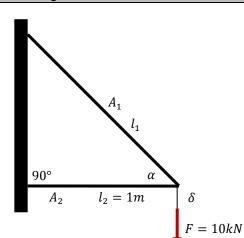
 δ linear nähern (Taylor-Reihe 1.Ordnung)


F1 und F2 bleiben unverändert

keine Biegung

Algebraische Lösung

Algebraische Lösung		
Design-Variablen	A_1, A_2	
1. Kräfte aufzeichnen	$F = \sqrt{2} 10 kN$	
(Parallelogramm)	$F_3 = 10kN$ $F_1 = \sqrt{2} \ 10kN$	$F_3 = F_1 + F_2$
		13 11 12
	$F_2 = 10kN$	
2. Querschnitte ausrechnen	$\sigma_1 = \frac{F_1}{A_1} = \frac{\sqrt{2} * 10^4 N}{A_2} \le \sigma_Z$	4 > 10 40 2
über Spannungen		$A_1 \ge \sqrt{2} * 10mm^2$
	$\sigma_2 = \frac{\vec{F_2}}{A_2} = \frac{-10^4 N}{A_2} \ge -\sigma_D$	$A_2 \ge 10mm^2$
	$o_2 = {A_2} = {A_2} \ge -o_D$	$n_2 \geq 10$ ntnt
3. Auslenkungen		δ_1 $\delta_2 = \delta_1$ $\delta_3 = \sqrt{2}m * \sigma_1 = 10^2 mm^3$
	$\sqrt{2m+\delta_1}$	$A_{2} \ge 10mm^{2}$ $\sigma = E * \varepsilon = E * \frac{\delta_{1}}{\sqrt{2}m}, \qquad \delta_{1} = \frac{\sqrt{2}m * \sigma_{1}}{E} = \frac{10^{2}mm^{3}}{A_{1}}$ $T = E * c = E * \frac{\delta_{2}}{2m}, \qquad T = \frac{10^{4}N * \frac{1}{A_{2}}}{2m} = \frac{50mm^{3}}{2m}$
		$m*10^4N*\frac{1}{4}$ 50mm ³
	$1m - \delta_2$	$\sigma = E * \varepsilon = E * \frac{\delta_2}{1m}, \qquad \delta_2 = \frac{1m * 10^4 N * \frac{1}{A_2}}{2 * 10^5 \frac{N}{mm^2}} = \frac{50mm^3}{A_2}$
	$1m - o_2$	$2*10^5 \frac{1}{mm^2}$ A_2
4. Pythagoras		$L + \delta = \sqrt{\left(\sqrt{2} L + \delta_1\right)^2 - (L - \delta_2)^2}$
	75.1.5	$L + b = \sqrt{(\sqrt{2}L + b_1) - (L - b_2)}$
	$L + \delta$ $\sqrt{2} L + \delta_1$	$= \sqrt{2L^2 + 2\sqrt{2}L\delta_1 + \delta_1^2 - (L^2 - 2L\delta_2 + \delta_2^2)}$
	2 1 0	$\sqrt{-2}$ + $2\sqrt{-2}$ $3\sqrt{2}$ + $3\sqrt{2}$
	$L-\delta_2$	$= L\left(1 + \frac{2}{L}\left(\sqrt{2}\delta_1 + \delta_2\right) + \cdots\right)^{\frac{1}{2}}$
	und Taylor-Entwicklung	$pprox L\left(1+rac{1}{L}\left(\sqrt{2}\delta_1+\delta_2 ight)\right)$
		$\delta = \sqrt{2}\delta_1 + \delta_2$
		$\delta = \frac{\sqrt{2}\delta_1 + \delta_2}{\sqrt{2}\frac{100mm^3}{A_2} + \frac{50mm^3}{A_2} \le 1cm}$
		$\sqrt{2} \frac{1}{A_1} + \frac{1}{A_2} \leq 1cm$
		$100mm^3\left(\frac{\sqrt{2}}{A_4} + \frac{1}{2A_2}\right) \le 10mm$
		_ \\\^11 \\^2 \\^12/
		$\frac{\sqrt{2}}{A_1} + \frac{1}{2A_2} \le 0.1 \frac{1}{mm^2}, \qquad *A_1 A_2 $
		$\sqrt{2}A_2 + \frac{1}{2}A_1 \le 0.1 \frac{1}{mm^2}A_1A_2$
	$D = \sqrt{2} - 0.1 \frac{1}{mm^2} A_1$	$A_2\left(\sqrt{2} - 0.1 \frac{1}{mm^2} A_1\right) \le -\frac{1}{2} A_1$
5. Fallunterscheidung	$D < 0 \Rightarrow A_1 > 10\sqrt{2}mm^2$	$D > 0 \implies A_1 < 10\sqrt{2}mm^2 \rightarrow falsch$
	$A_{\alpha} > \frac{-A_1}{A_1}$	
	$A_2 \ge \frac{-A_1}{2\sqrt{2} - 0.2 \frac{A_1}{mm^2}}$	$A_2 \le \frac{-A_1}{2\sqrt{2} - 0.2 \frac{1}{mm^2} A_1}$
	mm^2	mm ² -


NLP	
min f(x)	$f(A_1, A_2) = \rho * K * (\sqrt{2} A_1 + A_2) = \frac{2.4CHF}{mm^3} (\sqrt{2} A_1 + A_2)$
unter der Nebenbedingungen $g(x)$	$A_1 \geq 10 * \sqrt{2} mm^2$ (I) $A_2 \geq 10 mm^2$ (II) $A_2 \geq -\frac{A_1}{2\sqrt{2} - 0.2 \frac{A_1}{mm^2}}$ (III)

Übung 2 – Two Bar Truss

Aufgabenstellung

Skizze

Gegeben

$$\rho = 8000 \frac{kg}{m^3}$$

$$E = 200 \frac{kN}{mm^2}$$

$$Kosten = 3 \frac{CHF}{kg}$$

$$\sigma_Z = 1 \frac{kN}{mm^2}$$

$$\sigma_D = 1 \frac{kN}{mm^2}$$

$$\delta \le 1cm$$

$$\sigma \le \sigma_Z$$

 $\sigma \geq -\sigma_D$

Gesucht

NLP:

 $K_{min}(A_1,A_2,\alpha)$ Näherungen

 δ linear nähern

(Taylor-Reihe 1.Ordnung)

F1 und F2 bleiben unverändert

keine Biegung

Algebraische Lösung			
Design-Variablen		A_1, A_2, α	
1. Längen und Kräfte ausrechnen	$\tan \alpha = \frac{l_1}{\cos \alpha}$ $l_2 = 1m$	F 90° α F_2	$F_1 = \frac{F}{\sin \alpha}$ $F_2 = \frac{F}{\tan \alpha}$
2. Querschnitte ausrechnen über Spannungen	$\sigma_1 = \frac{F}{\sin \alpha \ A_1}$ $\sigma_2 = \frac{-F}{\tan \alpha \ A_2}$		$\geq \frac{F}{\sin \alpha \ \sigma_Z}$ $\geq \frac{F}{\tan \alpha \ \sigma_D}$
3. Auslenkungen	$l_1 + \delta_1$ $1m - \delta_2$		·
4. Pythagoras	$\tan \alpha + \delta$ $l_1 + \delta_1$ $1m - \delta_2$	$\tan \alpha + \delta = \sqrt{\frac{1}{\delta}}$ $\delta = \frac{L * F}{E} \left(\frac{1}{\sin^2 \alpha}\right)$	$\left(\frac{1}{\cos\alpha} + \delta_1\right)^2 - (1 - \delta_2)^2$ $\frac{1}{\alpha\cos\alpha} + \frac{1}{\tan^2\alpha} + \frac{1}{\tan^2\alpha}$
	und Taylor-Entwicklung		

NLP

142.	
min f(x)	$f(A_1, A_2, \alpha) = \rho * K * \left(\frac{A_1}{\cos \alpha} + A_2\right)$
	$A_1 \qquad \geq \qquad \frac{F}{\sin \alpha \ \sigma_Z} \tag{I}$
unter der Nebenbedingungen $g(x)$	$A_2 \qquad \geq \qquad \frac{F}{\tan \alpha \sigma_D} \qquad (II)$
	$\frac{A_2}{\cos \alpha} + A_1 \cos^2 \alpha \leq \frac{\delta_0 + E}{LF} A_1 A_2 \sin^2 \alpha (III)$

Übung 4 – Newton Verfahren

Gegeben

 $Min f(x), fkonvex, f \in C^2$ $x \in [0,1]$ $f(x) = 10x^3 + x^2 - 1.6x + 2$ $x^* = 0.2$

Gesucht

 $x_i \in [0.2 - \epsilon, 0.2 + \epsilon]$ $\epsilon = 10^{-8}$

Lösung

$$f'(x) = 30x^2 + 2x - 1.6$$

$$f''(x) = 60x + 2$$

x_0	1	0	0.5
i	6	6	5
N_f	6	6	5
$N_{f'}$	6	6	5
$N_{f''}$	6	6	5

MATLAB-Files

```
function [ f, f1, f2 ] = myFunction( x )
%MYFUNCTION Summary of this function goes here
%  Detailed explanation goes here
    f = 10*x*x*x*x+x*x-1.6*x+2;
    f1 = 30*x*x+2*x-1.6;
    f2 = 60*x+2;
end
```

```
function [ i ] = newtonVerfahren( x0 )
    eps = 10^-8;
    x = x0;
    i = 0;
    while abs(0.2-x) > eps
        i = i + 1;
        [f, f1, f2] = myFunction(x);
        x = x - f1/f2;
    end
end
```

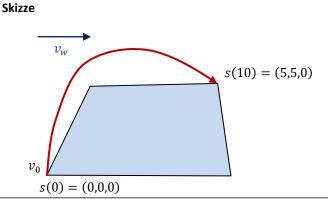
Marcel Meschenmoser Dozent: Martin Bünner Seite 4 von 7

Übung 5 – Newton Verfahren

```
function [ i, x, x_hist] = newtonVerfahren_ueb5_2( x0, eps, n )

x_i=x0;
i = 1;

[f,f1,f2] = myFunction_ueb5(x_i);
    x_ip1=x_i-f1/abs(f2);
    x_hist(i) = x_ip1;


while abs(x_ip1-x_i)>eps && i<n
    x_hist(i) = x_ip1;
    i=i+1;
    x_i=x_ip1;
    [f,f1,f2] = myFunction_ueb5(x_i);
    x_ip1=x_i-f1/abs(f2);
end

x = x_ip1;
end</pre>
```

Marcel Meschenmoser Dozent: Martin Bünner Seite 5 von 7

Übung 6 – Golfballproblem

Aufgabenstellung

Gegeben

$$m = 1kg$$
$$t = 10s$$

Gewichtskraft:

$$F_G = m * g$$

Reibungskraft

$$F_R(t) = -0.1 \left[\frac{kg}{s} \right] (\dot{s} - v_w)$$

Wind

$$v_w = (w, 0,0)$$

 $w = 0, 0.1, 1$

Gesucht

$$v_0 = (v_1, v_2, v_3)$$

Algebraische Lösung			
Design-Variablen	v_1, v_2, v_3		
1. DGL aufstellen	$m * a = F_G - F_R(t)$ $m * \dot{v} = m * \begin{pmatrix} 0 \\ 0 \\ -g \end{pmatrix} - 0.1(\dot{s} - v_w)$	$\dot{v_x} = \frac{-0.1 * v_x + 0.1 * v_w}{m}$ $\dot{v_y} = \frac{-0.1 * v_y}{m}$ $\dot{v_z} = \frac{-g - 0.1 * v_z}{m}$	
MATLAB:	<pre>function [dy] = rigid(t, y) vw = 0.1; g = 9.81; dy = zeros(3,1); dy(1) = - 0.1 * y(1) + 0.1 * vw; dy(2) = -0.1 * y(2); dy(3) = -0.1* y(3) - g; end</pre>	<pre>%Wind in x-Richtung %Gravitationskonstante %leerer Vektor mit 3 Spalten</pre>	
2. Zielfunktion aufstellen	$f(v_1,v_2,v_3) = (s_x(v_1,v_2,v_3,t=10)-5)^2 + \left(s_y(v_1,v_2,v_3) + (s_y(v_1,v_2,v_3)) + (s_y(v_1,v_3,v_3)) + (s$		
MATLAB:	<pre>function [f , q] = Flugfunktion(v) [T,Y] = ode45(@rigid,[0 10],v);</pre>	%DGL ausrechnen %Trapezintegration	
3. PDOP lösen	<pre>%Für grafische Darstellung options = optimset('Display', 'iter', %Minimum suchen [f] = fminsearch(@Flugfunktion, [10,10, %Resultat ausgeben Flugfunktion(f);</pre>		

Aufgabe 7

Gegeben

$f(x,y) = (x^2 + y - y)$	$11)^2 + (y^2 + y - 7)^2$
1. Gradient	$\nabla f = \begin{pmatrix} f_x \\ f_y \end{pmatrix} = \begin{pmatrix} 2(x^2 + y - 11) * 2x \\ 2(x^2 + y - 11) + 2(y^2 + y - 7) * (2y + 1) \end{pmatrix}$ $\nabla f = \begin{pmatrix} 2(x^2 + y - 11) * 2x = 4x^3 + 4xy - 44x \\ 2(x^2 + y - 11) + 2(y^2 + y - 7) * (2y + 1) \end{pmatrix}$
2. Hesse-Matrix	$\underline{\underline{H}}(\vec{x}) = \begin{pmatrix} f_{xx}(\vec{x}) & f_{xy}(\vec{x}) \\ f_{yx}(\vec{x}) & f_{yy}(\vec{x}) \end{pmatrix} = \begin{pmatrix} 12x^2 + 4y - 44 & 4x \\ 4x & & 4x \end{pmatrix}$

Übung 13.05.2013

NI P

$$\min f(x_1, x_2) = 2x_1^2 - x_2^2$$

$$x_2 \le 3 - x_1$$

$$x_2 \le 3 + 3x_1$$

$$x_2 \ge -6 + x_1^2$$

$$(A) {x_1 \choose x_2} \le (b)$$

Marcel Meschenmoser Dozent: Martin Bünner Seite 7 von 7