
OPTIK

Elektromagnetische Wellen

Grundprinzip: Beschleunigte elektrische Ladungen strahlen.

Licht ist eine elektromagnetische Welle.

E-/B-Feld sind transversal. stehen senkrecht aufeinander und liegen in Phase

Streuung (Wechselwirkung mit Materie)

Absorption und Abstrahlung von elektromagnetischer Wellen in Materie.

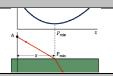
Röntgenstrahlung Bremsstrahlung - Durch hohe Abbremsung beim Auftreten von Elektronen auf Materie charakt. Röntgenstrahlung -

Durch sehr hohe Abbremsung

Brechzahl

Synchrotronstrahlung Durch Zentripetalbeschl. auf einer Kreisbahn gehaltenen Elektronen

Grundlagen der Optik


Intensität entlang Achse = 0

Ausbreitung des Lichts

Huygens'sche Prinzip Jeder Punkt ist der Ausgangspunkt einer neuen Welle

Fermat'sche Prinzip Der Weg mit der dafür minimalen benötigten Zeitspanne

Co	n	Brechzahl					
$n = \frac{c_0}{c_0} c_0$		Lichtgeschwindigkeit im Vakuum					
c_n	c_n	Lichtgeschwindigkeit im Medium					

Reflexion und Brechung

Medium 1 $\theta_1 \mid \theta_1$ optisch dünner Medium 2 optisch dichter

Einfallsebene = gezeichnete Ebene

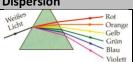
Reflexion

Einfallswinkel = Ausfallswinkel $\theta_1 = \theta_1'$

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$$

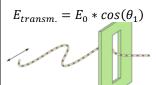
spiegelnde Reflexion, bei glatter Fläche

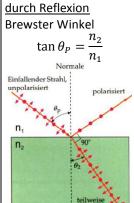
diffuse Reflexion, bei rauher Fläche


Totalreflexion, wenn $\theta_1 > \theta_{ar}$

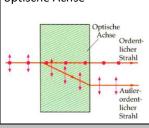
und wenn vom dichteren zum dünneren

Grenzwinkel: $\sin\theta_{gr} = \frac{n_1}{n_2}$

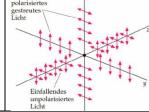

Dispersion



Die Ausbreitungsgeschwindigkeit von Licht in durchsichtigen Materialien hängt von der Wellenlänge ab. normale Dispersion: n sinkt mit wachsender Wellenlänge.


Lineare Polarisation

Prinzip Wenn unpolarisiertes Licht auf einen Polarisator fällt, wird nur der parallel zur Polarisatorachse schwingende Anteil durchgelassen.

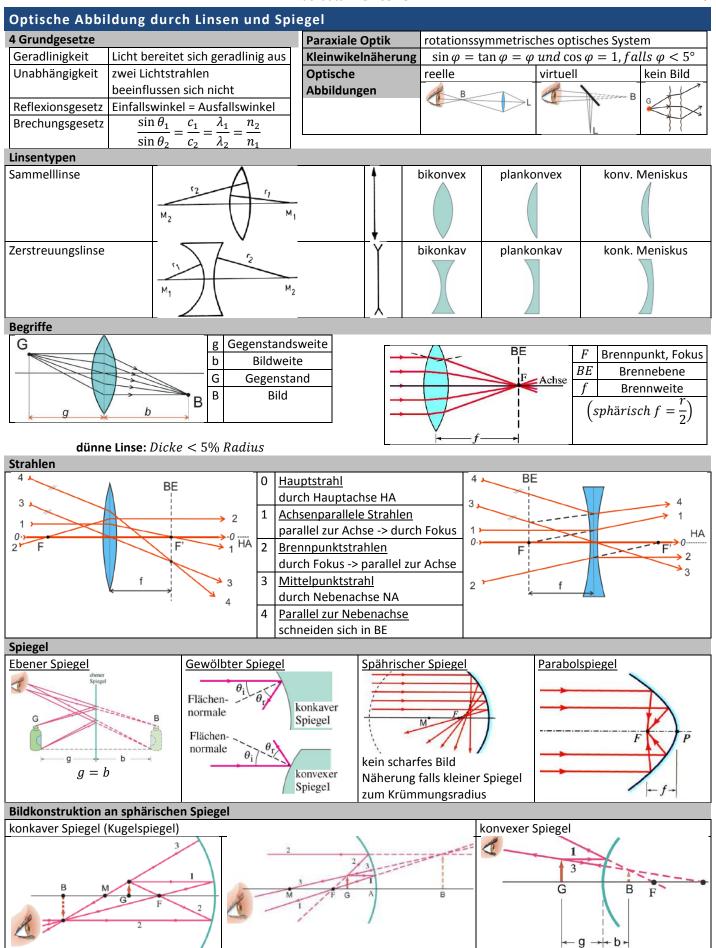

durch Doppelbrechung optisch anisotrope Kristalle vorzugsrichtung = optische Achse

durch Absorption (Dichroismus)

durch Streuung blaues licht wird stärker gestreut als gelbes

falls Streuzentrum kleiner als die Wellenlänge

Welle-Teilchen Dualismus bei Licht

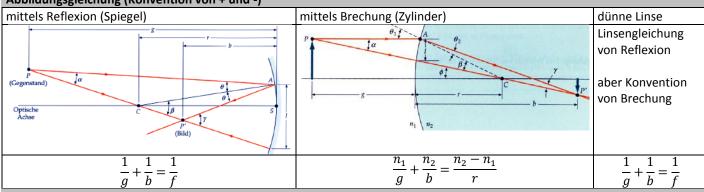

$$W = h * f = \frac{h * c}{\lambda}$$

$$h = 6.626 * 10^{-34} Js$$

$$c = \lambda * f = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 299'792'458 \frac{m}{s}$$

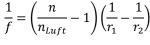
W	Energie
h	Planck'sches Wirkungsquantum
С	Lichtgeschwindigkeit (im Vakuum)
λ	Wellenlänge
f	Frequenz
ϵ_0, μ_0	elektrische Feldkonstanten

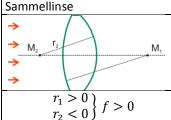
Elektromagnetische Strahlung (also auch Licht) wird in Form von diskreten Energiepaketen, den Photonen, abgegeben. Da Energiezustände nur diskrete Werte annehmen, sind auch die Farben auf diskrete Werte beschränkt. -> Spektrallinien

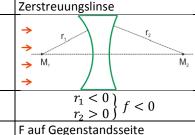


analog Zerstreuungslinse

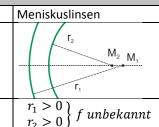
analog Sammellinse


Abbildungsgleichungen, Mehrlinsensysteme und Linsenfehler


Abbildungsgleichung (Konvention von + und -)



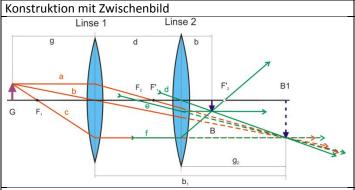
Brennweiten dünner Linsen

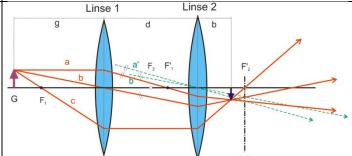

unendlich weit entfernter Gegenstand:

Konstruktion ohne Zwischenbild

je nach Betrag von r_1, r_2

Definition Linsenstärke (Brechwert) D


$D = \frac{n_M}{n_M}$	D	Dioptrie	$[D] = m^{-1}$
$\mathcal{L} = f$	n_{M}	Brechnzahl des Mediums	


F auf Transmissionsseite

Dicke Linsen

Näherung der Mittelebene nicht mehr gültig. -> Zwei Hauptebenen

Mehrere Linsen

- 1. Konstruktion von Bild B1 (als ob Linse 2 nicht existiere)
- 2. Endgültiges Bild durch Strahlen (d,e,f) zeichnen
- 1. Brechung der Linse 1 bis zu Linse 2 weiterziehen
- 2. Parallele Strahlen durch den Mittelpunkt von Linse 2
- 3. Durchstosspunkte der Linse mit derjenigen der BE verbinden

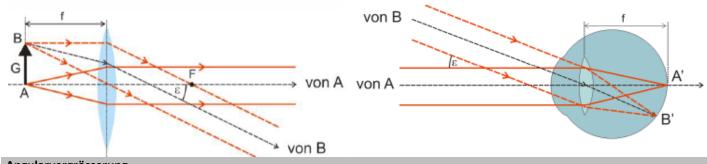
Brennweite mehrere dünner aufeinanderliegender Linsen

$$D_{tot} = D_1 + D_2$$

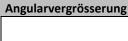
$$\frac{1}{f_{tot}} = \frac{1}{f_1} + \frac{1}{f_2}$$

Abbildungsfehler

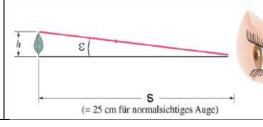
spährische Aberration	zu grosser Winkel zur Achse -> Parabolspiegel oder Blende	Materialfehler
Astigmatismus schiefer Bündel	Strahlen fallen schräg zur Achse ein	
chromatische Aberration	nur bei Linsen (Brechung), Dispersion ->Kombination von Linsen	

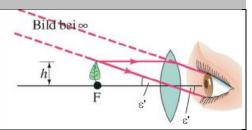

Optische Instrumente

Lateralvergrösserung				
В	1			
$\gamma = \overline{G}$	$=\frac{1}{1-\frac{g}{f}}$			
G	F			


	Sammellinse (f positiv)				Zerstreuungslinse (f negativ)			
g < f	1 < γ < ∞	virtuell	vergrössert	aufrecht	0 < γ < 1	virtuell	verkleinert	aufrecht
g = f	$\gamma = \infty$	virtuell	vergrössert	aufrecht	0 < γ < 1	virtuell	verkleinert	aufrecht
f < g < 2f	γ < -1	reell	vergrössert	verkehrt	0 < γ < 1	virtuell	verkleinert	aufrecht
			1:1					
g > 2f	-1 < γ < 0	reell	verkleinert	verkehrt	0 < γ < 1	virtuell	verkleinert	aufrecht

Die Lupe


kurzzbrennweitige Sammellinse, Gegenstand in Brennebene



Dozent: Stefan Rinner

Frequenzspektrum						
Bezeichnung	Wellenlänge	Frequenz	Einsatzgebiet			
Niederfrequenz	> 10 km	< 3.10 ⁴ Hz	Funknavigation			
Hochfrequenz						
Langwelle (LW)	10 km - 1 km	3·10 ⁴ - 3·10 ⁵ Hz	Langwellenrundfunk			
Mittelwelle (MW)	1 km - 100 m	3·10 ⁵ - 3·10 ⁶ Hz	Mittelwellenrundfunk			
Kurzwelle (KW)	100 m - 10 m	3·10 ⁶ - 3·10 ⁷ Hz	Kurzwellenrundfunk			
Ultrakurzwelle (UKW)	10 m - 10 cm	3·10 ⁷ - 3·10 ⁹ Hz	Hörfunk, Fernsehen			
Mikrowellen	10 cm - 0,1 mm	3·10 ⁹ - 3·10 ¹² Hz	Radar, Mikrowelle			
Licht						
Infrarot (IR)	100 μm – 780 nm	3·10 ¹² - 3,85·10 ¹⁴ Hz	Wärmestrahlung, Fernbedienungen			
Sichtbar (VIS)	780 nm – 400 nm	3,8·10 ¹⁴ - 7,5·10 ¹⁴ Hz	DVD, Laserpointer, Lichtzeichenanlage			
Rot	750 - 640 nm	$4.0 - 4.7 * 10^{14} Hz$				
Orange	640 - 600nm	$4.7 - 5.0 * 10^{14} Hz$				
Gelb	600 - 555nm	$5.0 - 5.4 * 10^{14} Hz$				
Grün	555 - 485nm	$\frac{5.4 - 6.2 * 10^{14} Hz}{6.2 * 7.0 * 4.014 Hz}$				
Blau	485 - 430nm	$6.2 - 7.0 * 10^{14} Hz$				
Violett Ultraviolett (UV)	430 - 380 <i>nm</i> 400 nm - 1 nm	$7.0 - 7.9 * 10^{14} Hz$ $7.5 \cdot 10^{14} - 3 \cdot 10^{17} Hz$				
- Soft UV (UV)	400 nm – 200 nm	.,	Schwarzlicht, Bankno- tenprüfung, Lithografie			
- Deep UV (DUV)	200 nm – 50 nm		Lithografie, Laserbearbeitung			
- Extreme UV (XUV)	50 nm - 1nm		EUV-Lithografie			
Röntgenstrahlen	1 nm – 10 pm	3·10 ¹⁷ - 3·10 ¹⁹ Hz	med. Diagnostik, Röntgenanalyse,			
Gammastrahlen	10 pm - 0,1 pm	3·10 ¹⁹ - 3·10 ²¹ Hz	Medizin, Sterilisation			
Kosmische Strahlung	< 0,1pm	> 3·10 ²¹ Hz				