PARTIELLE ABLEITUNG

Partielle Ableitungen	Ableitung nach Ableitung nach		h 2	a 2te Ableitung 2te Ableitung gemischte partielle				
Tartiene / wiertungen	x / x-Achse y / y-Achse			nach x/x-Achse	nach y/y	_	Ableitungen	
					$\partial^2 f$		$\frac{\partial^2 f}{\partial x \partial y} = f_{xy} = f_{yx}$	
	$\frac{1}{\partial x} = f_x$	$\frac{\partial}{\partial y} = f_y$		$\frac{\partial^2 f}{\partial x^2} = f_{xx}$	$\frac{1}{\partial y^2} =$	$= f_{yy}$	$\frac{\partial}{\partial x \partial y} = f_{xy} = f_{yx}$	
Gradient	$\vec{\nabla} f(x, y) = (f_x)$		Rich	Richtung = Richtung des steilsten Anstiegs				
senkrecht auf Isolinie	(f_y)		Betrag = Maximaler Aufstieg					
Tangentialebene	1.5 20		Funktionswerte / Ableitung in x / Ableitung in y identisch:					
Z -20 X 20 -30			$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$					
Anwendungen								
Extremalstellen	$\vec{\nabla} f(x, y) = 0 = \begin{pmatrix} f_x \\ f_y \end{pmatrix}$			Suchen von Maximum, Minimum oder Sattelpunkten Unterteilen in Funktion, auf Strecke und an Endpunkten				
Geometrie der	f(x,y)			•				
2ten Ableitung	xx dVx_0 , \vec{v}		$ Vf = \begin{pmatrix} 0 \\ 0 \end{pmatrix} < 0 \qquad = 0 \qquad > 0$					
Hessematrix H und Taylor Reihe	$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{pmatrix}$			$f(\overrightarrow{x_0} + \overrightarrow{\Delta x}) = f(\overrightarrow{x_0}) + \overrightarrow{\nabla} f(\overrightarrow{x_0}) * \overrightarrow{\Delta x} + \frac{1}{2} \overrightarrow{\Delta x}^T H \overrightarrow{\Delta x}$				
Richtungsableitung	$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{pmatrix}$ $\frac{\partial f}{\partial \vec{v}}(x_0, y_0) = \frac{\vec{v}}{ \vec{v} } * \vec{\nabla} f(x_0, y_0)$			Steigung in Richtung $ec{v} = inom{v_x}{v_y}$				
	$\frac{\partial f}{\partial \vec{r}} = 0, \qquad \vec{\nabla} f * \vec{v} = 0$		Bewegung auf Höhenlinie					
Differentiation auf				(da Gradient \perp Höhenlinie) Höhenprofil entlang des Pfades $z(x,y)$				
Pfaden	$z(t) = f(x(t), y(t))$ $Var 1: \frac{dz}{dt} = \frac{d}{dt}f(x(t), y(t))$ $Var 2: \frac{dz}{dt} = f_x * \dot{x} + f_y * \dot{y}$		nonemprofit entially designates $z(x, y)$					
				Steigung entlang eines Pfades $z(x,y)$ "Verallgemeinerte Kettenregel"				
Extremwerte mit	Grafische Lösung			Lagrange Funkt		$L(x \ v \ \lambda)$	$f(x,y) + \lambda g(x,y)$	
Nebenbedingungen NB	v A	öhenlinien	l	Unklar ob Min ode	,	$L_x = 0 L_y = 0 L_{\lambda} = 0$		
Max/Min $f(x,y)$ NB $g(x,y) = 0$	$y \oint $		_	da 1ter Ordnu	ng ,			
g(x,y)=0				llternativ durch Ei (explizit) in Funktio			$f(x, y(x)) = \cdots$ $f(x, y(x)) = \cdots$ $f(x, y(x)) = \cdots$	
Totales Differential	$z_0 + \Delta z = f(x_0 + \Delta x, y_0 + \Delta y)$			exakt				
=Talyor-Entwicklung	$\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y$			Näherung durch Tangentialebene				
in 2D (1. Ordnung)				auch mit mehr als 2 part. Ableitungen				
				Fehler: $\sigma = \left \Delta z_{exakt} - \Delta z_{Diff} \right $				