PT2-GLIED

Übertragungsfunktion

$$\frac{1}{\omega_n^2} \ddot{\mathbf{x}}_{\mathbf{a}} + \frac{2D}{\omega_n} \dot{\mathbf{x}}_{\mathbf{a}} + \mathbf{x}_{\mathbf{a}} = k * \mathbf{x}_e(t)$$

$$G(s) = \frac{k}{1 + \frac{2D}{\omega_n}s + \frac{1}{\omega_n^2}s^2}$$

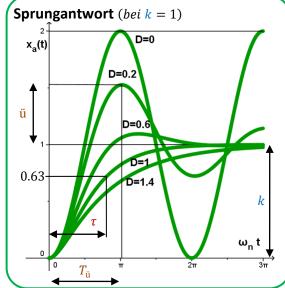
Stationärverstärkung

Dämpfungsgrad

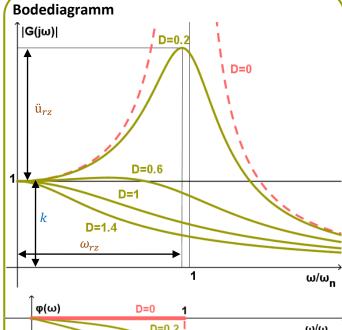
natürliche Kreisfrequenz

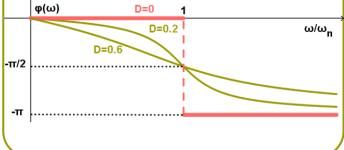
oszillatorischer Ausgleichsvorgang

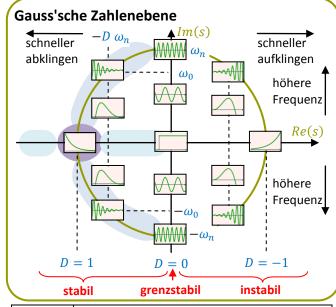
schwingfähiges System kompl. konj. Lösungen (imaginär) aperiodischer Grenzfall D = 1


aperiodischer Ausgleichsvorgang

D > 1


nicht schwingfähiges System reelle Lösungen (2 PT1-Glieder)


1	
$\overline{(s+a)(s+b)}$	


Resonanzfrequenz Resonanzüberhöhung $|D| < \frac{1}{\sqrt{2}}$ also bei

Absolute Dämpfung	$\sigma = D * \omega_n$
Abklingzeitkonstante	1
(Zeit bis auf 37%)	$ au = \frac{\tau}{\sigma}$
Kreisfrequenz der	$\omega_0 = \omega_n \sqrt{1 - D^2} = \frac{\pi}{m}$
gedämpften Schwingung	$\omega_0 - \omega_n \sqrt{1}$ $D - \frac{T_{\ddot{u}}}{T_{\ddot{u}}}$
Periodendauer der	$T = \frac{2\pi}{2\pi} = \frac{2\pi}{2\pi}$
gedämpften Schwingung	$T_0 = \frac{\omega_0}{\omega_0} = \frac{\omega_0}{\omega_n \sqrt{1 - D^2}}$
Überschwingzeit T _ü	halbe Periodendauer
Überschwingweite	$\ddot{\mathbf{n}} = e^{-\frac{\pi D}{\sqrt{1 - D^2}}}$

Polstellen	$s_{1,2} = \omega_n \left(-D \pm \sqrt{D^2 - 1} \right)$
Betrag	$ G(j\omega) = \frac{k}{\sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(\frac{2D\omega}{\omega_n}\right)^2}}$
Winkel	$\operatorname{arg}(G(j\omega)) = \operatorname{atan}\left(\frac{0}{k}\right) - \operatorname{atan}\left(\frac{\frac{2D\omega}{\omega_n}}{1 + \frac{\omega^2}{\omega_n^2}}\right)$