COMBINATORIAL PROBLEMS - P-CLASS

Graph Search

$\left.$| |
| :--- |\(\left|\begin{array}{l}Optimistic Approach

=Kruskal's algorithm

1956

(Greedy)

O(|E|+\log |E|)

with union-find-

datastructure\end{array}\right|\)| Pessimistic |
| :--- |
| Approach | \right\rvert\, | Prim's Algorithm |
| :--- |
| 1957 |
| (Greedy) |
| $O(\|E\|+\|V\| \log \|V\|)$ |

if L is managed with a Brodal queue

Given: Graph $G=(V, E, W)$ with undirected edges set E, with positive weights W
Goal: Find a set of edges that connects all vertices of G and has minimum total weight.
Application: Network design (water pipes, electricity cables, chip design)
Algorithm: Kruskal's, Prim's, Optimistic, Pessimistic

Optimistic Approach
=Kruskal's algorithm
Successively build the cheapest connection available that is not redundant.
Sort edges of G by increasing weight
Set E_{T} to \emptyset
For $k=1 . . n_{e}$, do:

ab	dh	fh	ef	df	be	eh	cd	eg	bd	ad	total
1	2	3	4	5	6	7	8	9	10	11	33

If $E_{T} \cup\left\{e_{k}\right\}$ has no cycle
Set $E_{T}=E_{T} \cup\left\{e_{k}\right\}$
Return $T=\left(V, E_{T}\right)$
Successively rule out the most expensive line that is not absolutely needed.
Choose an arbitrary start vertex v_{0} and set $M=\left\{v_{0}\right\}$. Iteratively add to M a vertex in $V \backslash M$ that can be reached the cheapest from the current set M. Select the corresponding edge. Continue until $M=V$.

ad	bd	eg	cd	eh	be	df	ef	fh	dh	ab	total
11	10	9	8	7	6	5	4	3	2	1	33

For each vertex $u \in V$ do:
$\lambda[u]=\infty$
$p[u]=$ emptyset
Choose a vertex s and set $\lambda[s]:=0$
$E_{T}=$ emptyset
$L=V \quad / /$ List of vertices not yet in T
While $L \neq \emptyset$ do
Remove from L the vertex u with lower $\lambda[u]$

Shortest paths

Max-Flow

Var:
Max-Flow
Min-Cut

Goal: Find a minimum partition of the vertex set which divides S and T into two sets.
Applicationgs: Redundancy in networks, reliability in telecommunication, military strategy, optimizing traffic systems

The maximum st flow equals the minimum value of all (exponentially many) possible st-cuts.

Often there are several possible maximum flows with a cost per flow unit.
Solution: Extend Ford-Fulkerson algorithm to take cost criterion into account.

Until now, we just used the Ford-Fulkerson algorithm with additionally annotating the costs. Now, look for cycles, respecting the capacities. This does not change the total flow from s to t, but decreases the total cost.

s-c-e-b-s	
capacity 1*(3-4)	
$s-b-e \rightarrow s-c-e$	
	$\begin{aligned} & \text { capacity }=4 \\ & \text { new cost }=20 \end{aligned}$

COMBINATORIAL PROBLEMS - NP-CLASS

TSP Traveling Salesperson Problem $O((n-1)!)$	Input: n cities, $d_{i j}$ distances matrix between cities i and j. Goal: Find the shortes tour passing exactly once in each city. $\sum_{i=1}^{n-1} d_{p_{i} p_{i+1}}+d_{p_{n} p_{1}}$ Application: Network Design, pipes, cables, chip design, ... Algorithms: Nearest Neighbour (=Greedy), MST-based $M S T<T S P \leq 2 * M S T$	
CVRP Capacitated Vehicle Routing Problem	Input: n customers and 1 depot, q_{i} : quantity ordered by customer i , distances $d_{i j}$, Q verhicle capacity Goal: Minimize the total length performed by the vehicle Each customer gets his delivery, Each tour start and ends at the depot Total demand on each tour des not exceed Q	
Var:	Goal: Minimize number of trucks/paths	
Steiner Tree Problem	Input: $G=(V, E, C)$ with vertices, edges and weights and subset $D \subseteq V$ Goal: Find a tree of minimum weight containing all vertices of D and, eventually, other vertices of V not in D (Steiner nodes).	
Scheduling Problems	Given: n jobs and m machines, each job contains m tasks Machine has to be free and previous task done. Each task has a known processing time $p_{i j}$ on the machine. Goal: Find a "good" order in which the jobs should be processed. Objectives: - Makespan: Minimize the completion time of the last job - Sum of completion times: (weighted) sum of completion times of all jobs - Minimum Tardiness: minimize the individual due date.	
Var: Permutation Flow Shop Problem	Huge objects or production line Ordering of tasks on machines is fixed. n! permutations	
Var: Flow Shop Problem	Smaller objects which can be storaged	
Var: Job Shop Problem	Introduction for new employies	
Knapsack Packing Problem	Input: n items each with a weight w_{i} and a value v_{i}, maximum weight capacity W Goal: maximize the value with respect to maximum weight Algorithms: Naive Greedy, Smarter Greedy simplest ILP (only one inequality) but NP-complete	
Santa Claus Problem	Input: n item with location on earth and weigt, max carry weight Goal: Minimize the weighted distance to deliver all items to the given location	
Vertex Coloring	Input: Graph Goal: Find an assignment of colors to each vertex such that no edge connects two identically colored vertices. Variants: Minimize the number of colors Algorithm: First Fitting Color, Decreasing Degree	

| QAP Quadratic |
| :--- | :--- | :--- |
| Assignment |
| Problem |\quad| Given: Set of activities and locations along with the flows |
| :--- |
| between activities and the distances between locations |
| $d_{i j} \in D:$ distance matrix |
| $f_{i k} \in F:$ flow matrix |
| $x_{i j}: 1$ if activity is assigned to location $\mathrm{j}, 0$ otherwise |
| Goal: assign each activity to a location to minimize total cost |
| $\qquad \min z=\sum_{i, j=1} \sum_{k=1} d_{i j} f_{j k} x_{i j} x_{h k}$ |

HEURISTICS

Heuristics			
For TSP:			
Nearest Neighbour (=Greedy)	Start from city 1. Repeat: Go to the nearest city not yet visited, until all visited.		
Best Global Edge (=Greedy)	Initial S: \emptyset R: Set of edges that can be added to S such that: No cycle is created, no vertex with degree >2 is created $c(S, e)$: weight of edge e (this is independent from S)		
Maximum Regret (=Greedy)	$S=\{1\}$ R: Set of cities not yet visited $c(S, e)=$ Regret of not going to e from i Choose the largest $c(S, e)$		$\begin{gathered} e \\ 0 \because \cdots \cdots \cdot{ }^{e} k \\ \\ \ddots \circ j \end{gathered}$
Best Insertion (=Greedy)	$S=$ Tour on 2 cities R : Set of cities not yet visited $c(S, e)=$ Minimum insertion cost of city e between 2 cities Choose the smallest $c(S, e)$		
For Vertex Coloring			
First Fitting Color (=Greedy)	Select an ordering of the vertices $s=\emptyset / /$ set of already colored vertices $R=V / /$ set of vertices not colored yet $C(s, e) / /$ set of colors that can be assigned to a vertex (sorted) Choose first color in $C(s, e)$		
Decreasing Degree (=Greedy)	sort the vertices by decreasing order of degree Remaining is identical to first fitting color		
$\begin{array}{\|c} D_{\text {satur }} \\ \text { (=Greedy) } \end{array}$	choose the uncolored vertex with the highest "saturation degree", i.e. with the maximum number of different adjacent colors. Break ties by choosing the vertex with maximum degree.		

Meta Heuristics

Constructive

Random Sampling "or Building"	Idea: Generate a solution randomly, uniformly in the solution space Advantages: Simple, works good, easy to implement Disadvantages: bad solution quality, uniform distribution sometimes not trivial Sometimes not easy to find -> add penalty function	```S = Random solution Repeat Find another solution randomly Use if better than S Until satisfied```
Greedy Construction	Idea: Build element by element, by adding systematically the most appropriate ("best") element. Needs a cost function that measures the quality of adding element e to a partial solution S. Adding an element generally implies restrictions for the next elements to add. Disadvantages: too short-sighted Works optimally for: MST, Shortest Path, ...	R = E (set to add) Repeat Evaluate $c(S, e)$ for each $e \in R$ Choose e^{\prime} which optimizes $c(S, e)$ Add e^{\prime} to the partial solution S Remove from R all elements that cannot be added to S anymore. Until S is a complete solution
Exhaustive Search	Idea: Generate all feasible solutions and find the optimum Advantages: Guarantees to find an optimal solution Often easy to implement Disadvantages: The set of feasible solutions is often exponential -> takes to much time.	
Pilot Method $O\left(n^{2}\right)$ for TSP	Idea: Evaluate the quality of adding an element e to s by completing it to a full solution. The heuristic to complete a solution must be chosen, e.g. greedy + local search, ... Remarks: Time complexity is increased by the "pilot"	For all e that can be added to S Calc s+e with heuristic "pilot" Keep the best solution
Beam Search	Idea: Similar to exhaustive search, but define a beam width (e.g. 2) and browse depth. beam width $=\infty \rightarrow$ exhaustive with BFS	For each partial solution expand up to k depth keep the most promising

Local Improvement

Randomized Local Search

Noising Methods	Add a random noise when evaluating the moves with decreasing probability Typical Noise: standard deviation Generalisation of the next three	Repeat Apply randomly move Accept if it's better Accept worse according to noise
Var: Threshold Accepting	Accept all move deteriorating (=verschlechtern) the solution less than a given threshold	
Var: Great Deluge	Only accept solutions with a given minimal quality; increase level of quality (like a "flood")	
Var: Simulated Annealing	Similar to hill climbing, but allow non-improving moves. Probability: Fixed / decreasing over time / decreasing over time and depending on quality $\min \left\{1, e^{\frac{f\left(x_{i}\right)-f\left(y_{i}\right)}{T_{i}}}\right\}$ If $f\left(x_{i}\right) \geq f\left(y_{i}\right)$ term gets ≥ 1 and y_{i} is accepted. If $T \rightarrow \infty$, every solution y_{i} will be accepted. If $T \rightarrow 0$, only better solutions will be accepted Advantages: spend more time on good solutions	Start with random solution Repeat Apply randomly move Accept if it's better Accept with probability if worse
Restarting	When local search does not improve anymore, start a new local search from: - best solution so far (good solutions are close) - randomly generated (explore with large variety - GRASP) - modification of best solution (keep structure - VNS)	
Var: GRASP Greedy Randomized Adaptive Search Procedure	Input: s* best solution found so far	```Repeat s = minimal partial solution construct s' from s with greedy find optima s'' in neighbourhood if f(s'') < f(s*) s* = s''```
Var: VNS Variable Neighbourhood Search	Idea: Working with p different neighbourhoods	Repeat Choose a randomly neighbourhood find local optima in these apply if better

Decomposition Methods

	Neighbourhood is too large to fully explore. Split problem in smaller problems, optimize local solutions	
VLNS Very Large Neighbourhood Search	Idea: Partially explore the large neighbourhood to find improvements ILP: fix value of subset and solve, repeat with other subset Iterated Local Search: randomly perturb (=stören) the best solution so far, and apply an improving method	
POPMUSIC Partial Optimization Metaheuristic under special intensication conditions	Idea: Decompose solution into parts, optimize several parts of the solution, repeat until optimized portions cover the entire solution space Difficulty: Sub-problems may not be independent from one another	Solution $\mathrm{S}=s_{1} \cup s_{2} \cup \ldots \cup s_{p}$ $O=\emptyset \quad / /$ already optimized parts Parameter r // "nearest parts" While $O \neq S$ Choose a seed part $s_{i} \notin O$ Create a subproblem R composed of the r "closest" parts Optimize subproblem R If R improved then set $O=O \backslash R$ else $O=O \cup s_{i}$
example	Variables (example with VRP) Part = Tour of one vehicle Distance = between centres of gravity Sub-Problem: A smaller VRP Optimization process: e.g. Tabu Search Variables (example with TSP) Part = a single city c on a tour Distance $=r$ adjacent cities on the tour, immediately before Sub-Problem: solve TSP for the r cities (e.g. exhaustive) Re-Combination: re-insert subtour in existing tour Variables (example for permutation shop problem) Part = a single job x Distance $=$ take x as seed job and select r jobs that are sched Sub-Problem = Re-Schedule the selected job (use additiona Re-Combination: shift all jobs as much to the left as possibl	after c uled before and after x ime constraints for start/end time -> still valid

