COMBINATORIAL PROBLEMS - P-CLASS

Graph Search

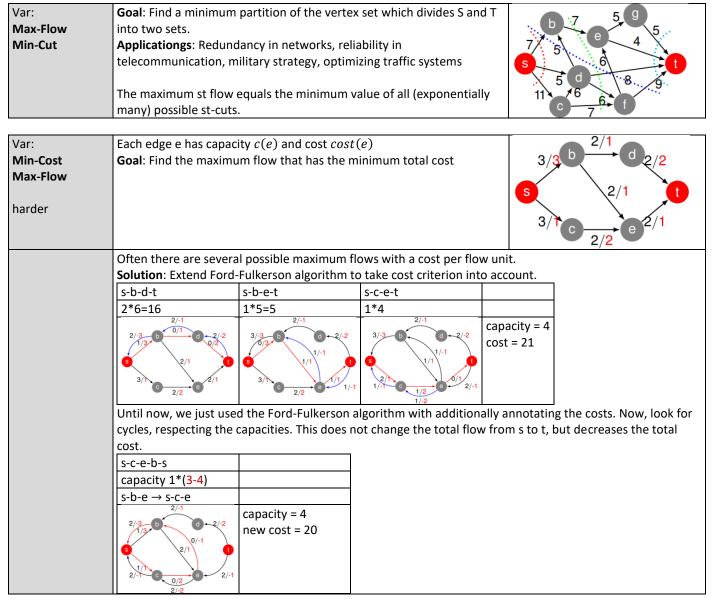
	Given : $G = (V, E)$, start node Goal : Search in a graph							a			d	e				
DFS	1. Start at a, put it on stack.	Insert from							g		h					
Depth-First-	Stack = LIFO "Last In - First Out"	top↓						e	e e	e	e	е				
Search	2. Whenever there is an unmarked neighbour,	Access				С		f f	f	f	f	f	f			
	go there and and put it on stack	from top↓			d	d	d	d	b k	d	d	d	d	d		
	3. If there is no unmarked neighbour, backtrack;			b	b	b	b	bk	b	b	b	b	b	b	b	_
	i.e. remove current node from stack (grey \Rightarrow green) and go to step 2.		а	1	а						1				а	a
BFS	1. Start at a, put it in queue.	Insert from top↓ hg														
Breadth-First	Queue = FIFO "First In - First Out"			•					f	h						
Search	2. Output first vertex from queue (grey \Rightarrow green). Mark	d e c f h g														
	all neighbors and put them in queue (white \Rightarrow grey). Do so until queue is empty	Access from bottom 1 a b d e c f h g														

Minimum Spanning Tree (MST)

	Given: Graph $G = (V, E, W)$ with undirected edges set E , with positive weights W Goal: Find a set of edges that connects all vertices of G and has minimum total weight. Application: Network design (water pipes, electricity cables, chip design) Algorithm: Kruskal's, Prim's, Optimistic, Pessimistic		
= Kruskal's algorithm 1956 (Greedy) $O(E + \log E)$ with union-find-	Successively build the cheapest connection available that is not redundant. Sort edges of G by increasing weight Set E_T to \emptyset For $k = 1n_e$, do: If $E_T \cup \{e_k\}$ has no cycle Set $E_T = E_T \cup \{e_k\}$ Return $T = (V, E_T)$	ab dh fh ef df be eh cd eg bd ad total 1 2 3 4 5 6 7 8 9 10 11 33	
datastructure Pessimistic Approach Primis Algorithm	Successively rule out the most expensive line that is not absolutely needed.	ad bd eg cd eh be df ef fh dh ab total 11 10 9 8 7 6 5 4 3 2 1 33	
Prim's Algorithm 1957 (Greedy)	Choose an arbitrary start vertex v_0 and set $M = \{v_0\}$. Iteratively add to M a vertex in $V \setminus M$ that can be reached the cheapest from the current set M. Select the corresponding edge. Continue until $M = V$.	a b e f h d c g total a-b b-e e-f f-h h-d d-c e-g 1 6 4 3 2 8 9 33	
O(E + V log V) if L is managed with a Brodal queue	For each vertex $u \in V$ do: $\lambda[u] = \infty$ p[u] = emptyset Choose a vertex s and set $\lambda[s] \coloneqq 0$ $E_T = emptyset$ L = V // List of vertices not yet in While $L \neq \emptyset$ do Remove from L the vertex u with lower If $u \neq s$ then $E_T \coloneqq E_T \cup \{p[u], u\}$ For each vertex $v \in adj[u]$ do If $v \in L$ and $\lambda[v] > c_{uv}$ then $\lambda[v] = c_{uv}$ p[v] = u Return $T = (V, E_T)$		

Shortest paths			
	Given : Graph $G = (V, E, C)$ with cost $c_{ij} \ge 0$ for each edge $e \in E$ and a start vertex $s \in V$ Goal 1 : Find the shortest path from start s to j . Goal 2 : Find the shortest path from start s to all other vertices. Goal 3 : Find the shortest path between all pairs of vertices.		
Dijkstra's algorithm	Algorithm: (Goal 1+2) Dijkstra's, (Goal 3) Floyd-WarshallWe iteratively compute the shortest distance $I(v)$ forab=3d=8c=14c=14c=14g=15		
1959	the vertex v closest to v_0 that has not been reached yet. $d=9 = 10 = 10 = 10 = 14 = 14 = 14 = 14 = 15$		
1999	Not working with negative weights. $f=14$ $h=11$ $g=15$		
G = (V, E, C)	λ_i : length of the shortest path		
	p_i : predecessor of j on the shortest path		
$O(E + V \log V)$	s: start vertex		
if L is managed with	For all $j \in V$ do $\lambda_j = \infty; p_j = \emptyset$		
a Brodal queue	$\lambda_s = 0; L = V$		
	While $L \neq \emptyset$		
	Find i such that $\lambda_i = \min(\lambda_k k \in L)$		
	$L = L ohne \{i\}$		
	For all $j \in succ[i]$ do		
	If $j \in L$ and $\lambda_j > \lambda_i + c_{ij}$		
	$\lambda_j = \lambda_i + c_{ij};$		
	$p_j = i$		
	Return Lenghts λ and predecessors p		
Floyd-Warshall	$minPath(i, j, n)$ are the shortest distances from v_i to $i = 1$		
algorithm	v_j, ∞ if not existing. $a \ b \ c \ d \ e \ f \ g \ h$		
rolios on dunamia	Iterate through all rows/columns: a $ 3$ ∞ $9 \rightarrow 8$ ∞ ∞ ∞ ∞ $(minPath(i, i, k))$ b 3 $ \infty$ 5 7 ∞ ∞		
relies on dynamic programming			
programming	$minPath(i, j, k + 1) = min \begin{cases} minPath(i, k + 1, k) + c & \infty & \infty & - 6 & \infty & \infty & \infty \\ minPath(k + 1, j, k) & d & 9 \rightarrow 8 & 5 & 6 & - & \infty \rightarrow 12 & 6 & \infty & 8 \end{cases}$		
use recursion	$\begin{pmatrix} minPuln(k+1,j,k) \\ e \\ \infty \\ 7 \\ \infty \\ \infty \\ \rightarrow 12 \\ - \\ 6 \\ 5 \\ 1 \\ - \\ 6 \\ 1 \\ - \\ 6 \\ 5 \\ 1 \\ - \\ 6 \\ 1 \\ - \\ 6 \\ 1 \\ - \\ 1 \\ - \\ 6 \\ 1 \\ - \\ 1 \\ - \\ 1 \\ - \\ 1 \\ 1 \\ - \\ 1 \\ 1$		
	$f \propto \infty \propto 6 6 - \propto 2$		
negative weighs	$g \propto \infty \propto 5 \propto -\infty$		
allowed as long as	$h \propto \infty \propto 8 1 2 \propto -$		
no negative cycles			
Var: Pathfinding	Given: start and goal coordinates		
	Problem: We only see the immediate neighborhood of our position.		

Input: directed graph G = (V, E) with capacity c(e) > 0Two special nodes, source s, and ,sink/target t, are given, $s \neq t$ 20 Goal: Maximize the total amount of flow from s to t, where the flow on edge e doesn't exceed c(e) and for every node $v \neq s$ and $v \neq t$, incoming flow is equal to outgoing flow. Applications: Network routing, Transportation, Bipartite Match 14 Algorithm: Ford-Fulkerson-Alg, Edmonds-Karp **Greedily finding** s-b-d-t s-b-e-t s-d-f-t total augmenting 8 3 1 12 paths s-b: $9 \rightarrow 8$ s-b: $8 \rightarrow 0$ s-d: $9 \rightarrow 6$ b-d: $9 \rightarrow 1$ b-e: $5 \rightarrow 4$ d-f: $3 \rightarrow 0$ e-t: $1 \rightarrow 0$ d-t: $8 \rightarrow 0$ f-t: $4 \rightarrow 1$ 5 g **Ford-Fulkerson** Idea: Insert backwards edges that can be used to (partially) undo previous paths. path 1: Set $f_{total} = 0$ While there is a path from s to t in G: Determine smallest capacity g along the path P $O\big((n_v+n_e)\,f^*\big)$ Add f to f_{total} f^* : optimal flow Foreach edge $u \rightarrow v$ on the path decrease $c(u \rightarrow v)$ by f increase $c(v \rightarrow u)$ by f (backward) delete edge if capacity c = 0path 2 s-b-e-t s-b-d-t s-d-f-t s-d-b-e-f-t 8 3 1 1 Problem: Inefficient behaviour if the augmenting path is chosen arbitrarily. Solution: Edmonds-Karp algorithm **Edmonds-Karp** Idea: In each iteration, use a shortest augmenting path, i.e. a path from s to t with the fewest number of edges. Can be found with BFS in time O(|E|). algorithm Insert from top \downarrow t=2 starting at s d=1 e=2 f=2 Access from bottom $\uparrow |_{s=0} |_{b=1} |_{d=1} |_{e=2}$ shortest augmenting path: s-d-t Restriction: Maximum flow through vertices is restricted. with vertex Solution: Add additional vertex before the restricted vertex and add new edge with restrictions weight = vertex restriction. Direct all ingoing edges to the new vertex. e.g. b by 3: Distribution Insert source s and connect it with capacity ∞ edges to first layer. problem reduced Insert sink t and connect it with capacity ∞ edges to last layer. to Max-Flow ∞ Make edges directed. Add source and sink vertices s and t with corresponding **Bipartite** matching edges. Set all edge weights to 1. Find integer maximum flow with Ford-Fulkerson algorithm.



COMBINATORIAL PROBLEMS - NP-CLASS

TSP Traveling Salesperson Problem O((n-1)!)	Input: <i>n</i> cities, d_{ij} distances matrix between cities <i>i</i> and <i>j</i> . Goal: Find the shortes tour passing exactly once in each city. $\sum_{i=1}^{n-1} d_{p_i p_{i+1}} + d_{p_n p_1}$ Application: Network Design, pipes, cables, chip design, Algorithms: Nearest Neighbour (=Greedy), MST-based $MST < TSP \le 2 * MST$	C
CVRP Capacitated Vehicle Routing Problem	Input: n customers and 1 depot, q_i : quantity ordered by customer i, distances d_{ij} , Q verhicle capacity Goal : Minimize the total length performed by the vehicle Each customer gets his delivery, Each tour start and ends at the depot Total demand on each tour des not exceed Q	Depot
Var: Steiner Tree Problem	Goal: Minimize number of trucks/paths Input: $G = (V, E, C)$ with vertices, edges and weights and subset $D \subseteq V$ Goal: Find a tree of minimum weight containing all vertices of D and, eventually, other vertices of V not in D (Steiner nodes).	
Scheduling Problems	Given: n jobs and m machines, each job contains m tasks Machine has to be free and previous task done. Each task has a known processing time p_{ij} on the machine. Goal: Find a "good" order in which the jobs should be processed. Objectives: - Makespan: Minimize the completion time of the last job - Sum of completion times: (weighted) sum of completion times of all jobs - Minimum Tardiness: minimize the individual due date.	Earliest sequencing (in an arbitrary order)
Var: Permutation Flow Shop Problem	Huge objects or production line Ordering of tasks on machines is fixed. n! permutations	
Var: Flow Shop Problem	Smaller objects which can be storaged	
Var: Job Shop Problem	Introduction for new employies	
Knapsack Packing Problem	Input: n items each with a weight w_i and a value v_i , maximum weight capacity W Goal : maximize the value with respect to maximum weight Algorithms : Naive Greedy, Smarter Greedy simplest ILP (only one inequality) but NP-complete	
Santa Claus Problem	Input: n item with location on earth and weigt, max carry weight Goal: Minimize the weighted distance to deliver all items to the given location	
Vertex Coloring	Input: Graph Goal: Find an assignment of colors to each vertex such that no edge connects two identically colored vertices. Variants: Minimize the number of colors Algorithm: First Fitting Color, Decreasing Degree	

Assignment Problembetween activities and the distances between locations $d_{ij} \in D$:distance matrix $f_{ik} \in F$:flow matrix x_{ij} :1 if activity is assigned to location j, 0 otherwise Goal: assign each activity to a location to minimize total cost $min z = \sum_{i,j=1}^{n} \sum_{k=1}^{n} d_{ij}f_{jk}x_{ij}x_{hk}$ Image: Comparison of the second seco	•		= 0 = 1
Problem $d_{ij} \in D:$ distance matrix $f_{ik} \in F:$ flow matrix $x_{ij}:1$ if activity is assigned to location j, 0 otherwise Goal: assign each activity to a location to minimize total cost $\min z = \sum_{i,j=1}^{n} \sum_{k=1}^{n} d_{ij} f_{jk} x_{ij} x_{hk}$ ImNeighborhoods- swap 2 locations of 2 facilities $O(n^2)$ - swap locations of $k=3,4,$ facitilites $O(n^k)$ Post office problemsGoal: Find the next post office (or ATM nowadays) in a city from your location. Solution: Use Voronoi diagramExact coverGiven: Subset $U_{i,i} i = 1n$ of a base set M Find: Exact cover (if one exists), i.e. a choice of sets U_i such that their union is m and no element is contained in more than one of these sets. Optimization: Find a choice of sets U_i such that their union is M and as few element as possible are contained in U_i .	QAP Quadratic	5	2011 B
Image: Second	-		1 #
J_{ik} C 1 flow matrix x_{ij} :1 if activity is assigned to location j, 0 otherwiseGoal: assign each activity to a location to minimize total cost $\min z = \sum_{i,j=1}^{n} \sum_{k=1}^{n} d_{ij} f_{jk} x_{ij} x_{hk}$ Neighborhoods- swap 2 locations of 2 facilities $O(n^2)$ - swap locations of k=3,4, facitilites $O(n^k)$ Post office problemsGoal: Find the next post office (or ATM nowadays) in a city from your location. Solution: Use Voronoi diagramExact coverGiven: Subset U_i , $i = 1n$ of a base set M Find: Exact cover (if one exists), i.e. a choice of sets U_i such that their union is m and no element is contained in more than one of these sets. Optimization: Find a choice of sets U_i such that their union is M and as few element as possible are contained in U_i .	Problem		and and a shall a
Goal: assign each activity to a location to minimize total costmin $z = \sum_{i,j=1}^{n} \sum_{k=1}^{n} d_{ij} f_{jk} x_{ij} x_{hk}$ Neighborhoods- swap 2 locations of 2 facilities $O(n^2)$ - swap locations of k=3,4, facitilites $O(n^k)$ Post office problemsGoal: Find the next post office (or ATM nowadays) in a city from your location. Solution: Use Voronoi diagramExact coverGiven: Subset U_i , $i = 1n$ of a base set M Find: Exact cover (if one exists), i.e. a choice of sets U_i such that their union is m and no element is contained in more than one of these sets. Optimization: Find a choice of sets U_i such that their union is M and as few element as possible are contained in U_i .			3 1 2
min $z = \sum_{i,j=1}^{n} \sum_{k=1}^{n} d_{ij} f_{jk} x_{ij} x_{hk}$ Neighborhoods- swap 2 locations of 2 facilities $O(n^2)$ - swap locations of k=3,4, facitilites $O(n^k)$ Post office problemsGoal: Find the next post office (or ATM nowadays) in a city from your location. Solution: Use Voronoi diagramExact coverGiven: Subset U_{i} , $i = 1n$ of a base set M Find: Exact cover (if one exists), i.e. a choice of sets U_i such that their union is m and no element is contained in more than one of these sets. Optimization: Find a choice of sets U_i such that their union is M and as few element as possible are contained in U_i .		x_{ij} :1 if activity is assigned to location j, 0 otherwise	4 m Entry The S
Neighborhoods- swap 2 locations of 2 facilities $O(n^2)$ - swap locations of k=3,4, facitilities $O(n^k)$ Post office problemsGoal: Find the next post office (or ATM nowadays) in a city from your location. Solution: Use Voronoi diagramExact coverGiven: Subset U_i , $i = 1n$ of a base set M Find: Exact cover (if one exists), i.e. a choice of sets U_i such that their union is m and no element is contained in more than one of these sets. Optimization: Find a choice of sets U_i such that their union is M and as few element as possible are contained in U_i .		Goal: assign each activity to a location to minimize total cost	
- swap locations of k=3,4, facitilites $O(n^k)$ Post office problemsGoal: Find the next post office (or ATM nowadays) in a city from your location. Solution: Use Voronoi diagramExact coverGiven: Subset $U_i, i = 1n$ of a base set M Find: Exact cover (if one exists), i.e. a choice of sets U_i such that their union is m and no element is contained in more than one of these sets. Optimization: Find a choice of sets U_i such that their union is M and as few element as possible are contained in U_i .		$\min z = \sum_{i,j=1}^n \sum_{k=1}^n d_{ij} f_{jk} x_{ij} x_{hk}$	
Post office problemsGoal: Find the next post office (or ATM nowadays) in a city from your location. Solution: Use Voronoi diagramExact coverGiven: Subset U_i , $i = 1n$ of a base set M Find: Exact cover (if one exists), i.e. a choice of sets U_i such that their union is m and no element is contained in more than one of these sets. Optimization: Find a choice of sets U_i such that their union is M and as few element as possible are contained in U_i .	Neighborhoods	- swap 2 locations of 2 facilities $O(n^2)$	
problemsyour location. Solution: Use Voronoi diagramExact coverGiven: Subset U_i , $i = 1n$ of a base set M Find: Exact cover (if one exists), i.e. a choice of sets U_i such that their union is m and no element is contained in more than one of these sets. Optimization: Find a choice of sets U_i such that their union is M and as few element as possible are contained in U_i .	-	- swap locations of k=3,4, facitilites $O(n^k)$	
Solution: Use Voronoi diagramExact coverGiven: Subset U_i , $i = 1n$ of a base set MFind: Exact cover (if one exists), i.e. a choice of sets U_i such that their union is m and no element is contained in more than one of these sets. Optimization: Find a choice of sets U_i such that their union is M and as few element as possible are contained in U_i .	Post office	Goal : Find the next post office (or ATM nowadays) in a city from	
Exact coverGiven: Subset U_i , $i = 1n$ of a base set MFind: Exact cover (if one exists), i.e. a choice of sets U_i such that their union is m and no element is contained in more than one of these sets. Optimization: Find a choice of sets U_i such that their union is M and as few element as possible are contained in U_i .	problems	your location.	
Find: Exact cover (if one exists), i.e. a choice of sets U_i such that their union is m and no element is contained in more than one of these sets.Optimization: Find a choice of sets U_i such that their union is M and as few element as possible are contained in U_i .		Solution: Use Voronoi diagram	
their union is m and no element is contained in more than one of these sets. Optimization: Find a choice of sets U_i such that their union is M and as few element as possible are contained in U_i .	Exact cover	Given: Subset U_i , $i = 1n$ of a base set M	
of these sets. Optimization: Find a choice of sets U_i such that their union is M and as few element as possible are contained in U_i .		Find : Exact cover (if one exists), i.e. a choice of sets U_i such that	
Optimization: Find a choice of sets U_i such that their union is M and as few element as possible are contained in U_i .		their union is m and no element is contained in more than one	
and as few element as possible are contained in U_i .		of these sets.	
and as few element as possible are contained in U_i .		Optimization: Find a choice of sets U_i such that their union is M	
n guession Goal: Place n guession $a = n \times n$ heard such that no two guession			
	n queens	Goal: Place n queens on a $n \times n$ board such that no two queens	
problem can capture each other.	problem	can capture each other.	

HEURISTICS

General		
Heuristic	A heuristic method is based on knowledge acquired by experience on a given problem. They are opposed to exact algorithms. Heuristic methods do not necessarily provide the best solution , but need reasonable time .	Combinatorial optimization Metaheuristic Heuristic
Meta-Heuristic	A meta-heuristic is a limited set of concepts that can be applied to a large set of combinatorial optimization problems and that allow creating new heuristic methods. It provides support for designing heuristic methods, based on knowledge acquired by designing heuristic method for various problems.	Generic problem
	Start with a solution and improve it continuously by exploring its "neighborhood". We obtain a trajectory through the solution space.	
•	An evolving population of (partial) solutions, whose members evolve and adapt individually to the problem and are searching for the optimum. Problem specific information can be exchanged between the members of the population, and can be passed on to descendants.	
Neighborhood	Too small: get stuck quickly without exploring Too large: computation time to high	

Heuristics

For TSP:			
Nearest	Start from city 1.		
Neighbour	Repeat: Go to the nearest city not yet visited, until all visited.		
(=Greedy)			
Best Global Edge	Initial S: Ø		
(=Greedy)	R: Set of edges that can be added to S such that:		
	No cycle is created, no vertex with degree > 2 is created		
	c(S, e): weight of edge e (this is independent from S)		
Maximum Regret	$S = \{1\}$	_ i	е
(=Greedy)	R: Set of cities not yet visited		0 k
	c(S, e) = Regret of not going to e from i	0 o	∘ ∧ k
	Choose the largest $c(S, e)$	0	٥J
Best Insertion	S = Tour on 2 cities		
(=Greedy)	R: Set of cities not yet visited		
	c(S, e) = Minimum insertion cost of city e between 2 cities		
	Choose the smallest $c(S, e)$		
For Vertex Coloring			
First Fitting Color	Select an ordering of the vertices		
(=Greedy)	$s = \emptyset$ // set of already colored vertices		
	R = V // set of vertices not colored yet		
	C(s, e) // set of colors that can be assigned to a vertex		
	(sorted)		
	Choose first color in $C(s, e)$		
Decreasing	sort the vertices by decreasing order of degree		
Degree	Remaining is identical to first fitting color		
(=Greedy)			
D _{satur}	choose the uncolored vertex with the highest "saturation		
(=Greedy)	degree", i.e. with the maximum number of different		
	adjacent colors. Break ties by choosing the vertex with		
	maximum degree.	 	

Meta Heuristics

Random I	dea: Generate a solution randomly, uniformly in the	S = Random solution
Sampling s	solution space	Repeat
"or Building"	Advantages: Simple, works good, easy to implement	Find another solution randomly
C	Disadvantages: bad solution quality, uniform distribution	Use if better than S
s	sometimes not trivial	Until satisfied
S	Sometimes not easy to find -> add penalty function	
Greedy	dea: Build element by element, by adding systematically	R = E (set to add)
Construction t	he most appropriate ("best") element.	Repeat
Ν	Needs a cost function that measures the quality of adding	Evaluate $c(S, e)$ for each $e \in R$
e	element e to a partial solution S.	Choose e' which optimizes $c(S, e)$
A	Adding an element generally implies restrictions for the	Add e^\prime to the partial solution S
r	next elements to add.	Remove from R all elements that
C	Disadvantages: too short-sighted	cannot be added to S anymore.
v	Norks optimally for: MST, Shortest Path,	Until S is a complete solution
Exhaustive Search	dea: Generate all feasible solutions and find the optimum	
A	Advantages:	
6	Guarantees to find an optimal solution	
C	Often easy to implement	
C	Disadvantages:	
Т	The set of feasible solutions is often exponential	
-	> takes to much time.	
Pilot Method	dea: Evaluate the quality of adding an element e to s by	For all e that can be added to S
$O(n^2)$ for TSP c	completing it to a full solution. The heuristic to complete a	Calc s+e with heuristic "pilot"
s	solution must be chosen, e.g. greedy + local search,	Keep the best solution
F	Remarks: Time complexity is increased by the "pilot"	
Beam Search	dea: Similar to exhaustive search, but define a beam	For each partial solution
v	width (e.g. 2) and browse depth.	expand up to k depth
		keep the most promising

Local Improven	ent			
Local Improvement = Local Search	Idea: Start with a given solution (with method) and find improvements Neighbourhoods: Terminating: fixed r	number, no	Perform if	
= Hill Climping	improvement after x steps, when a tar	-		ovement is found
Selection	First Improving Move (takes the first r the current solution)	move that improves	While improvi s' = new s if c(s') < s = s'	olution
	Best Improving Move (take the best n the current solution)	nove that improves	if c(s') <	e m in M(s) olution with m applied costOfBestNewSol estNewSol = c(s') e = m
Neighbourhood	TSP : search for intersections, 2/3/k-op or-opt (move a subchain of vertices so -> use a doubled chained list		reached from any	lobal optimum can be / feasible solution umber of moves for linking
	CVRP : First fit, Random, Closest (custo gravity, edge), lowest left capacity, ch	· ·	Low ruggedness: optima	Limited number of local
	Knacksack: shift, invert, transpose(swa	ap)	small Easy to evaluate:	neighbour solution must be ohibitive computation
Var	Always take best solution from neighb decreases target function. (+) to escape from local optima (-) might go back and forth (run into a (-) not monotone increasing			
Tabu Search (=Local Search)	Idea: Similar to hill climbing, but with Try to avoid steps that go back to prev solutions, or that undo the effect of pr Goal: Promote diversity of the solution particular to reduce cyclic behaviour a	riously visited revious steps. ns explored, in	Repeat Find a bet Consider s Perform if	
	local optima. Tabu list : store last move / store last r Allow invalid solutions but penalize th Tuning : Learn tabu value (incr/decr or	em (fix or variable). rand)	and update Until criteri	
example	Iteration Variable flipped Current set		Vol Tabu lis	t
	0 - 000000		0	4
		00000 12	14 4	4
		00000 12+11=23		4
		0000023+10=33		4
		00000 33+9=42	74+16=90 1,2,3	4
	5 4 110010	0000 43-		

ZHAW/HSR	Print date: 04.02.19	ISM_Alg & FIP_Optimiz
ACO	Param:	Set parameters
Ant Colony	Distance matrix $D = (d_{ij}) \rightarrow given$	Initialize pheromone trails
Optimization	Trace matrix $T = (\tau_{ij}) \rightarrow$ pheromone trail	Do
•	α : weight of the pheromone (0 \rightarrow nearest neighbor)	Construct Ant Solutions
		Apply local search (optional)
	β : weight of the distance (0 \rightarrow push very few tours)	Update Pheromones
	ρ :	While criteria reached
	τ_0 : init of the pheromone trail	
	Q: constant for pheromon update	
	m: batch size	
(max _{iter} : maximal iterations	
e.g. for TSP	Data Distance matrix $D = (d_{ij})$ between cities	
	Trace matrix $T = (\tau_{ij})$ between cities	
	Parameters α , β , ρ , τ_0 , Q , m , max_iter	
	Initialisation	
	$\tau_{ij} = \tau_0$ for all <i>i</i> , <i>j</i>	
	Repeat for max iter iterations	
	$R = (r_{ij}) = 0$	// Edge reinforcement
	For each $k = 1,, m$	// Ant k build a new solution
	L = 0	// Tour length
	Choose a city <i>i</i> at random Repeat, while all cities have not been visi	// Current city : i
	Choose a city j not yet visited with pr	cobability proportional to 9 9
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Note: $\beta \leq 0$
	1 – J	
	For all arc (<i>i</i> , <i>j</i>) of the tour just built, s	set
	$r_{ij} = r_{ij} + Q/L$	The shorter a tour of ant k , the higher the reinforcement value r_{ij} for the edges on this tour.
	$T = (1-\rho)T + R$ // Update pheromone trai	l after having built m solutions
	i (i p) i i i), oparce prefonorie elui	it areer having barre in boraciono
	Return The best tour found	
Var: MMAS	Changes:	
MaxMin Ant	Only the best ant updates the pheromone trails	
System	Maintains lower and upper bounds $ au_{min}$, $ au_{max}$ for pheromo	ne values $ au_e$
	Pheromone is updated for the "best" solution, for the curre	nt iteration or "best-so-far"
one of the most	Update depends on the cost of the best solution	
successful		
e.g. for TSP	Standard parameter settings	
	$\alpha = 1, \beta = -2, \rho = 0.98, Q = 1, b = 20, m$	
	τ_{min} =, τ_{max} =, max_iter =	// Problem dependent
	Initialisation $\tau_{ij} = \tau_{max}$ for all arc (<i>i</i> , <i>j</i>)	
	Repeat for max iter iterations	
	For each ant $k = 1,, m$	
	$s_k = \emptyset$	// Solution built by ant k
	Choose a city <i>i</i> at random	// Current city : i
	Repeat, while all cities have not been with there is a city i not yet wisited	
	If there is a city <i>j</i> not yet visited	0
	Choose a city j among them with p	probability proportional to $ au^lpha_{ij} \cdot d^eta_{ij}$
	Else Choose a city j not yet visited	with maximum $ au_{ii}^{lpha} \cdot d_{ii}^{eta}$
	$s_k = s_k + (i, j)$	ij ij
	$s_k - s_k + (1, j)$ i = j	
	Improve solution s_k with a local search	h
	κ	
	For all arc (i, j) of the best tour s^* amon	$s_1, s_2,, s_m$
	$\tau_{ij} = \max(\tau_{min}, \min(\tau_{max}, (1 - \rho)\tau_{ij}))$	
	Return The best tour found	
Important	There is no need that ants really follow a consecutive path -	-> like they can fly
mportant		1 1

Randomized Local Search							
Noising Methods	Add a random noise when evaluating the moves with	Repeat					
-	decreasing probability	Apply randomly move					
	Typical Noise: standard deviation	Accept if it's better					
	Generalisation of the next three	Accept worse according to noise					
Var: Threshold	Accept all move deteriorating (=verschlechtern) the						
Accepting	solution less than a given threshold						
Var: Great Deluge	Only accept solutions with a given minimal quality;						
	increase level of quality (like a "flood")						
Var: Simulated	Similar to hill climbing, but allow non-improving moves.	Start with random solution					
Annealing	Probability: Fixed / decreasing over time /	Repeat					
	decreasing over time and depending on quality	Apply randomly move					
	$\left(\int \frac{f(x_i) - f(y_i)}{T} \right)$	Accept if it's better					
	$\min\left\{1, e^{\frac{f(x_i) - f(y_i)}{T_i}}\right\}$	Accept with probability if worse					
	If $f(x_i) \ge f(y_i)$ term gets ≥ 1 and y_i is accepted.						
	If $T \to \infty$, every solution y_i will be accepted.						
	If $T \rightarrow 0$, only better solutions will be accepted						
	Advantages: spend more time on good solutions						
Restarting	When local search does not improve anymore, start a new						
	local search from:						
	 best solution so far (good solutions are close) 	ons are close)					
	 randomly generated (explore with large variety - GRASP) 						
	 modification of best solution (keep structure - VNS) 						
Var: GRASP	Input: s* best solution found so far	Repeat					
Greedy		<pre>s = minimal partial solution</pre>					
Randomized		construct s' from s with greedy					
Adaptive Search		find optima s'' in neighbourhood					
Procedure		if f(s'') < f(s*) s* = s''					
Var: VNS Variable	Idea: Working with p different neighbourhoods	Repeat Choose a randomly neighbourhood					
		find local optima in these					
Neighbourhood		apply if better					
Search							

Decomposition Methods

	Neighbourhood is too large to fully explore.											
	Split problem in smaller problems, optimize local solutions											
VLNS	Idea: Partially explore the large neighbourhood to find											
Very Large	improvements											
Neighbourhood	ILP: fix value of subset and solve, repeat with other subset											
Search	Iterated Local Search: randomly perturb (=stören) the best											
	solution so far, and apply an improving method											
POPMUSIC	Idea: Decompose solution into parts, optimize several	Solution $S=s_1 \cup s_2 \cup \cup s_p$										
Partial	parts of the solution, repeat until optimized portions cover	$0 = \emptyset$ // already optimized parts										
Optimization	the entire solution space	Parameter r // "nearest parts"										
Metaheuristic												
under special	Sub-problem Solution	While $0 \neq S$										
intensication	Sub-problem Solution	Choose a seed part $s_i \notin O$										
conditions		Create a subproblem R composed										
		of the r "closest" parts										
	Difficulty: Sub-problems may not be independent from	Optimize subproblem R										
	one another	If R improved then set $O = O \setminus R$										
		else $0 = 0 \cup s_i$										
example												
	Part = Tour of one vehicle											
	Distance = between centres of gravity											
	Sub-Problem: A smaller VRP											
	Optimization process: e.g. Tabu Search											
	Variables (example with TSP)											
Part = a single city c on a tour Distance = r adjacent cities on the tour, immediately before/after c Sub-Problem: solve TSP for the r cities (e.g. exhaustive) Re-Combination: re-insert subtour in existing tour												
						Variables (example for permutation shop problem)						
						Part = a single job x						
	istance = take x as seed job and select r jobs that are scheduled before and after x											
Sub-Problem = Re-Schedule the selected job (use additional time constraints for start/end time -												
	Re-Combination: shift all jobs as much to the left as possible											

ZHAW/HSR

TSM_Alg & FTP_Optimiz

ZHAW/HSR			Print date: 04.02.19	TSM_Alg & FTP_Optimiz			
Evolutionary	Idea	ea: Selection: Survival of the fittest (natural selection) Choose a suitable encoding					
Algorithms		-	ndividuals (generations).	Start at random	population		
	Inhe	eritance of tra	its, info is passed on to descendants.	Repeat			
Genetic		Recombination, info is exchanged between parents. Create next generation:					
Algorithms	Diversification (by mutations).			- assign fitness to individuals			
	Population acquires and cultivates shared knowledge			 natural selection choosing parents for reproduc. 			
	(culture, collective memory)			- recombination and mutation			
		-	t of populations (different cultures in	Until criterion			
Torminology		erent regions)	nassible solution condidate o a vestor				
Terminology			possible solution candidate. e.g. vector individual entries of an individual.				
		-	ncrete values which a gene takes, e.g.0/	1			
			the set of all individuals at a given time.				
			e population at a specific point in time.				
			ne encoded form of an individual.				
	The	phenotype is	the decoded form of an individual,				
	do r	not depend on	encoding. Are the solution candidates.				
			on is our quality measure for a solution.				
1. Encoding			change in genotype corresponds to a		L-10-11 (dist=1-2)		
			nenotype> use gray code	gray: 00-01-11-10 (dist=1)			
			of n integer / binary vector /				
		-	ent: Replace all individuals				
schemes			p only m best individuals Jest individuals are mutated				
			n random individuals				
		-	lace n worst individuals, keep others				
			: Store some for later procreation				
3. Selection			e means that better individuals should	Better exploration v	vhen pressure is low		
	hav	e a higher cha	nce of reproduction.	Better exploitation when pressure is high			
			ng selection pressure				
	•	nbiased) Rand		Tournamen selection:			
			n with bias on better individuals		best 2-nd 3rd-best (k)-best		
	•	ilette wheel) urnament sele	etion	$\frac{p}{(1-p)p} (1-p)^2 p \dots (1-p)^{(k-1)} p$			
					her the selection pressure		
4. Recombination			uals to exchange and pass advantageou		2-point uniform		
		perties. e-point crossc	ver		0 1011 000 001 10110 1 0010 110 100 00101		
		o-point crosse			0 1011 110 001 10111		
		iform crossov		child 2 1011 011			
			h repair mechanism)		0010 000 100 00100		
	- ad	jacency metho	bd				
5. Mutation	bit f	flip / position r	nutation / inversion				
	Î		Elitism Bypass		- « Î		
				V	q %		
			S Direct Mutation M		r %		
					1 70		
			Recombination				
	us	old	S	new	s% =		
	m items	Population	S	Population	s % mitems		
	E				- <u> </u>		
			S Recombination / Mutation				
					t %		
			S				
			Random Generation	RG	u %		
	R = M	= selection = recombination = mutation G = random general	ion Pool Pool Pool	RG Pool random selection out of pools	100 %		