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COMBINATORIAL PROBLEMS - P-CLASS 

Graph Search 

 Given: 𝐺 = (𝑉, 𝐸), start node 
Goal: Search in a graph 

 
DFS 
Depth-First-
Search 

1. Start at a, put it on stack. 
Stack = LIFO "Last In - First Out" 
2. Whenever there is an unmarked neighbour, 
go there and and put it on stack 
3. If there is no unmarked neighbour, backtrack; 
i.e. remove current node from stack (grey ⇒ green) and 
go to step 2. 

Insert from 
top ↓ 
Access 
from top ↓ 

       g  h      

      e e e e e     

   c  f f f f f f f    

  d d d d d d d d d d d   

 b b b b b b b b b b b b b  

a a a a a a a a a a a a a a a 
 

BFS 
Breadth-First 
Search 

1. Start at a, put it in queue. 
Queue = FIFO "First In - First Out" 
2. Output first vertex from queue (grey ⇒ green). Mark 
all neighbors and put them in queue (white ⇒ grey). Do 
so until queue is empty 

Insert from top ↓ 
 
 
Access from bottom ↑ 

   h g    

   f h g   

 d e c f h g  

a b d e c f h g 
 

Minimum Spanning Tree (MST) 

 Given: Graph 𝐺 = (𝑉, 𝐸, 𝑊) with undirected edges set 𝐸, with positive 
weights 𝑊 
Goal: Find a set of edges that connects all vertices of G and has minimum total 
weight. 
Application: Network design (water pipes, electricity cables, chip design) 
Algorithm: Kruskal's, Prim's, Optimistic, Pessimistic 

 
Optimistic Approach 
=Kruskal's algorithm 
1956 
(Greedy) 
 
𝑂(|𝐸| + log|𝐸|) 
with union-find-
datastructure 

Successively build the cheapest connection available 
that is not redundant. 
Sort edges of G by increasing weight 
Set 𝐸𝑇 to ∅ 
For 𝑘 = 1. . 𝑛𝑒, do: 
 If 𝐸𝑇 ∪ {𝑒𝑘} has no cycle 
  Set 𝐸𝑇 = 𝐸𝑇 ∪ {𝑒𝑘} 
Return 𝑇 = (𝑉, 𝐸𝑇) 

ab dh fh ef df be eh cd eg bd ad total 

1 2 3 4 5 6 7 8 9 10 11 33 
 

Pessimistic 
Approach 

Successively rule out the most expensive line that is 
not absolutely needed. 

ad bd eg cd eh be df ef fh dh ab total 

11 10 9 8 7 6 5 4 3 2 1 33 
 

Prim's Algorithm 
1957 
(Greedy) 
 
𝑂(|𝐸| + |𝑉| log|𝑉|) 
if L is managed with 
a Brodal queue 

Choose an arbitrary start vertex 𝑣0 and set 𝑀 = {𝑣0}. 
Iteratively add to M a vertex in 𝑉 \ 𝑀 that can be 
reached the cheapest from the current set M. Select 
the corresponding edge. Continue until 𝑀 = 𝑉. 

a b e f h d c g total 

 a-b b-e e-f f-h h-d d-c e-g  

 1 6 4 3 2 8 9 33 
 

For each vertex 𝑢 ∈ 𝑉 do: 
 𝜆[𝑢] = ∞ 
 𝑝[𝑢] = emptyset 
 Choose a vertex 𝑠 and set 𝜆[𝑠] ≔ 0 
 𝐸𝑇 = emptyset 
 𝐿 = 𝑉  // List of vertices not yet in T 
While 𝐿 ≠ ∅ do 
 Remove from L the vertex u with lower 𝜆[𝑢] 
 If 𝑢 ≠ 𝑠 then 
  𝐸𝑇 ≔ 𝐸𝑇 ∪ {𝑝[𝑢], 𝑢} 
 For each vertex 𝑣 ∈ 𝑎𝑑𝑗[𝑢] do 
  If 𝑣 ∈ 𝐿 and 𝜆[𝑣] > 𝑐𝑢𝑣 then 
   𝜆[𝑣] = 𝑐𝑢𝑣 
   𝑝[𝑣] = 𝑢 
Return 𝑇 = (𝑉, 𝐸𝑇) 
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Shortest paths 

 Given: Graph 𝐺 = (𝑉, 𝐸, 𝐶) with cost 𝑐𝑖𝑗 ≥ 0 for each edge 𝑒 ∈ 𝐸 and a start 

vertex 𝑠 ∈ 𝑉 
Goal 1: Find the shortest path from start 𝑠 to 𝑗. 
Goal 2: Find the shortest path from start 𝑠 to all other vertices. 
Goal 3: Find the shortest path between all pairs of vertices. 
 
Algorithm: (Goal 1+2) Dijkstra's, (Goal 3) Floyd-Warshall 

 

Dijkstra's algorithm 
1959 
 

𝐺 = (𝑉, 𝐸, 𝐶) 
 
𝑂(|𝐸| + |𝑉| log|𝑉|) 
if L is managed with 
a Brodal queue 

We iteratively compute the shortest distance 𝐼(𝑣) for 
the vertex v closest to 𝑣0 that has not been reached yet. 
Not working with negative weights. 
𝜆𝑗: length of the shortest path 

𝑝𝑗: predecessor of j on the shortest path 

𝑠: start vertex 
For all 𝑗 ∈ 𝑉 do 𝜆𝑗 = ∞; 𝑝𝑗 = ∅ 

𝜆𝑠 = 0;  𝐿 = 𝑉 
While 𝐿 ≠ ∅ 
 Find i such that 𝜆𝑖 = min(𝜆𝑘|𝑘 ∈ 𝐿) 
 𝐿 = 𝐿 𝑜ℎ𝑛𝑒 {𝑖} 
 For all 𝑗 ∈ 𝑠𝑢𝑐𝑐[𝑖] do 
  If 𝑗 ∈ 𝐿 and 𝜆𝑗 > 𝜆𝑖 + 𝑐𝑖𝑗 

   𝜆𝑗 = 𝜆𝑖 + 𝑐𝑖𝑗; 

   𝑝𝑗 = 𝑖 

Return Lenghts 𝜆 and predecessors p 

a b=3 
d=9 

d=8 
e=10 

c=14 
e=10 
f=14 
h=16 

c=14 
f=14 
h=11 
g=15 

c=14 
f=13 
g=15 

c=14 
g=15 

g=15 

 

Floyd-Warshall 
algorithm 
 
relies on dynamic 
programming 
 
use recursion 
 
negative weighs 
allowed as long as 
no negative cycles 

𝑚𝑖𝑛𝑃𝑎𝑡ℎ(𝑖, 𝑗, 𝑛) are the shortest distances from 𝑣𝑖  to 
𝑣𝑗, ∞ if not existing. 

Iterate through all rows/columns: 

𝑚𝑖𝑛𝑃𝑎𝑡ℎ(𝑖, 𝑗, 𝑘 + 1) = min {

𝑚𝑖𝑛𝑃𝑎𝑡ℎ(𝑖, 𝑗, 𝑘)

𝑚𝑖𝑛𝑃𝑎𝑡ℎ(𝑖, 𝑘 + 1, 𝑘) +

𝑚𝑖𝑛𝑃𝑎𝑡ℎ(𝑘 + 1, 𝑗, 𝑘)
 

𝑖 = 1 
 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 

𝑎 − 3 ∞ 9 → 8 ∞ ∞ ∞ ∞ 
𝑏 3 − ∞ 5 7 ∞ ∞ ∞ 
𝑐 ∞ ∞ − 6 ∞ ∞ ∞ ∞ 
𝑑 9 → 8 5 6 − ∞ → 12 6 ∞ 8 
𝑒 ∞ 7 ∞ ∞ → 12 − 6 5 1 
𝑓 ∞ ∞ ∞ 6 6 − ∞ 2 
𝑔 ∞ ∞ ∞ ∞ 5 ∞ − ∞ 
ℎ ∞ ∞ ∞ 8 1 2 ∞ − 

 

Var: Pathfinding Given: start and goal coordinates 
Problem: We only see the immediate neighborhood of our position. 
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Max-Flow 

 Input: directed graph 𝐺 = (𝑉, 𝐸) with capacity 𝑐(𝑒) > 0 
Two special nodes, source s, and ,sink/target t, are given, 𝑠 ≠ 𝑡 
Goal: Maximize the total amount of flow from s to t, 
where the flow on edge e doesn't exceed 𝑐(𝑒) and for every 
node 𝑣 ≠ 𝑠 𝑎𝑛𝑑 𝑣 ≠ 𝑡, incoming flow is equal to outgoing flow. 
Applications: Network routing, Transportation, Bipartite Match 
Algorithm: Ford-Fulkerson-Alg, Edmonds-Karp  

Greedily finding 
augmenting 
paths 

s-b-e-t s-b-d-t s-d-f-t total 

1 8 3 12 

s-b: 9 → 8 
b-e: 5 → 4 
e-t: 1 → 0 

s-b: 8 → 0 
b-d: 9 → 1 
d-t: 8 → 0 

s-d: 9 → 6 
d-f: 3 → 0 
f-t: 4 → 1 

 

   

 

 

 

Ford-Fulkerson 
 
 

𝑂((𝑛𝑣 + 𝑛𝑒) 𝑓∗) 

𝑓∗: optimal flow 

Idea: Insert backwards edges that can be used to (partially) undo previous paths. 
Set 𝑓𝑡𝑜𝑡𝑎𝑙 = 0 
While there is a path from s to t in G: 
 Determine smallest capacity g along the path P 
 Add f to 𝑓𝑡𝑜𝑡𝑎𝑙 
 Foreach edge 𝑢 → 𝑣 on the path 
  decrease 𝑐(𝑢 → 𝑣) by f 
  increase 𝑐(𝑣 → 𝑢) by f (backward) 
  delete edge if capacity 𝑐 = 0 

s-b-e-t s-b-d-t s-d-f-t s-d-b-e-f-t 

1 8 3 1 

    
Problem: Inefficient behaviour if the augmenting path is chosen arbitrarily. 
Solution: Edmonds-Karp  algorithm 

path 1: 

 

 
path 2: 

 

 

Edmonds-Karp 
algorithm 
 
starting at s 

Idea: In each iteration, use a shortest augmenting path, i.e. a path from s to t with 
the fewest number of edges. Can be found with BFS in time 𝑂(|𝐸|). 

Insert from top ↓ 
 
Access from bottom ↑ 

   t=2 

 d=1 e=2 f=2 

s=0 b=1 d=1 e=2 

shortest augmenting path: s-d-t  

with vertex 
restrictions 

Restriction: Maximum flow through vertices is restricted. 
Solution: Add additional vertex before the restricted vertex and add new edge with 
weight = vertex restriction. Direct all ingoing edges to the new vertex. e.g. b by 3: 

 
Distribution 
problem reduced 
to Max-Flow 

Insert source s and connect it with capacity ∞ edges to first layer. 
Insert sink t and connect it with capacity ∞ edges to last layer. 

  
  

Bipartite 
matching 

Make edges directed. Add source and sink vertices s and t with corresponding 
edges. Set all edge weights to 1. Find integer maximum flow with Ford-Fulkerson 
algorithm.  
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Var: 
Max-Flow 
Min-Cut 

Goal: Find a minimum partition of the vertex set which divides S and T 
into two sets. 
Applicationgs: Redundancy in networks, reliability in 
telecommunication, military strategy, optimizing traffic systems 
 
The maximum st flow equals the minimum value of all (exponentially 
many) possible st-cuts.  

 

Var: 
Min-Cost 
Max-Flow 
 
harder 

Each edge e has capacity 𝑐(𝑒) and cost 𝑐𝑜𝑠𝑡(𝑒) 
Goal: Find the maximum flow that has the minimum total cost 

 
 Often there are several possible maximum flows with a cost per flow unit. 

Solution: Extend Ford-Fulkerson algorithm to take cost criterion into account. 

s-b-d-t s-b-e-t s-c-e-t  

2*6=16 1*5=5 1*4  

  
 

capacity = 4 
cost = 21 

Until now, we just used the Ford-Fulkerson algorithm with additionally annotating the costs. Now, look for 
cycles, respecting the capacities. This does not change the total flow from s to t, but decreases the total 
cost. 

s-c-e-b-s  

capacity 1*(3-4)  

s-b-e → s-c-e  

 

capacity = 4 
new cost = 20 
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COMBINATORIAL PROBLEMS - NP-CLASS 
TSP 
Traveling 
Salesperson 
Problem 
 

𝑂((𝑛 − 1)!) 

Input: 𝑛 cities, 𝑑𝑖𝑗  distances matrix between cities 𝑖 and 𝑗. 

Goal: Find the shortes tour passing exactly once in each city. 

∑ 𝑑𝑝𝑖𝑝𝑖+1

𝑛−1

𝑖=1
+ 𝑑𝑝𝑛𝑝1

 

Application: Network Design, pipes, cables, chip design, ... 
Algorithms: Nearest Neighbour (=Greedy), MST-based 

𝑀𝑆𝑇 < 𝑇𝑆𝑃 ≤ 2 ∗ 𝑀𝑆𝑇  
CVRP 
Capacitated 
Vehicle Routing 
Problem 

Input: n customers and 1 depot, 𝑞𝑖: quantity ordered by 
customer i, distances 𝑑𝑖𝑗 , Q verhicle capacity 

Goal: Minimize the total length performed by the vehicle 
Each customer gets his delivery, 
Each tour start and ends at the depot 
Total demand on each tour des not exceed Q 

 
Var: Goal: Minimize number of trucks/paths  

Steiner Tree 
Problem 

Input: 𝐺 = (𝑉, 𝐸, 𝐶) with vertices, edges and weights and 
𝑠𝑢𝑏𝑠𝑒𝑡 𝐷 ⊆ 𝑉 
Goal: Find a tree of minimum weight containing all vertices of D 
and, eventually, other vertices of V not in D (Steiner nodes). 

 
Scheduling 
Problems 

Given: n jobs and m machines, each job contains m tasks 
Machine has to be free and previous task done. 
Each task has a known processing time 𝑝𝑖𝑗  on the machine. 

Goal: Find a "good" order in which the jobs should be 
processed. 
Objectives: 
- Makespan: Minimize the completion time of the last job 
- Sum of completion times: (weighted) sum of completion times 
of all jobs 
- Minimum Tardiness: minimize the individual due date. 

 

Var: Permutation 
Flow Shop 
Problem 

Huge objects or production line 
Ordering of tasks on machines is fixed. 
n! permutations 

 

Var: Flow Shop 
Problem 

Smaller objects which can be storaged  

Var: Job Shop 
Problem 

Introduction for new employies  

Knapsack 
Packing Problem 

Input: n items each with a weight 𝑤𝑖  and a value 𝑣𝑖, maximum 
weight capacity W 
Goal: maximize the value with respect to maximum weight 
Algorithms: Naive Greedy, Smarter Greedy 
simplest ILP (only one inequality) but NP-complete 

 
Santa Claus 
Problem 

Input: n item with location on earth and weigt, max carry weight 
Goal: Minimize the weighted distance to deliver all items to the 
given location 

 
Vertex Coloring Input: Graph 

Goal: Find an assignment of colors to each vertex such that no 
edge connects two identically colored vertices. 
Variants: Minimize the number of colors 
Algorithm: First Fitting Color, Decreasing Degree 
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QAP Quadratic 
Assignment 
Problem 

Given: Set of activities and locations along with the flows 
between activities and the distances between locations 
𝑑𝑖𝑗 ∈ 𝐷:distance matrix 

𝑓𝑖𝑘 ∈ 𝐹:flow matrix 
𝑥𝑖𝑗 :1 if activity is assigned to location j, 0 otherwise 

Goal: assign each activity to a location to minimize total cost 

min 𝑧 = ∑ ∑ 𝑑𝑖𝑗𝑓𝑗𝑘𝑥𝑖𝑗𝑥ℎ𝑘

𝑛

𝑘=1

𝑛

𝑖,𝑗=1

 

 

Neighborhoods - swap 2 locations of 2 facilities 𝑂(𝑛2) 

- swap locations of k=3,4,... facitilites 𝑂(𝑛𝑘) 

 

Post office 
problems 

Goal: Find the next post office (or ATM nowadays) in a city from 
your location. 
Solution: Use Voronoi diagram 

 

Exact cover Given: Subset 𝑈𝑖 , 𝑖 = 1. . 𝑛 of a base set M 
Find: Exact cover (if one exists), i.e. a choice of sets 𝑈𝑖  such that 
their union is m and no element is contained in more than one 
of these sets. 
Optimization: Find a choice of sets 𝑈𝑖  such that their union is M 
and as few element as possible are contained in 𝑈𝑖. 

 

n queens 
problem 

Goal: Place n queens on a 𝑛 × 𝑛 board such that no two queens 
can capture each other. 
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HEURISTICS 

General  

Heuristic A heuristic method is based on knowledge acquired by 
experience on a given problem. They are opposed to 
exact algorithms. Heuristic methods do not necessarily 
provide the best solution, but need reasonable time. 

 

Meta-Heuristic A meta-heuristic is a limited set of concepts that can be 
applied to a large set of combinatorial optimization 
problems and that allow creating new heuristic methods. 
It provides support for designing heuristic methods, 
based on knowledge acquired by designing heuristic 
method for various problems. 

Trajectory- 
based 

Start with a solution and improve it continuously by 
exploring its "neighborhood". We obtain a trajectory 
through the solution space. 

 

Population- 
based 

An evolving population of (partial) solutions, whose 
members evolve and adapt individually to the problem 
and are searching for the optimum. Problem specific 
information can be exchanged between the members of 
the population, and can be passed on to descendants. 

 

Neighborhood Too small: get stuck quickly without exploring 
Too large: computation time to high 

 

 

Heuristics 

For TSP: 

Nearest 
Neighbour 
(=Greedy) 

Start from city 1. 
Repeat: Go to the nearest city not yet visited, until all visited. 

 

Best Global Edge 
(=Greedy) 

Initial 𝑆: ∅ 
R: Set of edges that can be added to S such that: 
  No cycle is created, no vertex with degree > 2 is created 
𝑐(𝑆, 𝑒): weight of edge e (this is independent from S) 

 

Maximum Regret 
(=Greedy) 

𝑆 = {1}  
R: Set of cities not yet visited 
𝑐(𝑆, 𝑒) = Regret of not going to e from i 
Choose the largest 𝑐(𝑆, 𝑒)  

Best Insertion 
(=Greedy) 

𝑆 = Tour on 2 cities 
𝑅: Set of cities not yet visited 
𝑐(𝑆, 𝑒) = Minimum insertion cost of city e between 2 cities 
Choose the smallest 𝑐(𝑆, 𝑒) 

 

For Vertex Coloring 

First Fitting Color 
(=Greedy) 

Select an ordering of the vertices 
𝑠 = ∅ // set of already colored vertices 
𝑅 = 𝑉 // set of vertices not colored yet 
𝐶(𝑠, 𝑒) // set of colors that can be assigned to a vertex 
(sorted) 
Choose first color in 𝐶(𝑠, 𝑒) 

 

Decreasing 
Degree 
(=Greedy) 

sort the vertices by decreasing order of degree 
Remaining is identical to first fitting color 

 

𝑫𝒔𝒂𝒕𝒖𝒓 
(=Greedy) 

choose the uncolored vertex with the highest "saturation 
degree", i.e. with the maximum number of different 
adjacent colors. Break ties by choosing the vertex with 
maximum degree. 
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Meta Heuristics 

Constructive 

Random 
Sampling 
“or Building” 

Idea: Generate a solution randomly, uniformly in the 
solution space 
Advantages: Simple, works good, easy to implement 
Disadvantages: bad solution quality, uniform distribution 
sometimes not trivial 
Sometimes not easy to find -> add penalty function 

S = Random solution 
Repeat 
 Find another solution randomly 
 Use if better than S 
Until satisfied 

Greedy 
Construction 

Idea: Build element by element, by adding systematically 
the most appropriate (“best”) element. 
Needs a cost function that measures the quality of adding 
element e to a partial solution S. 
Adding an element generally implies restrictions for the 
next elements to add. 
Disadvantages: too short-sighted 
Works optimally for: MST, Shortest Path, ... 

R = E (set to add) 
Repeat 
 Evaluate 𝑐(𝑆, 𝑒) for each 𝑒 ∈ 𝑅 
 Choose 𝑒′ which optimizes 𝑐(𝑆, 𝑒) 
 Add 𝑒′ to the partial solution S 
 Remove from R all elements that 
cannot be added to S anymore. 
Until S is a complete solution 

Exhaustive Search Idea: Generate all feasible solutions and find the optimum 
Advantages: 
Guarantees to find an optimal solution 
Often easy to implement 
Disadvantages: 
The set of feasible solutions is often exponential 
-> takes to much time. 

 

Pilot Method 
𝑂(𝑛2) for TSP 

Idea: Evaluate the quality of adding an element e to s by 
completing it to a full solution. The heuristic to complete a 
solution must be chosen, e.g. greedy + local search, ... 
Remarks: Time complexity is increased by the “pilot” 

For all e that can be added to S 
 Calc s+e with heuristic “pilot” 
 Keep the best solution 

Beam Search Idea: Similar to exhaustive search, but define a beam 
width (e.g. 2) and browse depth. 
beam width = ∞ → 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑤𝑖𝑡ℎ 𝐵𝐹𝑆 

For each partial solution 
 expand up to k depth 
 keep the most promising 
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Local Improvement 

Local 
Improvement 
= Local Search 
= Hill Climping 

Idea: Start with a given solution (with a constructive 
method) and find improvements 
Neighbourhoods: Terminating: fixed number, no 
improvement after x steps, when a target is reached 

Repeat 
 Try to find an improved solution 
 Perform if found 
While An improvement is found 

Selection First Improving Move (takes the first move that improves 
the current solution) 

While improving solution 
 s' = new solution 
 if c(s') < c(s) 
  s = s' 

Best Improving Move (take the best move that improves 
the current solution) 

costOfBestNewSol = a 
for each move m in M(s) 
 s' = new solution with m applied 
 if c(s') < costOfBestNewSol 
  costOfBestNewSol = c(s') 
  bestMove = m 
apply bestMove to s 

Neighbourhood TSP: search for intersections, 2/3/k-opt, 
or-opt (move a subchain of vertices somewhere else) 
-> use a doubled chained list 
 
CVRP: First fit, Random, Closest (customer, point of 
gravity, edge), lowest left capacity, change beginning 
 
Knacksack: shift, invert, transpose(swap) 
 
 

Connectivity: A global optimum can be 
reached from any feasible solution 
Low diameter: Number of moves for linking 
any pair of solutions is small 
Low ruggedness: Limited number of local 
optima 
Limited size: Number of neighbour solutions is 
small 
Easy to evaluate:  neighbour solution must be 
found without prohibitive computation 

Var Always take best solution from neighborhood, even if this 
decreases target function. 
(+) to escape from local optima 
(-) might go back and forth (run into a cylce) 
(-) not monotone increasing 

 

Tabu Search 
(=Local Search) 

Idea: Similar to hill climbing, but with some memory. 
Try to avoid steps that go back to previously visited 
solutions, or that undo the effect of previous steps. 
Goal: Promote diversity of the solutions explored, in 
particular to reduce cyclic behaviour and to escape from 
local optima. 
Tabu list: store last move / store last n moves / ... 
Allow invalid solutions but penalize them (fix or variable). 
Tuning: Learn tabu value (incr/decr or rand) 

Start with a random solution 
Repeat 
 Find a better solution 
 Consider steps that ar not tabu 
 Perform if better 
 and update tabu list 
Until criteria reached 

example Iteration Variable flipped Current solution Revenue Vol Tabu list 

0 - 0 0 0 0 0 0 0 0 0 0  0  

1 4 0 0 0 1 0 0 0 0 0 0 12 14 4 

2 1 1 0 0 1 0 0 0 0 0 0 12+11=23 14+33=47 1,4 

3 2 1 1 0 1 0 0 0 0 0 0 23+10=33 47+27=74 1,2,4 

4 3 1 1 1 1 0 0 0 0 0 0 33+9=42 74+16=90 1,2,3 

5 4 1 1 0 0 1 0 0 0 0 0 43-   
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ACO 
Ant Colony 
Optimization 

Param: 

Distance matrix 𝐷 = (𝑑𝑖𝑗) → 𝑔𝑖𝑣𝑒𝑛 

Trace matrix 𝑇 = (𝜏𝑖𝑗) →pheromone trail 

𝛼: weight of the pheromone (0 → nearest neighbor) 
𝛽: weight of the distance (0 → push very few tours) 
𝜌:  
𝜏0: init of the pheromone trail 
𝑄: constant for pheromon update 
𝑚: batch size 
maxiter: maximal iterations 

Set parameters 
Initialize pheromone trails 
Do 
 Construct Ant Solutions 
 Apply local search (optional) 
 Update Pheromones 
While criteria reached 

e.g. for TSP 

 
Var: MMAS 
MaxMin Ant 
System 
 
one of the most 
successful 

Changes: 
Only the best ant updates the pheromone trails 
Maintains lower and upper bounds 𝜏𝑚𝑖𝑛 , 𝜏𝑚𝑎𝑥  for pheromone values 𝜏𝑒 
Pheromone is updated for the "best" solution, for the current iteration or "best-so-far" 
Update depends on the cost of the best solution 

e.g. for TSP 

 
Important There is no need that ants really follow a consecutive path -> like they can fly 
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Randomized Local Search 

Noising Methods Add a random noise when evaluating the moves with 
decreasing probability 
Typical Noise: standard deviation 
Generalisation of the next three 

Repeat 
 Apply randomly move 
 Accept if it's better 
 Accept worse according to noise 

Var: Threshold 
Accepting 

Accept all move deteriorating (=verschlechtern) the 
solution less than a given threshold 

 

Var: Great Deluge Only accept solutions with a given minimal quality; 
increase level of quality (like a "flood") 

 

Var: Simulated 
Annealing 

Similar to hill climbing, but allow non-improving moves. 
Probability: Fixed / decreasing over time / 
  decreasing over time and depending on quality 

min {1, 𝑒
𝑓(𝑥𝑖)−𝑓(𝑦𝑖)

𝑇𝑖 } 

If 𝑓(𝑥𝑖) ≥ 𝑓(𝑦𝑖) term gets ≥ 1 and 𝑦𝑖  is accepted. 
If 𝑇 → ∞, every solution 𝑦𝑖  will be accepted. 
If 𝑇 → 0, only better solutions will be accepted 
Advantages: spend more time on good solutions 

Start with random solution 
Repeat 
 Apply randomly move 
 Accept if it's better 
 Accept with probability if worse 
 

Restarting When local search does not improve anymore, start a new 
local search from: 
- best solution so far (good solutions are close) 
- randomly generated (explore with large variety - GRASP) 
- modification of best solution (keep structure - VNS) 

 

Var: GRASP 
Greedy 

Randomized 
Adaptive Search 

Procedure 

Input: s* best solution found so far Repeat 
 s = minimal partial solution 
 construct s' from s with greedy 
 find optima s'' in neighbourhood  
 if f(s'') < f(s*) 
  s* = s'' 

Var: VNS 
Variable 

Neighbourhood 
Search 

Idea: Working with p different neighbourhoods Repeat 
 Choose a randomly neighbourhood 
 find local optima in these 
 apply if better 
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Decomposition Methods 

 Neighbourhood is too large to fully explore. 
Split problem in smaller problems, optimize local solutions 

 

VLNS 
Very Large 
Neighbourhood 
Search 

Idea: Partially explore the large neighbourhood to find 
improvements 
ILP: fix value of subset and solve, repeat with other subset 
Iterated Local Search: randomly perturb (=stören) the best 
solution so far, and apply an improving method 

 

POPMUSIC 
Partial 
Optimization 
Metaheuristic 
under special 
intensication 
conditions 

Idea: Decompose solution into parts, optimize several 
parts of the solution, repeat until optimized portions cover 
the entire solution space 

 
Difficulty: Sub-problems may not be independent from 
one another 

Solution S=𝑠1 ∪ 𝑠2 ∪ … ∪ 𝑠𝑝 

𝑂 = ∅  // already optimized parts 
Parameter r // "nearest parts" 
 
While 𝑂 ≠ 𝑆 
 Choose a seed part 𝑠𝑖 ∉ 𝑂 
 Create a subproblem R composed 
  of the r "closest" parts 
 Optimize subproblem R 
 If R improved then set 𝑂 = 𝑂\𝑅 
 else 𝑂 = 𝑂 ∪ 𝑠𝑖 

example Variables (example with VRP) 
Part = Tour of one vehicle 
Distance = between centres of gravity 
Sub-Problem: A smaller VRP 
Optimization process: e.g. Tabu Search 
Variables (example with TSP) 
Part = a single city c on a tour 
Distance = r adjacent cities on the tour, immediately before/after c 
Sub-Problem: solve TSP for the r cities (e.g. exhaustive) 
Re-Combination: re-insert subtour in existing tour 
Variables (example for permutation shop problem) 
Part = a single job x 
Distance = take x as seed job and select r jobs that are scheduled before and after x 
Sub-Problem = Re-Schedule the selected job (use additional time constraints for start/end time -> still valid 
Re-Combination: shift all jobs as much to the left as possible 
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Evolutionary 
Algorithms 
 
Genetic  
Algorithms 

Idea: Selection: Survival of the fittest (natural selection) 
Finite lifespan of individuals (generations). 
Inheritance of traits, info is passed on to descendants. 
Recombination, info is exchanged between parents. 
Diversification (by mutations). 
Population acquires and cultivates shared knowledge 
(culture, collective memory) 
Local development of populations (different cultures in 
different regions) 

Choose a suitable encoding 
Start at random population 
Repeat 
 Create next generation: 
 - assign fitness to individuals 
 - natural selection 
 - choosing parents for reproduc. 
 - recombination and mutation 
Until criterion satisfied 

Terminology An individual is a possible solution candidate. e.g. vector 
The genes are the individual entries of an individual. 
The alleles are concrete values which a gene takes, e.g.0/1 
The population is the set of all individuals at a given time. 
A generation is the population at a specific point in time. 
The genotype is the encoded form of an individual. 
The phenotype is the decoded form of an individual, 
do not depend on encoding. Are the solution candidates. 
The fitness function is our quality measure for a solution. 

 

1. Encoding Desirable: A small change in genotype corresponds to a 
small change in phenotype. -> use gray code 
Example: Vector of n integer / binary vector / ... 

standard: 00-01-10-11 (dist=1-2) 
gray:   00-01-11-10 (dist=1) 

2. Replacement 
schemes  

General replacement: Replace all individuals  
Strict elitism: Keep only m best individuals 
Weak elitism: m best individuals are mutated 
Delete-n: Replace n random individuals 
Delete-n-last: Replace n worst individuals, keep others 
Retirement home: Store some for later procreation 

 

3. Selection Selection pressure means that better individuals should 
have a higher chance of reproduction. 
Strategy: Increasing selection pressure 
- (Unbiased) Random selection 
- Random selection with bias on better individuals 
(roulette wheel) 
- Tournament selection 

Better exploration when pressure is low 
Better exploitation when pressure is high 
 
Tournamen selection: 

best 2-nd 3rd-best  (k)-best 

𝑝 (1 − 𝑝)𝑝 (1 − 𝑝)2𝑝 .. (1 − 𝑝)(𝑘−1)𝑝 
The larger k, the higher the selection pressure 

4. Recombination Crossing of individuals to exchange and pass advantageous 
properties. 
- one-point crossover 
- two-point crossover 
- uniform crossover 
- PMX (2-point with repair mechanism) 
- adjacency method 

 1-point 2-point uniform 

parent 1 1011|110 1011|000|001 10110 

parent 2 0010|011 0010|110|100 00101 

child 1 0010|110 1011|110|001 10111 

child 2 1011|011 0010|000|100 00100 
 

5. Mutation bit flip / position mutation / inversion  

 

 
 


