
ZHAW/HSR Print date: 04.02.19 TSM_Alg & FTP_Optimiz

Marcel Meschenmoser Lecturer: Prof. Dr. Mark Cieliebak & Prof. Dr. Lin Himmelmann Page 1 of 13

COMBINATORIAL PROBLEMS - P-CLASS

Graph Search

 Given: 𝐺 = (𝑉, 𝐸), start node
Goal: Search in a graph

DFS
Depth-First-
Search

1. Start at a, put it on stack.
Stack = LIFO "Last In - First Out"
2. Whenever there is an unmarked neighbour,
go there and and put it on stack
3. If there is no unmarked neighbour, backtrack;
i.e. remove current node from stack (grey ⇒ green) and
go to step 2.

Insert from
top ↓
Access
from top ↓

 g h

 e e e e e

 c f f f f f f f

 d d d d d d d d d d d

 b b b b b b b b b b b b b

a a a a a a a a a a a a a a a

BFS
Breadth-First
Search

1. Start at a, put it in queue.
Queue = FIFO "First In - First Out"
2. Output first vertex from queue (grey ⇒ green). Mark
all neighbors and put them in queue (white ⇒ grey). Do
so until queue is empty

Insert from top ↓

Access from bottom ↑

 h g

 f h g

 d e c f h g

a b d e c f h g

Minimum Spanning Tree (MST)

 Given: Graph 𝐺 = (𝑉, 𝐸, 𝑊) with undirected edges set 𝐸, with positive
weights 𝑊
Goal: Find a set of edges that connects all vertices of G and has minimum total
weight.
Application: Network design (water pipes, electricity cables, chip design)
Algorithm: Kruskal's, Prim's, Optimistic, Pessimistic

Optimistic Approach
=Kruskal's algorithm
1956
(Greedy)

𝑂(|𝐸| + log|𝐸|)
with union-find-
datastructure

Successively build the cheapest connection available
that is not redundant.
Sort edges of G by increasing weight
Set 𝐸𝑇 to ∅
For 𝑘 = 1. . 𝑛𝑒, do:
 If 𝐸𝑇 ∪ {𝑒𝑘} has no cycle
 Set 𝐸𝑇 = 𝐸𝑇 ∪ {𝑒𝑘}
Return 𝑇 = (𝑉, 𝐸𝑇)

ab dh fh ef df be eh cd eg bd ad total

1 2 3 4 5 6 7 8 9 10 11 33

Pessimistic
Approach

Successively rule out the most expensive line that is
not absolutely needed.

ad bd eg cd eh be df ef fh dh ab total

11 10 9 8 7 6 5 4 3 2 1 33

Prim's Algorithm
1957
(Greedy)

𝑂(|𝐸| + |𝑉| log|𝑉|)
if L is managed with
a Brodal queue

Choose an arbitrary start vertex 𝑣0 and set 𝑀 = {𝑣0}.
Iteratively add to M a vertex in 𝑉 \ 𝑀 that can be
reached the cheapest from the current set M. Select
the corresponding edge. Continue until 𝑀 = 𝑉.

a b e f h d c g total

 a-b b-e e-f f-h h-d d-c e-g

 1 6 4 3 2 8 9 33

For each vertex 𝑢 ∈ 𝑉 do:
 𝜆[𝑢] = ∞
 𝑝[𝑢] = emptyset
 Choose a vertex 𝑠 and set 𝜆[𝑠] ≔ 0
 𝐸𝑇 = emptyset
 𝐿 = 𝑉 // List of vertices not yet in T
While 𝐿 ≠ ∅ do
 Remove from L the vertex u with lower 𝜆[𝑢]
 If 𝑢 ≠ 𝑠 then
 𝐸𝑇 ≔ 𝐸𝑇 ∪ {𝑝[𝑢], 𝑢}
 For each vertex 𝑣 ∈ 𝑎𝑑𝑗[𝑢] do
 If 𝑣 ∈ 𝐿 and 𝜆[𝑣] > 𝑐𝑢𝑣 then
 𝜆[𝑣] = 𝑐𝑢𝑣
 𝑝[𝑣] = 𝑢
Return 𝑇 = (𝑉, 𝐸𝑇)

ZHAW/HSR Print date: 04.02.19 TSM_Alg & FTP_Optimiz

Marcel Meschenmoser Lecturer: Prof. Dr. Mark Cieliebak & Prof. Dr. Lin Himmelmann Page 2 of 13

Shortest paths

 Given: Graph 𝐺 = (𝑉, 𝐸, 𝐶) with cost 𝑐𝑖𝑗 ≥ 0 for each edge 𝑒 ∈ 𝐸 and a start

vertex 𝑠 ∈ 𝑉
Goal 1: Find the shortest path from start 𝑠 to 𝑗.
Goal 2: Find the shortest path from start 𝑠 to all other vertices.
Goal 3: Find the shortest path between all pairs of vertices.

Algorithm: (Goal 1+2) Dijkstra's, (Goal 3) Floyd-Warshall

Dijkstra's algorithm
1959

𝐺 = (𝑉, 𝐸, 𝐶)

𝑂(|𝐸| + |𝑉| log|𝑉|)
if L is managed with
a Brodal queue

We iteratively compute the shortest distance 𝐼(𝑣) for
the vertex v closest to 𝑣0 that has not been reached yet.
Not working with negative weights.
𝜆𝑗: length of the shortest path

𝑝𝑗: predecessor of j on the shortest path

𝑠: start vertex
For all 𝑗 ∈ 𝑉 do 𝜆𝑗 = ∞; 𝑝𝑗 = ∅

𝜆𝑠 = 0; 𝐿 = 𝑉
While 𝐿 ≠ ∅
 Find i such that 𝜆𝑖 = min(𝜆𝑘|𝑘 ∈ 𝐿)
 𝐿 = 𝐿 𝑜ℎ𝑛𝑒 {𝑖}
 For all 𝑗 ∈ 𝑠𝑢𝑐𝑐[𝑖] do
 If 𝑗 ∈ 𝐿 and 𝜆𝑗 > 𝜆𝑖 + 𝑐𝑖𝑗

 𝜆𝑗 = 𝜆𝑖 + 𝑐𝑖𝑗;

 𝑝𝑗 = 𝑖

Return Lenghts 𝜆 and predecessors p

a b=3
d=9

d=8
e=10

c=14
e=10
f=14
h=16

c=14
f=14
h=11
g=15

c=14
f=13
g=15

c=14
g=15

g=15

Floyd-Warshall
algorithm

relies on dynamic
programming

use recursion

negative weighs
allowed as long as
no negative cycles

𝑚𝑖𝑛𝑃𝑎𝑡ℎ(𝑖, 𝑗, 𝑛) are the shortest distances from 𝑣𝑖 to
𝑣𝑗, ∞ if not existing.

Iterate through all rows/columns:

𝑚𝑖𝑛𝑃𝑎𝑡ℎ(𝑖, 𝑗, 𝑘 + 1) = min {

𝑚𝑖𝑛𝑃𝑎𝑡ℎ(𝑖, 𝑗, 𝑘)

𝑚𝑖𝑛𝑃𝑎𝑡ℎ(𝑖, 𝑘 + 1, 𝑘) +

𝑚𝑖𝑛𝑃𝑎𝑡ℎ(𝑘 + 1, 𝑗, 𝑘)

𝑖 = 1
 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ

𝑎 − 3 ∞ 9 → 8 ∞ ∞ ∞ ∞
𝑏 3 − ∞ 5 7 ∞ ∞ ∞
𝑐 ∞ ∞ − 6 ∞ ∞ ∞ ∞
𝑑 9 → 8 5 6 − ∞ → 12 6 ∞ 8
𝑒 ∞ 7 ∞ ∞ → 12 − 6 5 1
𝑓 ∞ ∞ ∞ 6 6 − ∞ 2
𝑔 ∞ ∞ ∞ ∞ 5 ∞ − ∞
ℎ ∞ ∞ ∞ 8 1 2 ∞ −

Var: Pathfinding Given: start and goal coordinates
Problem: We only see the immediate neighborhood of our position.

ZHAW/HSR Print date: 04.02.19 TSM_Alg & FTP_Optimiz

Marcel Meschenmoser Lecturer: Prof. Dr. Mark Cieliebak & Prof. Dr. Lin Himmelmann Page 3 of 13

Max-Flow

 Input: directed graph 𝐺 = (𝑉, 𝐸) with capacity 𝑐(𝑒) > 0
Two special nodes, source s, and ,sink/target t, are given, 𝑠 ≠ 𝑡
Goal: Maximize the total amount of flow from s to t,
where the flow on edge e doesn't exceed 𝑐(𝑒) and for every
node 𝑣 ≠ 𝑠 𝑎𝑛𝑑 𝑣 ≠ 𝑡, incoming flow is equal to outgoing flow.
Applications: Network routing, Transportation, Bipartite Match
Algorithm: Ford-Fulkerson-Alg, Edmonds-Karp

Greedily finding
augmenting
paths

s-b-e-t s-b-d-t s-d-f-t total

1 8 3 12

s-b: 9 → 8
b-e: 5 → 4
e-t: 1 → 0

s-b: 8 → 0
b-d: 9 → 1
d-t: 8 → 0

s-d: 9 → 6
d-f: 3 → 0
f-t: 4 → 1

Ford-Fulkerson

𝑂((𝑛𝑣 + 𝑛𝑒) 𝑓∗)

𝑓∗: optimal flow

Idea: Insert backwards edges that can be used to (partially) undo previous paths.
Set 𝑓𝑡𝑜𝑡𝑎𝑙 = 0
While there is a path from s to t in G:
 Determine smallest capacity g along the path P
 Add f to 𝑓𝑡𝑜𝑡𝑎𝑙
 Foreach edge 𝑢 → 𝑣 on the path
 decrease 𝑐(𝑢 → 𝑣) by f
 increase 𝑐(𝑣 → 𝑢) by f (backward)
 delete edge if capacity 𝑐 = 0

s-b-e-t s-b-d-t s-d-f-t s-d-b-e-f-t

1 8 3 1

Problem: Inefficient behaviour if the augmenting path is chosen arbitrarily.
Solution: Edmonds-Karp algorithm

path 1:

path 2:

Edmonds-Karp
algorithm

starting at s

Idea: In each iteration, use a shortest augmenting path, i.e. a path from s to t with
the fewest number of edges. Can be found with BFS in time 𝑂(|𝐸|).

Insert from top ↓

Access from bottom ↑

 t=2

 d=1 e=2 f=2

s=0 b=1 d=1 e=2

shortest augmenting path: s-d-t

with vertex
restrictions

Restriction: Maximum flow through vertices is restricted.
Solution: Add additional vertex before the restricted vertex and add new edge with
weight = vertex restriction. Direct all ingoing edges to the new vertex. e.g. b by 3:

Distribution
problem reduced
to Max-Flow

Insert source s and connect it with capacity ∞ edges to first layer.
Insert sink t and connect it with capacity ∞ edges to last layer.

Bipartite
matching

Make edges directed. Add source and sink vertices s and t with corresponding
edges. Set all edge weights to 1. Find integer maximum flow with Ford-Fulkerson
algorithm.

ZHAW/HSR Print date: 04.02.19 TSM_Alg & FTP_Optimiz

Marcel Meschenmoser Lecturer: Prof. Dr. Mark Cieliebak & Prof. Dr. Lin Himmelmann Page 4 of 13

Var:
Max-Flow
Min-Cut

Goal: Find a minimum partition of the vertex set which divides S and T
into two sets.
Applicationgs: Redundancy in networks, reliability in
telecommunication, military strategy, optimizing traffic systems

The maximum st flow equals the minimum value of all (exponentially
many) possible st-cuts.

Var:
Min-Cost
Max-Flow

harder

Each edge e has capacity 𝑐(𝑒) and cost 𝑐𝑜𝑠𝑡(𝑒)
Goal: Find the maximum flow that has the minimum total cost

 Often there are several possible maximum flows with a cost per flow unit.

Solution: Extend Ford-Fulkerson algorithm to take cost criterion into account.

s-b-d-t s-b-e-t s-c-e-t

2*6=16 1*5=5 1*4

capacity = 4
cost = 21

Until now, we just used the Ford-Fulkerson algorithm with additionally annotating the costs. Now, look for
cycles, respecting the capacities. This does not change the total flow from s to t, but decreases the total
cost.

s-c-e-b-s

capacity 1*(3-4)

s-b-e → s-c-e

capacity = 4
new cost = 20

ZHAW/HSR Print date: 04.02.19 TSM_Alg & FTP_Optimiz

Marcel Meschenmoser Lecturer: Prof. Dr. Mark Cieliebak & Prof. Dr. Lin Himmelmann Page 5 of 13

COMBINATORIAL PROBLEMS - NP-CLASS
TSP
Traveling
Salesperson
Problem

𝑂((𝑛 − 1)!)

Input: 𝑛 cities, 𝑑𝑖𝑗 distances matrix between cities 𝑖 and 𝑗.

Goal: Find the shortes tour passing exactly once in each city.

∑ 𝑑𝑝𝑖𝑝𝑖+1

𝑛−1

𝑖=1
+ 𝑑𝑝𝑛𝑝1

Application: Network Design, pipes, cables, chip design, ...
Algorithms: Nearest Neighbour (=Greedy), MST-based

𝑀𝑆𝑇 < 𝑇𝑆𝑃 ≤ 2 ∗ 𝑀𝑆𝑇
CVRP
Capacitated
Vehicle Routing
Problem

Input: n customers and 1 depot, 𝑞𝑖: quantity ordered by
customer i, distances 𝑑𝑖𝑗 , Q verhicle capacity

Goal: Minimize the total length performed by the vehicle
Each customer gets his delivery,
Each tour start and ends at the depot
Total demand on each tour des not exceed Q

Var: Goal: Minimize number of trucks/paths

Steiner Tree
Problem

Input: 𝐺 = (𝑉, 𝐸, 𝐶) with vertices, edges and weights and
𝑠𝑢𝑏𝑠𝑒𝑡 𝐷 ⊆ 𝑉
Goal: Find a tree of minimum weight containing all vertices of D
and, eventually, other vertices of V not in D (Steiner nodes).

Scheduling
Problems

Given: n jobs and m machines, each job contains m tasks
Machine has to be free and previous task done.
Each task has a known processing time 𝑝𝑖𝑗 on the machine.

Goal: Find a "good" order in which the jobs should be
processed.
Objectives:
- Makespan: Minimize the completion time of the last job
- Sum of completion times: (weighted) sum of completion times
of all jobs
- Minimum Tardiness: minimize the individual due date.

Var: Permutation
Flow Shop
Problem

Huge objects or production line
Ordering of tasks on machines is fixed.
n! permutations

Var: Flow Shop
Problem

Smaller objects which can be storaged

Var: Job Shop
Problem

Introduction for new employies

Knapsack
Packing Problem

Input: n items each with a weight 𝑤𝑖 and a value 𝑣𝑖, maximum
weight capacity W
Goal: maximize the value with respect to maximum weight
Algorithms: Naive Greedy, Smarter Greedy
simplest ILP (only one inequality) but NP-complete

Santa Claus
Problem

Input: n item with location on earth and weigt, max carry weight
Goal: Minimize the weighted distance to deliver all items to the
given location

Vertex Coloring Input: Graph

Goal: Find an assignment of colors to each vertex such that no
edge connects two identically colored vertices.
Variants: Minimize the number of colors
Algorithm: First Fitting Color, Decreasing Degree

ZHAW/HSR Print date: 04.02.19 TSM_Alg & FTP_Optimiz

Marcel Meschenmoser Lecturer: Prof. Dr. Mark Cieliebak & Prof. Dr. Lin Himmelmann Page 6 of 13

QAP Quadratic
Assignment
Problem

Given: Set of activities and locations along with the flows
between activities and the distances between locations
𝑑𝑖𝑗 ∈ 𝐷:distance matrix

𝑓𝑖𝑘 ∈ 𝐹:flow matrix
𝑥𝑖𝑗 :1 if activity is assigned to location j, 0 otherwise

Goal: assign each activity to a location to minimize total cost

min 𝑧 = ∑ ∑ 𝑑𝑖𝑗𝑓𝑗𝑘𝑥𝑖𝑗𝑥ℎ𝑘

𝑛

𝑘=1

𝑛

𝑖,𝑗=1

Neighborhoods - swap 2 locations of 2 facilities 𝑂(𝑛2)

- swap locations of k=3,4,... facitilites 𝑂(𝑛𝑘)

Post office
problems

Goal: Find the next post office (or ATM nowadays) in a city from
your location.
Solution: Use Voronoi diagram

Exact cover Given: Subset 𝑈𝑖 , 𝑖 = 1. . 𝑛 of a base set M
Find: Exact cover (if one exists), i.e. a choice of sets 𝑈𝑖 such that
their union is m and no element is contained in more than one
of these sets.
Optimization: Find a choice of sets 𝑈𝑖 such that their union is M
and as few element as possible are contained in 𝑈𝑖.

n queens
problem

Goal: Place n queens on a 𝑛 × 𝑛 board such that no two queens
can capture each other.

ZHAW/HSR Print date: 04.02.19 TSM_Alg & FTP_Optimiz

Marcel Meschenmoser Lecturer: Prof. Dr. Mark Cieliebak & Prof. Dr. Lin Himmelmann Page 7 of 13

HEURISTICS

General

Heuristic A heuristic method is based on knowledge acquired by
experience on a given problem. They are opposed to
exact algorithms. Heuristic methods do not necessarily
provide the best solution, but need reasonable time.

Meta-Heuristic A meta-heuristic is a limited set of concepts that can be
applied to a large set of combinatorial optimization
problems and that allow creating new heuristic methods.
It provides support for designing heuristic methods,
based on knowledge acquired by designing heuristic
method for various problems.

Trajectory-
based

Start with a solution and improve it continuously by
exploring its "neighborhood". We obtain a trajectory
through the solution space.

Population-
based

An evolving population of (partial) solutions, whose
members evolve and adapt individually to the problem
and are searching for the optimum. Problem specific
information can be exchanged between the members of
the population, and can be passed on to descendants.

Neighborhood Too small: get stuck quickly without exploring
Too large: computation time to high

Heuristics

For TSP:

Nearest
Neighbour
(=Greedy)

Start from city 1.
Repeat: Go to the nearest city not yet visited, until all visited.

Best Global Edge
(=Greedy)

Initial 𝑆: ∅
R: Set of edges that can be added to S such that:
 No cycle is created, no vertex with degree > 2 is created
𝑐(𝑆, 𝑒): weight of edge e (this is independent from S)

Maximum Regret
(=Greedy)

𝑆 = {1}
R: Set of cities not yet visited
𝑐(𝑆, 𝑒) = Regret of not going to e from i
Choose the largest 𝑐(𝑆, 𝑒)

Best Insertion
(=Greedy)

𝑆 = Tour on 2 cities
𝑅: Set of cities not yet visited
𝑐(𝑆, 𝑒) = Minimum insertion cost of city e between 2 cities
Choose the smallest 𝑐(𝑆, 𝑒)

For Vertex Coloring

First Fitting Color
(=Greedy)

Select an ordering of the vertices
𝑠 = ∅ // set of already colored vertices
𝑅 = 𝑉 // set of vertices not colored yet
𝐶(𝑠, 𝑒) // set of colors that can be assigned to a vertex
(sorted)
Choose first color in 𝐶(𝑠, 𝑒)

Decreasing
Degree
(=Greedy)

sort the vertices by decreasing order of degree
Remaining is identical to first fitting color

𝑫𝒔𝒂𝒕𝒖𝒓
(=Greedy)

choose the uncolored vertex with the highest "saturation
degree", i.e. with the maximum number of different
adjacent colors. Break ties by choosing the vertex with
maximum degree.

ZHAW/HSR Print date: 04.02.19 TSM_Alg & FTP_Optimiz

Marcel Meschenmoser Lecturer: Prof. Dr. Mark Cieliebak & Prof. Dr. Lin Himmelmann Page 8 of 13

Meta Heuristics

Constructive

Random
Sampling
“or Building”

Idea: Generate a solution randomly, uniformly in the
solution space
Advantages: Simple, works good, easy to implement
Disadvantages: bad solution quality, uniform distribution
sometimes not trivial
Sometimes not easy to find -> add penalty function

S = Random solution
Repeat
 Find another solution randomly
 Use if better than S
Until satisfied

Greedy
Construction

Idea: Build element by element, by adding systematically
the most appropriate (“best”) element.
Needs a cost function that measures the quality of adding
element e to a partial solution S.
Adding an element generally implies restrictions for the
next elements to add.
Disadvantages: too short-sighted
Works optimally for: MST, Shortest Path, ...

R = E (set to add)
Repeat
 Evaluate 𝑐(𝑆, 𝑒) for each 𝑒 ∈ 𝑅
 Choose 𝑒′ which optimizes 𝑐(𝑆, 𝑒)
 Add 𝑒′ to the partial solution S
 Remove from R all elements that
cannot be added to S anymore.
Until S is a complete solution

Exhaustive Search Idea: Generate all feasible solutions and find the optimum
Advantages:
Guarantees to find an optimal solution
Often easy to implement
Disadvantages:
The set of feasible solutions is often exponential
-> takes to much time.

Pilot Method
𝑂(𝑛2) for TSP

Idea: Evaluate the quality of adding an element e to s by
completing it to a full solution. The heuristic to complete a
solution must be chosen, e.g. greedy + local search, ...
Remarks: Time complexity is increased by the “pilot”

For all e that can be added to S
 Calc s+e with heuristic “pilot”
 Keep the best solution

Beam Search Idea: Similar to exhaustive search, but define a beam
width (e.g. 2) and browse depth.
beam width = ∞ → 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑤𝑖𝑡ℎ 𝐵𝐹𝑆

For each partial solution
 expand up to k depth
 keep the most promising

ZHAW/HSR Print date: 04.02.19 TSM_Alg & FTP_Optimiz

Marcel Meschenmoser Lecturer: Prof. Dr. Mark Cieliebak & Prof. Dr. Lin Himmelmann Page 9 of 13

Local Improvement

Local
Improvement
= Local Search
= Hill Climping

Idea: Start with a given solution (with a constructive
method) and find improvements
Neighbourhoods: Terminating: fixed number, no
improvement after x steps, when a target is reached

Repeat
 Try to find an improved solution
 Perform if found
While An improvement is found

Selection First Improving Move (takes the first move that improves
the current solution)

While improving solution
 s' = new solution
 if c(s') < c(s)
 s = s'

Best Improving Move (take the best move that improves
the current solution)

costOfBestNewSol = a
for each move m in M(s)
 s' = new solution with m applied
 if c(s') < costOfBestNewSol
 costOfBestNewSol = c(s')
 bestMove = m
apply bestMove to s

Neighbourhood TSP: search for intersections, 2/3/k-opt,
or-opt (move a subchain of vertices somewhere else)
-> use a doubled chained list

CVRP: First fit, Random, Closest (customer, point of
gravity, edge), lowest left capacity, change beginning

Knacksack: shift, invert, transpose(swap)

Connectivity: A global optimum can be
reached from any feasible solution
Low diameter: Number of moves for linking
any pair of solutions is small
Low ruggedness: Limited number of local
optima
Limited size: Number of neighbour solutions is
small
Easy to evaluate: neighbour solution must be
found without prohibitive computation

Var Always take best solution from neighborhood, even if this
decreases target function.
(+) to escape from local optima
(-) might go back and forth (run into a cylce)
(-) not monotone increasing

Tabu Search
(=Local Search)

Idea: Similar to hill climbing, but with some memory.
Try to avoid steps that go back to previously visited
solutions, or that undo the effect of previous steps.
Goal: Promote diversity of the solutions explored, in
particular to reduce cyclic behaviour and to escape from
local optima.
Tabu list: store last move / store last n moves / ...
Allow invalid solutions but penalize them (fix or variable).
Tuning: Learn tabu value (incr/decr or rand)

Start with a random solution
Repeat
 Find a better solution
 Consider steps that ar not tabu
 Perform if better
 and update tabu list
Until criteria reached

example Iteration Variable flipped Current solution Revenue Vol Tabu list

0 - 0 0 0 0 0 0 0 0 0 0 0

1 4 0 0 0 1 0 0 0 0 0 0 12 14 4

2 1 1 0 0 1 0 0 0 0 0 0 12+11=23 14+33=47 1,4

3 2 1 1 0 1 0 0 0 0 0 0 23+10=33 47+27=74 1,2,4

4 3 1 1 1 1 0 0 0 0 0 0 33+9=42 74+16=90 1,2,3

5 4 1 1 0 0 1 0 0 0 0 0 43-

ZHAW/HSR Print date: 04.02.19 TSM_Alg & FTP_Optimiz

Marcel Meschenmoser Lecturer: Prof. Dr. Mark Cieliebak & Prof. Dr. Lin Himmelmann Page 10 of 13

ACO
Ant Colony
Optimization

Param:

Distance matrix 𝐷 = (𝑑𝑖𝑗) → 𝑔𝑖𝑣𝑒𝑛

Trace matrix 𝑇 = (𝜏𝑖𝑗) →pheromone trail

𝛼: weight of the pheromone (0 → nearest neighbor)
𝛽: weight of the distance (0 → push very few tours)
𝜌:
𝜏0: init of the pheromone trail
𝑄: constant for pheromon update
𝑚: batch size
maxiter: maximal iterations

Set parameters
Initialize pheromone trails
Do
 Construct Ant Solutions
 Apply local search (optional)
 Update Pheromones
While criteria reached

e.g. for TSP

Var: MMAS
MaxMin Ant
System

one of the most
successful

Changes:
Only the best ant updates the pheromone trails
Maintains lower and upper bounds 𝜏𝑚𝑖𝑛 , 𝜏𝑚𝑎𝑥 for pheromone values 𝜏𝑒
Pheromone is updated for the "best" solution, for the current iteration or "best-so-far"
Update depends on the cost of the best solution

e.g. for TSP

Important There is no need that ants really follow a consecutive path -> like they can fly

ZHAW/HSR Print date: 04.02.19 TSM_Alg & FTP_Optimiz

Marcel Meschenmoser Lecturer: Prof. Dr. Mark Cieliebak & Prof. Dr. Lin Himmelmann Page 11 of 13

Randomized Local Search

Noising Methods Add a random noise when evaluating the moves with
decreasing probability
Typical Noise: standard deviation
Generalisation of the next three

Repeat
 Apply randomly move
 Accept if it's better
 Accept worse according to noise

Var: Threshold
Accepting

Accept all move deteriorating (=verschlechtern) the
solution less than a given threshold

Var: Great Deluge Only accept solutions with a given minimal quality;
increase level of quality (like a "flood")

Var: Simulated
Annealing

Similar to hill climbing, but allow non-improving moves.
Probability: Fixed / decreasing over time /
 decreasing over time and depending on quality

min {1, 𝑒
𝑓(𝑥𝑖)−𝑓(𝑦𝑖)

𝑇𝑖 }

If 𝑓(𝑥𝑖) ≥ 𝑓(𝑦𝑖) term gets ≥ 1 and 𝑦𝑖 is accepted.
If 𝑇 → ∞, every solution 𝑦𝑖 will be accepted.
If 𝑇 → 0, only better solutions will be accepted
Advantages: spend more time on good solutions

Start with random solution
Repeat
 Apply randomly move
 Accept if it's better
 Accept with probability if worse

Restarting When local search does not improve anymore, start a new
local search from:
- best solution so far (good solutions are close)
- randomly generated (explore with large variety - GRASP)
- modification of best solution (keep structure - VNS)

Var: GRASP
Greedy

Randomized
Adaptive Search

Procedure

Input: s* best solution found so far Repeat
 s = minimal partial solution
 construct s' from s with greedy
 find optima s'' in neighbourhood
 if f(s'') < f(s*)
 s* = s''

Var: VNS
Variable

Neighbourhood
Search

Idea: Working with p different neighbourhoods Repeat
 Choose a randomly neighbourhood
 find local optima in these
 apply if better

ZHAW/HSR Print date: 04.02.19 TSM_Alg & FTP_Optimiz

Marcel Meschenmoser Lecturer: Prof. Dr. Mark Cieliebak & Prof. Dr. Lin Himmelmann Page 12 of 13

Decomposition Methods

 Neighbourhood is too large to fully explore.
Split problem in smaller problems, optimize local solutions

VLNS
Very Large
Neighbourhood
Search

Idea: Partially explore the large neighbourhood to find
improvements
ILP: fix value of subset and solve, repeat with other subset
Iterated Local Search: randomly perturb (=stören) the best
solution so far, and apply an improving method

POPMUSIC
Partial
Optimization
Metaheuristic
under special
intensication
conditions

Idea: Decompose solution into parts, optimize several
parts of the solution, repeat until optimized portions cover
the entire solution space

Difficulty: Sub-problems may not be independent from
one another

Solution S=𝑠1 ∪ 𝑠2 ∪ … ∪ 𝑠𝑝

𝑂 = ∅ // already optimized parts
Parameter r // "nearest parts"

While 𝑂 ≠ 𝑆
 Choose a seed part 𝑠𝑖 ∉ 𝑂
 Create a subproblem R composed
 of the r "closest" parts
 Optimize subproblem R
 If R improved then set 𝑂 = 𝑂\𝑅
 else 𝑂 = 𝑂 ∪ 𝑠𝑖

example Variables (example with VRP)
Part = Tour of one vehicle
Distance = between centres of gravity
Sub-Problem: A smaller VRP
Optimization process: e.g. Tabu Search
Variables (example with TSP)
Part = a single city c on a tour
Distance = r adjacent cities on the tour, immediately before/after c
Sub-Problem: solve TSP for the r cities (e.g. exhaustive)
Re-Combination: re-insert subtour in existing tour
Variables (example for permutation shop problem)
Part = a single job x
Distance = take x as seed job and select r jobs that are scheduled before and after x
Sub-Problem = Re-Schedule the selected job (use additional time constraints for start/end time -> still valid
Re-Combination: shift all jobs as much to the left as possible

ZHAW/HSR Print date: 04.02.19 TSM_Alg & FTP_Optimiz

Marcel Meschenmoser Lecturer: Prof. Dr. Mark Cieliebak & Prof. Dr. Lin Himmelmann Page 13 of 13

Evolutionary
Algorithms

Genetic
Algorithms

Idea: Selection: Survival of the fittest (natural selection)
Finite lifespan of individuals (generations).
Inheritance of traits, info is passed on to descendants.
Recombination, info is exchanged between parents.
Diversification (by mutations).
Population acquires and cultivates shared knowledge
(culture, collective memory)
Local development of populations (different cultures in
different regions)

Choose a suitable encoding
Start at random population
Repeat
 Create next generation:
 - assign fitness to individuals
 - natural selection
 - choosing parents for reproduc.
 - recombination and mutation
Until criterion satisfied

Terminology An individual is a possible solution candidate. e.g. vector
The genes are the individual entries of an individual.
The alleles are concrete values which a gene takes, e.g.0/1
The population is the set of all individuals at a given time.
A generation is the population at a specific point in time.
The genotype is the encoded form of an individual.
The phenotype is the decoded form of an individual,
do not depend on encoding. Are the solution candidates.
The fitness function is our quality measure for a solution.

1. Encoding Desirable: A small change in genotype corresponds to a
small change in phenotype. -> use gray code
Example: Vector of n integer / binary vector / ...

standard: 00-01-10-11 (dist=1-2)
gray: 00-01-11-10 (dist=1)

2. Replacement
schemes

General replacement: Replace all individuals
Strict elitism: Keep only m best individuals
Weak elitism: m best individuals are mutated
Delete-n: Replace n random individuals
Delete-n-last: Replace n worst individuals, keep others
Retirement home: Store some for later procreation

3. Selection Selection pressure means that better individuals should
have a higher chance of reproduction.
Strategy: Increasing selection pressure
- (Unbiased) Random selection
- Random selection with bias on better individuals
(roulette wheel)
- Tournament selection

Better exploration when pressure is low
Better exploitation when pressure is high

Tournamen selection:

best 2-nd 3rd-best (k)-best

𝑝 (1 − 𝑝)𝑝 (1 − 𝑝)2𝑝 .. (1 − 𝑝)(𝑘−1)𝑝
The larger k, the higher the selection pressure

4. Recombination Crossing of individuals to exchange and pass advantageous
properties.
- one-point crossover
- two-point crossover
- uniform crossover
- PMX (2-point with repair mechanism)
- adjacency method

 1-point 2-point uniform

parent 1 1011|110 1011|000|001 10110

parent 2 0010|011 0010|110|100 00101

child 1 0010|110 1011|110|001 10111

child 2 1011|011 0010|000|100 00100

5. Mutation bit flip / position mutation / inversion

