## CRYPTOGRAPHY AND CODING THEORY

## 1+2. Algebraic basics



| Fermat's Little Theorem | If $p$ is a prime, then for every integer $a$ $a^{p} \equiv a(\bmod p)$ <br> If $p$ is a prime and $p$ does not divide $a$ (coprime), then $a^{p-1} \equiv 1(\bmod p)$ <br> Attention: There may be exponents $e<p-1$ such that $a^{e} \equiv 1(\bmod p)$ | $\begin{gathered} 2^{5} \equiv 32 \equiv 2(\bmod 5) \\ 2^{5-1} \equiv 16 \equiv 1(\bmod 5) \end{gathered}$ |
| :---: | :---: | :---: |
| usage | What is the remainder of $2^{10203} \bmod 101 ? \rightarrow 2^{100} \equiv 1(\bmod 101)$ $2^{10203} \equiv\left(2^{100}\right)^{102} * 2^{3} \equiv(1)^{102} * 2^{3} \equiv 2^{3} \equiv 8(\bmod 101)$ |  |
| coprime (or relatively prime) | Two integers $a$ and $b$ are coprime (teilerfremd) if $\operatorname{gcd}(a, b)=1$ | $\operatorname{gcd}(4,9)=1$ |
| Euler's Phi-funct. | $\phi(n)=$ number of integers $1 \leq a \leq n$, such that $\operatorname{gcd}(a, n)=1$ | $\phi(6)=2 \rightarrow\{1,2,3,4,5,6\}$ |
| properties <br> /phi (n) <br> /phi (7) | $\phi(p)=p-1, p \in \mathbb{P}$ | $\phi(7)=6 \rightarrow\{1,2,3,4,5,6,7\}$ |
|  | $\phi(p * q)=p * q \underbrace{-q}_{\text {mit }} \underbrace{-q}_{\text {teilbar, mit }} \underbrace{-p}_{\text {teilbar, da } p * q} \underbrace{+1}_{2 \text { mal gezählt }}, p, q \in \mathbb{P}, p \neq q$ | $\begin{aligned} \phi(2 * 3)= & 6-2-3+1 \\ & =2 \end{aligned}$ |
|  | $\phi\left(p^{n}\right)=p^{n}-p^{n-1}=p^{n-1} *(p-1)$ | $\begin{gathered} \phi\left(2^{3}\right)=8-4=4 * 1 \\ \{1,2,3,4,5,6,7,8\} \\ \hline \end{gathered}$ |
|  | $\phi(m * n)=\phi(m) * \phi(n), \quad \operatorname{gcd}(m, n)=1$ | $\phi(2 * 3)=\phi(2) * \phi(3)=2$ |
|  | $\begin{aligned} & n=p_{1}^{e_{1}} * p_{2}^{e_{2}} * \ldots * p_{k}^{e_{k}}, p_{i} \in \mathbb{P}, p_{i} \neq p_{j} f u ̈ r i \neq j \\ & \phi(n)=\phi\left(p_{1}^{e_{1}}\right) * \phi\left(p_{2}^{e_{2}}\right) * \ldots * \phi\left(p_{k}^{e_{k}}\right) \\ & \phi(n)=\prod_{i=1}^{k} p_{i}^{e_{i-1}} *\left(p_{i}-1\right)=n * \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right) \end{aligned}$ | $\begin{gathered} 225=3^{2} * 5^{2} \\ \phi(225)=\phi\left(3^{2}\right) * \phi\left(5^{2}\right) \end{gathered}$ <br> I must know the prime factors. |
| Euler's Totient Theorem | if $a$ und $n$ are positive integers and relatively prime: $a^{\phi(n)} \equiv 1(\bmod n)$ | $\begin{gathered} \operatorname{gcd}(3,4)=1 \\ 3^{\phi(4)} \equiv 3^{2} \equiv 9 \equiv 1(\bmod 4) \end{gathered}$ |
| properties | if $n$ is prime: $\quad a^{\phi(p)} \equiv a^{p-1} \equiv 1(\bmod p) \rightarrow$ Fermats little theorem | $3^{4} \equiv 81 \equiv 1(\bmod 5)$ |
| usage | What are the "last two digits" of $123^{562} \rightarrow \bmod 100$ which is not prime Euler's theorem: $m^{\phi(100)} \equiv 1(\bmod 100)$ and $\operatorname{gcd}(123,100)=1$ $\begin{gathered} 123^{\phi(100)} \equiv 123^{40} \equiv 1(\bmod 100) \\ 123^{562} \equiv\left(123^{40}\right)^{14} * 123^{2} \equiv 1 * 123^{2}=23^{2}=29(\bmod 100) \end{gathered}$ |  |
| Multiplicative Order | The multiplicative order of $g \bmod n$ is the smallest positive integer $e$ that: $g^{e} \equiv 1(\bmod n), g \in \mathbb{Z}$ | $\begin{gathered} g=2, n=5 \\ 2^{1} \equiv 2(\bmod 5) \\ 2^{2} \equiv 4(\bmod 5) \\ 2^{3} \equiv 8 \equiv 3(\bmod 5) \\ 2^{4} \equiv 16 \equiv 1(\bmod 5) \\ \operatorname{crd}(2)=4(\bmod 5) \end{gathered}$ |
| /multord ( $\mathrm{g}, \mathrm{n}$ ) <br> /multord (8,5) | $g^{f} \equiv 1(\bmod n), f \in \mathbb{N}$, if and only if $f$ is divisible by the order $e$ of $g$ | $2^{8} \equiv 1(\bmod 5)$ |
|  | $g^{k} \equiv g^{l}(\bmod n)$, if and only if $k \equiv l(\bmod e)$ | $\begin{gathered} 2^{101} \equiv 2^{301}(\bmod 5) \\ \text { da } 101 \equiv 301(\bmod 4) \end{gathered}$ |
|  | $\begin{gathered} g^{k}=\frac{e}{\operatorname{gcd}(e, k)}, \quad k \in \mathbb{N} \\ \operatorname{ord}\left(2^{6}\right) \equiv \operatorname{ord}(4), \operatorname{da} 2^{6} \equiv 64 \equiv 4(\bmod 5) \end{gathered}$ | $\begin{aligned} & \operatorname{ord}\left(2^{2}\right)=\frac{4}{\operatorname{gcd}(4,2)}=2 \\ & \operatorname{ord}\left(2^{3}\right)=\frac{4}{\operatorname{gcd}(4,3)}=4 \end{aligned}$ |
| Generators module p generator / primitive element <br> /gen ( $\mathrm{g}, \mathrm{p}$ ) <br> /gen $(2,7)$ | $p \in \mathbb{P}, g \in\{1,2, \ldots, p-1\}$ $g$ is a generator $\bmod p$ if: $\quad g^{i} \bmod p \quad$ with $1 \leq i \leq p-1$ generates $1,2, \ldots, p-1$ $\rightarrow g$ is a generator if the order of $g \bmod p$ is $p-1$ There are generators for any prime p. The number of generators $\bmod p$ is given by $\phi(p-1)$ | $g=2, p=7$ $g=3, p=5$ <br> $2^{1} \equiv \mathbf{2}$ $3^{1} \equiv 3$ <br> $2^{2} \equiv 4$ $3^{2} \equiv 4$ <br> $2^{3} \equiv 1$ $3^{3} \equiv 2$ <br> $2^{4} \equiv \mathbf{2}$ $3^{4} \equiv 1$ <br> $\rightarrow$ no $\rightarrow$ yes <br> $\operatorname{ord}(2)=3$ $\operatorname{ord}(3)=4$ |
| Chinese Remainder Theorem (Chinesischer Restwertsatz)$\operatorname{chin}\left(\begin{array}{cc} a_{1} & m_{1} \\ \ldots & \ldots \\ a_{n} & m_{n} \end{array}\right)$ | $x \equiv a_{1}\left(\bmod m_{1}\right)$ $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1, \quad i \neq j$ <br> $x \equiv a_{2}\left(\bmod m_{2}\right)$  <br> $x \equiv a_{n}\left(\bmod m_{n}\right)$  | $\begin{gathered} x=5(\bmod 7) \\ x=3(\bmod 11) \\ x=10(\bmod 13) \end{gathered}$ |
|  | $\begin{gathered} M=\prod_{i=1}^{n} m_{i}=m_{1} * m_{2} * \ldots * m_{n} \\ M_{i}=\frac{M}{m_{i}}=m_{1} * m_{2} * \ldots * m_{i-1} * m_{i+1} * \ldots * m_{n} \rightarrow \operatorname{gcd}\left(m_{i}, M_{i}\right)=1 \\ \rightarrow r_{i} * m_{i}+s_{i} * M_{i}=\operatorname{gcd}\left(m_{i}, M_{i}\right)=1, \quad e_{i}=s_{i} * M_{i}(\bmod M) \end{gathered}$ | $\begin{gathered} M=7 * 11 * 13=1001 \\ M_{1}=143 \rightarrow e_{1}=715 \\ M_{2}=91 \rightarrow e_{2}=364 \\ M_{3}=77 \rightarrow e_{3}=924 \end{gathered}$ |
|  | $x=\left(\sum_{i=1}^{n} a_{i} * e_{i}\right) \bmod M$ | $x=894$ |

3a. Symmetric Cryptography

| Terms | Cryptos = hidden (from Greek) <br> Desire of confidentiality -> protection from disallowed reading. |  |
| :---: | :---: | :---: |
| Tasks | Integrity (Integrität) = Ensure that nobody has changed the received document. Authenticity (Authentifizierung) = Ensure who has sent this document. Indisputable (unbestreitbar) = Ensure that, this person has done that. |  |
| Cryptography |  | $\mathcal{Y}, \mathcal{C}$ : set of ciphertexts readable, not understandable |
| Symmetric | The key $d$ to decrypt can easily be computed from the key $e$ to encrypt. |  |
| Attacks | The Attacker knows the algorithm. |  |
| Kerckhoffs's principle | The security of an encryption system rests solely on the secrecy of the key. And not on the missing knowledge of the algorithm. |  |
| Scenarios | Ciphertext-only: attacker knows only the ciphertext (most difficult) Known Plaintext: he also knows some part of the plaintext (realistic) Chosen Plaintext: try by myself, with chosen input Brute force: Try all combinations -> key space needs to be large | h,a,e,g,s,d,f weather forecast $\begin{aligned} & a, a, a, a, a->x, x, x, x, x \\ & a, b, c, d, \ldots \\ & \hline \end{aligned}$ |
| Goal | Determine the key $z$ in use. |  |
| Block Ciphers (Verschlüsselung) | We have an alphabet $\mathcal{A}$ of plain text and cipher text symbols n : fixed block length <br> $X=\mathcal{A}^{n}$ : set of plaintexts <br> $\mathcal{Y}=\mathcal{A}^{n}$ : set of ciphertexts <br> does not say how long the key is | e.g. $\mathcal{A}=\{0,1\}$ or $\{a \ldots z\}$ e.g. 64-bit code |
| requirements | Encryption = Permutation $=$ change bit order Injective (one-by-one): $f(x)=f(y) \rightarrow x=y$, otherwise, two equally plaintext would result in the same ciphertext. Surjective (onto): $y \in \mathcal{Y} \rightarrow \exists x \in \mathcal{X}: f(x)=y$, otherwise, there would be valid ciphertexts without valid plaintexts. $\rightarrow$ Bijective Self-Mapping (Injective and Surjective) | e.g. shuffle cards each $\mathcal{P}$ has one unique $\mathcal{C}$ each $\mathcal{C}$ has at least one $\mathcal{P}$ $\mathcal{C} \leftrightarrow \mathcal{P}$ |
| Linear functions | $\mathcal{A}=\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$ <br> all computations are modulo m , to ensure that result is between 0 and $m-1$ | e.g. $\mathcal{A}=\{0 . .25\}, m=26$ |
| linear | Scalars: $\alpha, \beta \in \mathbb{Z}_{m}$ <br> Vectors: <br> Function $f:\left(\mathbb{Z}_{m}\right)^{n} \rightarrow\left(\mathbb{Z}_{m}\right)^{n}$ <br> Fum $f(\alpha \vec{v}+\beta \vec{w})=\alpha * f(\vec{v})+\beta * f(\vec{w})$ |  |
| affine $=$ linear + bijective <br> /invmod (m, n) <br> /invmodstep | Map M: $(k \times n)$-matrix with entries $\mathbb{Z}_{m}$ $b$ : vector in $\left(\mathbb{Z}_{m}\right)^{k}, b=0 \rightarrow f$ is linear $f(\vec{v})=(M \vec{v}+\vec{b}) \bmod m$ <br> an affine map is bijective if: <br> 1. $k=n$ <br> 2. $\operatorname{gcd}(\operatorname{det}(M), m)=1 \rightarrow(\operatorname{det}(M))^{-1}(\bmod m)$ exists determinant of $M$ must be coprime with $m$ |  |
| determinant det() | The factor of area changes when multiplying with a position vector. If negative we flip the area (antisymmetric) <br> $2 \times 2 \rightarrow$ calculate $a_{x} * b_{y}-b_{x} * a_{y}$ <br> $3 \times 3 \rightarrow$ Hand rule of Sarrus |  |
|  | Unity matrix does not change a vector when multiplying. -> det $=1$ |  |
| Confusion (Verwirrung) | $y_{i}=F_{i}(\vec{x}, \vec{z}), i \in\{1 \ldots n\}$ <br> $F_{i}$ should be mathematically complex -> linear functions are not enough For a given x and y , it is not feasible to solve for z . $->$ do this with different rounds (enough big): $E=E_{R} \circ E_{R-1} \circ \ldots \circ E_{1}$ |  |
| Diffusion (Streuung) | Every ciphertext bit should depend on every plaintext and every key bit. -> Changing a single bit in the plaintext (or the key), on the average $50 \%$ of the ciphertext bits should change |  |


| Alg: Vigenère Cipher von Julius Caesar affine encryption | Encryption: $E_{Z}:\left(\mathbb{Z}_{m}\right)^{n} \rightarrow\left(\mathbb{Z}_{m}\right)^{n}, \vec{v} \rightarrow \vec{v}+\vec{z}(\bmod m)$ Decryption: $D_{Z}:\left(\mathbb{Z}_{m}\right)^{n} \rightarrow\left(\mathbb{Z}_{m}\right)^{n}, \vec{v} \rightarrow \vec{v}-\vec{z}(\bmod m)$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Variation 1 | Variation 2 |  |  | Variation 3 |  |  |  | One-Time-Pad |
|  | Plaintext | $a, b, c, \ldots, x, y, z$ | $a, b, c, \ldots, x, y, z$ |  |  | $a, b, c, \ldots, x, y, z$ |  |  |  | 010001101110 |
|  | Ciphertext | $d, e, f, \ldots a, b, c$ | $e, i, x, \ldots, a, b, k$ |  |  | e.g. Apfel |  |  |  | 101101010110 |
|  | Number of key | 26 | $26!=4 * 10^{26}$ |  |  |  |  |  |  | long as plaintext |
|  | Encryption | Shift to right | Randomly permutate |  |  | a b | c | x |  | add a random key e.g. <br> 111100111000 |
|  |  |  | $\mathbf{a}$ $\mathbf{b}$ $\mathbf{c}$ | c ... x | x y z | a b | c | x |  |  |
|  |  |  | e f f | x ... |  | p q | $r$ | m |  |  |
|  |  |  |  |  |  |  | h | c |  |  |
|  |  |  |  |  |  | ef | g | b |  |  |
|  |  |  |  |  |  | 1 m | n | i | j k |  |
|  | Brute force attack | easy, only \#26 too little keys | difficult, but possible word structure |  |  | ciphertext too short word structure |  |  |  | secure proven key to long |
|  | Example | (+3) haus -> kdxv | zac -> kex |  |  | zac -> zph |  |  |  |  |
| Alg: Hill Cipher | $\mathcal{Z}$ : set of all invertible $n \times n$ matrices with components from $\mathbb{Z}_{m}$ matrix must be invertible: $\operatorname{gcd}(\operatorname{det}(M), m)=1$ <br> Key: $M \in\left(\mathbb{Z}_{m}\right)^{n \times n}$ $E_{M}:\left(\mathbb{Z}_{m}\right)^{n} \rightarrow\left(\mathbb{Z}_{m}\right)^{n}, \vec{v} \rightarrow M * \vec{v}(\bmod m)$ <br> Linear permutations of vector of length n |  |  |  |  |  |  |  |  |  |
| Alg: General Affine Cipher | Key: $(M, b)$ <br> M : invertible Matrix in $\left(\mathbb{Z}_{m}\right)^{n \times n}$ <br> b: vector in $\left(\mathbb{Z}_{m}\right)^{n}$ <br> Encryption: $E_{(M, b)}:\left(\mathbb{Z}_{m}\right)^{n} \rightarrow\left(\mathbb{Z}_{m}\right)^{n}, v \rightarrow M v+b(\bmod m)$ <br> Special Cases: <br> $M=1$ : Vignère <br> $b=0$ : Hill <br> Every affine encryption is solvable. |  |  |  |  |  |  |  |  |  |

## 4. Algebraic basics 2

| Algebraic Group | A group is a set $G$ together with a binary operation ०, which combines two elements of $G$. | $\begin{aligned} & G=\text { Set of Integer } \mathbb{Z} \\ & \circ=\text { addition' }+^{\prime} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: |
| properties | Closure (Abgeschlossenheit): $a, b \in G \Rightarrow a \circ b \in G$ <br> Associativity: $(a \circ b) \circ c=a \circ(b \circ c)$ <br> Identity Element e (Einheitselement): $e \circ a=a \circ e=a$ <br> Inverse Element $a^{-1}:$ $a^{-1} \circ a=a \circ a^{-1}=e$ | $\begin{gathered} a+b \in \mathbb{Z} \\ (a+b)+c=a+(b+c) \\ 0+a=a+0=a \\ (-a)+a=a+(-a)=0 \end{gathered}$ |  |
| Abelian Group | Commutative Group $\quad a \circ b=b \circ a$ | $a+b=b+a$ |  |
| Algebraic Field (Körper) | A field is a set F together with two binary operations $\oplus$ and $\otimes$, satisfying the properties | $\begin{gathered} F=\text { Rational numbers } \mathbb{Q} \\ \Theta=^{\prime}+^{\prime}, \otimes==^{\prime} *^{\prime} \end{gathered}$ |  |
| properties | $(F, \oplus)$ is an Abelian Group. <br> The identity element with respect to $\Theta$ is denoted by 0 . | $\begin{gathered} (\mathbb{Q},+) \\ e=0 \end{gathered}$ |  |
|  | $(F-\{0\}, \otimes)$ is an Abelian Group. <br> The identity element with respect to $\otimes$ is denoted by 1 . | $\begin{gathered} (\mathbb{Q}-\{0\}, \otimes) \\ e=1 \end{gathered}$ |  |
|  | Distributive Law holds: $a \otimes(b \oplus c)=a \otimes b \oplus a \otimes c$ | $a *(b+c)=a b+a c$ |  |
| Remarks | $\oplus$ is commonly called "addition", $\otimes$ is commonly called "multiplication" |  |  |
|  | We can solve linear equality systems in an algebraic field, because of the 4 basic operations (addition, subtraction, multiplication, division). |  |  |
|  | Modulo is not an algebraic field. |  |  |
| properties | $\begin{gathered} \forall a \in F, a \otimes 0=0 \otimes a=0 \\ \forall a, b \in F \text { and } a, b \neq 0 \Rightarrow a \otimes b \neq 0 \\ a \otimes b=0 \text { and } b \neq 0 \Rightarrow a=0 \\ a \neq 0 \text { and } a \otimes b=a \otimes c \Rightarrow b=c \end{gathered}$ | $\begin{array}{r} a * 0= \\ 1 \\ a * 5= \\ 3 * a= \end{array}$ | $\begin{aligned} & =0 * a=0 \\ & * 2 \neq 0 \\ & =0 \rightarrow a=0 \\ & 3 * b \rightarrow b=c \end{aligned}$ |
| Finite Fields / Galois Fields | $G F(q)$ : Field with a finite number $q$ of elements | $G F(2)=\{0,1\} \rightarrow q=2$ |  |
|  | Smallest number $\lambda$ such that $\sum_{i=1}^{\lambda} 1=0$ $\lambda$ is always a prime | $\begin{gathered} 1+1=0(\bmod 2) \\ \lambda=2 \end{gathered}$ |  |
|  | Finite Fields exist only if $q=\lambda^{n}$ with $n \in \mathbb{N}$ and $\lambda \in \mathbb{P}$ $n=1 \rightarrow$ Prime Field <br> $n>1 \rightarrow$ Extended Field | $\begin{aligned} & 2=2^{1} \rightarrow \text { Prime } \\ & 4=2^{2} \rightarrow \text { Extended } \end{aligned}$ |  |
| Prime Field (Restklassenkörper) | $G F(p) \text { or } \mathbb{Z}_{p}$ <br> Number of elements p is prime $F=\{0,1,2, \ldots, p-1\}$ | $\begin{gathered} G F(2) \\ p=2 \\ F=\{0,1\} \end{gathered}$ | $\begin{gathered} G F(3) \\ p=3 \\ F=\{0,1,2\} \end{gathered}$ |
| Addition/prifiadd (p) | $a \oplus b=a+b \bmod p$ | $\oplus$    <br> $\oplus$ 0 1 2 | additive inv |
|  |  |  | -0 $=0$ |
|  |  | 1 1 2 0 | $-1=2$ |
|  |  | 2 2 0 1 | $-2=1$ |
| Multiplication <br> /prifimul (p) | $a \otimes b=a * b \bmod p$since $p$ is prime $\operatorname{gcd}(a, p)=1$ for all $a \in F-\{0\}$ and thus $a^{-1}$ exists | $\otimes$ O 00112 | multipl inv |
|  |  | 0 0 0 0 | $0^{-1}$ not exist |
|  |  | 1 0 1 2 | $1^{-1}=1$ |
|  |  |  | $2^{-1}=2$ |
| Polynomials | $p(x)=a_{m} * x^{m}+a_{m-1} * x^{m-1}+\cdots+a_{1} * x+a_{0}, \quad a_{i} \in F$ | $p(x)=3 x^{2}+x-1$ |  |
| properties | if $a_{m} \neq 0$ then $a_{m}$ is called the leading coefficient and $m$ is the degree of $p(x)$ | leading coefficient: $a_{m}=3$ degree: $m=2$ |  |
|  | if $a_{m}=1$ then $p(x)$ is called monic (monisch) | $p(x)=x^{2}+x-1$ |  |
|  | The set of polynomials over the field F is denoted by $F[x]$ |  |  |
| example | $p(x)=1.0 * x^{2}+1.0$ over $\mathbb{R} \rightarrow$ start in the real numbers $p(x)=0 \rightarrow$ no solution in $\mathbb{R}$ <br> We define $\alpha$ such that $p(\alpha)=\alpha^{2}+1=0$ <br> 1. $\quad \alpha \in \mathbb{R} \rightarrow$ the solution of $p(x)$ <br> 2. $\begin{aligned} & \alpha^{2}+1=0 \Rightarrow \alpha^{2}-1 \\ & \mathrm{E}=\{\mathrm{a}+\mathrm{b} * \alpha \mid \mathrm{a}, \mathrm{~b}, \in \mathbb{R}\} \rightarrow \text { define extended field } \\ & p(x)=x^{2}+1 \text { over } G F(2)=\{0,1\} \\ & p(x)=(x+1)(x+1) \rightarrow \text { Behauptung } \\ & p(x)=x^{2}+x+x+1=x^{2}+x \underbrace{(1+1)}_{0}+1=x^{2}+ \end{aligned}$ $1 \rightarrow \text { Beweis }$ |  |  |
| Irreducible polynomials | A polynomial with coefficients in a field $F$ is said to be irreducible over $F$ if it is non-constant and cannot be factored into the product of two or more non-constant polynomials with coefficients in $F$. | $x^{2}+1$ is irreducible over $\mathbb{Q}$, but reducible over $G F(2)$ :$x+1=(x+1)(x+1)$ |  |



## 5. Symmetric Encryption Algorithms

| DES - Data Encryption Standard | AES - Advanced Encryption Standard | IDEA - International Data Encryption Algorithm |
| :---: | :---: | :---: |
| Algorithm based on 'Lucifer' Published in 1975 -> IBM und NSA Block cypher, Feistel network |  | PES - not secure -> Differential Crypto Improved Proposed Encryption Standard 1991 |
| Block size: 64 bits <br> Key size: 56 (+8 parity bits / prüf bits) unsecure, too small -> Brute Force Attack \#rounds: 16 (to get a good diffusion) | Block size: 128 bits <br> Key size: 128/192/256 bits <br> secure <br> \#rounds = 10/12/14 (key size dependent) | 128bit key <br> Key size: 16 bits <br> As much provable security as possib \#rounds = 6 |
| Plain Text | Store input | Scalable: Mini-versions with 2/4/8 bit Transparency: no "random-looking" tables or "mysterious" S-Boxes Easy to substitute for DES Fast in Software and Hardware <br> 3 incompatible operations -> Confusion <br> $\oplus$ Bit-by-bit modulo-two addition (xor) <br> $\boxplus$ Addition modulo $2^{16}$ <br> $\odot$ Multiplication modulo $2^{16}+1$ of nonzero numbers <br> $-2^{16}+1$ is prime <br> $-2^{16}$ is represented by the all-zero string <br> each output depends on every input |
| $\not \chi^{64}$ | AddRoundKey |  |
|  | For each round (excep |  |
| $\mathrm{L}_{0} \quad \mathrm{R}_{0} \quad \downarrow \mathbf{S}_{0}$ | ShiftRows |  |
| Round 1 | SubBytes |  |
| $\mathrm{L}_{1} \quad \downarrow \mathrm{R}_{1} \quad . \quad \mathrm{S}_{1}$ | AddRoundKey |  |
|  | MixColumns |  |
| Round 16 | ShiftRows |  |
| $\nabla^{L_{16}} \quad \nabla^{\mathbf{R}_{16}}$ |  |  |
| Permutation Inverse Initial Permutation |  |  |
|  | AddRoundKey |  |
| Cipher Text | Return state matrix |  |
| Permutation -> no crypto significance |  |  |
| One Round <br> 4 | Store input bits into state matrix $16^{*} 8=128$ bit input -> insert in state matrix ( $4 \times 4$ with 8 bit values) <br> Add round key (XOR) <br> early to avoid reversion by the attacker <br> each 8 -bit value are interpreted as elements of $G F\left(2^{8}\right)$ <br> with polynomial $m(x)=x^{8}+x^{4}+x^{3}+x+1$ <br> Key Expansion = Generate a round key from the key <br> Add Round Key at the end operations can be inverted -> encryption |  |
| 1. Expansion Permutation <br> see Expansion Permutation table; $1 \text {-> 2\&48; } 2 \text {-> 3; } 4 \text {-> } 5 \text { \& } 7$ <br> Expansion, because several bits of the input will be used twice. <br> XOR (step 1. and key K) <br> S-Boxes (S=Substitution) -> Confusion <br> 8 Boxes $=$ each 6 input bits, 4 output bits <br> Take first \& last bits $->0 \leq i \leq 3->$ row <br> Take middle 4 bits $0 \leq j \leq 15->$ column <br> see S-Boxes table (non-linear) <br> protect against differential analysis <br> Permutation (see permutation table) $1 \leftarrow 16, \quad 2 \leftarrow 7, \quad 3 \leftarrow 20$ | SubBytes = Non-linear byte substitution -> Confusion <br> i) take the multiplicative inverse of $G F\left(2^{8}\right)$, map $\{00\}$ to $\{00\}$ <br> ii) Affine transformation over $\operatorname{GF}\left(2^{8}\right)$ <br> Shift rows = copy first row, <br> shift 2 nd by 1 , 3 rd by 2 and last by 3 <br> Mix Columns = matrix multiplication of a column (polynomial) with const matrix $->$ modulo $m(x)=x^{4}+1$ in $G F\left(2^{8}\right)$, $03->x^{2}+1$ <br> Add round key = XOR each column of the state matrix with the corresponding word from the round key | Encryption/Decryption Similarity final round causes that the same structure can be used to encrypt and to decrypt. -> Mult-Add-Add-Mult |

Structure:
Feistel Network

## 3b. Block (Cipher) Modes

|  | What should we do, when we have more than 64/128-bit data to encrypt? |  |
| :---: | :---: | :---: |
| Electronic Code Book (ECB) <br> drawbacks | Each plaintext block (of length $n$ ) is encrypted individually (with same key) <br> -> not appropriate, except input blocks are random <br> Repetitions of plaintext blocks will be perceivable <br> Same plaintext block will always be mapped to same ciphertext block <br> Attacker can change order of ciphertext blocks (or can introduce new blocks) |  |
| Cipher Block Chaining (CBC) drawbacks | incremental blocks <br> initialization vector (not secret, unpredictable) <br> not parallelizable in encryption, parallelizable in decryption <br> Bit errors in a ciphertext block will affect decryption of the actual (50\%) and the subsequent block (1bit) |  |
| encryption |  |  |
| Cipher Feedback (CFB) | Feedback of ciphertext blocks into the input of the encryption algorithm Encryption cannot be performed in parallel <br> Bit errors in a ciphertext block will affect decryption of actual and subsequent block |  |
|  |  |  |
| Output Feedback (OFB) | Encryption algorithm is used as a pseudo random generator $\rightarrow$ additive stream cipher IV must be unique for each execution of the mode (but not unpredictable) Needs synchronization between transmitter and receiver No error propagation (1-bit error -> 1-bit in cyphertext) |  |
| CFB and OFB are similar |  |  |
| Counter (CTR) | Encryption/Decryption can be performed in parallel <br> Each counter value should only be used once with the same key $\rightarrow$ Nonce (Number used <br> No error propagation | only once) |
|  |  |  |
| CFB + OFB + CTR | use encryption algorithm for encryption and decryption, but invert order of $E_{k}$ |  |

## 6+7. Asymmetric Cryptography



| Euler's Totient Theorem | $\begin{gathered} a^{\phi(n)} \equiv 1(\bmod n) \\ \text { with } 1^{k}=1: a^{k * \phi(n)} \equiv 1(\bmod n) \\ \text { multiply } a: a^{k * \phi(n)+1} \equiv a(\bmod n) \\ e * d=k * \phi(n)+1 \end{gathered}$ | $\begin{gathered} 3^{\phi(4)}=3^{2}=9 \equiv 1(\bmod 4) \\ 3^{3 * 2}=729 \equiv 1(\bmod 4) \end{gathered}$ |
| :---: | :---: | :---: |
| square and multiply <br> /sam (a, c, m) <br> / sam2 (a, c) $a^{c} \bmod m$ <br> /samstep /sam2step | ```compute a}\mp@subsup{a}{}{c}\operatorname{mod}m\mathrm{ for large numbers c can be written as binary number c = bon* 20}+\mp@subsup{b}{1}{}*\mp@subsup{2}{}{1}+\cdots+\mp@subsup{b}{n}{}*\mp@subsup{2}{}{n re = 1 for i = n..0 res = res^2 mod m if b_i = 1 res = (res*a) mod m end_if end for``` | $1234{ }^{5678} \bmod 438=316$ |
| Miller-Rabin <br> Primality Test <br> /isProbPrime(n) <br> /isProbPrimeBase(n,a) <br> composite <br> = not prime | Question: Is n prime or composite? Not the same as factoring! <br> Let n be an integer <br> Suppose there exist integer x and y with $x^{2} \equiv y^{2}(\bmod n)$, <br> but $x \neq \pm y(\bmod n)$ <br> Then n is composite and $\operatorname{gcd}(x-y, n)$ gives a nontrivial factor of n . |  |
|  | 1. Assume that n is odd and write $n-1=2^{k} * m$ | $\begin{gathered} n=53 \\ \frac{52}{2^{1}}=26, \frac{52}{2^{2}}=\mathbf{1 3}, \frac{52}{2^{3}}= \\ k=2, m=13 \end{gathered}$ |
|  | 2. Randomly choose a base $a$ with $1<a<n-1$ | $a=2$ |
|  | 3. Compute the starting value $b_{0}=a^{m} \bmod n$ | $b_{0}=2^{13} \bmod 53=30$ |
|  | 4. Compute the sequence $b_{0}, b_{1}, \ldots, b_{k}$ with recursion $b_{i}=\left(b_{i-1}\right)^{2} \bmod n$ | $b_{1}=30^{2} \bmod 53=-1$ |
|  | 5. If n is prime then $b_{k} \equiv a^{2^{k_{* m}}} \equiv a^{n-1} \equiv 1(\bmod n) \rightarrow$ Fermat $b_{i}=1(\bmod n)$ and $b_{i-1} \equiv \pm 1(\bmod n)$ otherwise $\left(b_{i}\right)^{2} \equiv\left(b_{i-1}\right)^{2}(\bmod n)$, but $b_{i} \neq n_{i-1}$ -> sequence $\left(b_{0}, b_{1}, \ldots, b_{k}\right)$ must either start with a 1 or it must somewhere contain a -1 | $\begin{gathered} b_{0}=\left\{\begin{array}{c} +1 \rightarrow \text { Prime } \\ -1 \rightarrow \text { Prime } \\ \text { else } \rightarrow \text { continue } \end{array}\right. \\ b_{1 . . k}=\left\{\begin{array}{c} +1 \rightarrow \text { Composite } \\ -1 \rightarrow \text { Prime } \\ \text { else } \rightarrow \text { continue } \end{array}\right. \end{gathered}$ |
|  | if n is prime, it will pass the test for any a a composite number passes the test for at most $1 / 4$ or the possible bases a -> it is then called a strong pseudoprime for the base a repeating the test M times with randomly chosen values of $a$, the probability that a composite $n$ passes all the tests is at most $\left(\frac{1}{4}\right)^{M}$ | $\begin{aligned} M & =50 \\ \left(\frac{1}{4}\right)^{50} & <10^{-30} \end{aligned}$ |
| Attacks on RSA | In general, if $\operatorname{gcd}\left(e_{A}, e_{B}\right)=1$, we can use egcd to find x and y such that: $x * e_{A}+y * e_{B}=1$ <br> and thus: $c_{A}^{x} * c_{B}^{x}=m^{x * e_{A}} * m^{y * e_{B}}=m^{x * e_{A}}+m^{y * e_{B}}=m$ |  |
|  | $\begin{aligned} & \text { If } e=3, m=128 \text { bit, } n=1024 \\ & \qquad m=\sqrt[e]{c}=\sqrt[3]{c} \end{aligned}$ |  |

## 8. Digital Signatures

| Definition | The result of a cryptographic transformation of data that, when properly implemented, provides a mechanism for verifying origin authentication, data integrity and signatory non-repudiation. |  |
| :---: | :---: | :---: |
| origin authentication | Signature can be matched to an entity without a doubt. Nobody can forge (fälschen) the signature. |  |
| data integrity | The signature will no longer be valid if the content of the message is changed after the message has been signed. The signature and the content of the message are unambiguously linked to each other. <br> The signature of a document cannot be used for another document. |  |
| non-repudiation | The signer cannot repudiate (leugnen) his signature. |  |
| Signature generation | The process of using a digital signature algorithm and a private key to generate a digital signature on data. Only one person can do that. | private key (d, $n$ ) |
| Signature verification | The process of using a digital signature algorithm and a public key to verify a digital signature on data. Everybody can do that. | public key ( $e, n$ ) |
| RSA-Signature | Alice Unsecure Channel Bob | $\begin{gathered} p=11, q=23, e=3 \\ n=11 * 23=253 \\ \rightarrow d=147 \end{gathered}$ |
|  | 1: key generation (only Alice can do that) choose prime $p$, generator $g$ and $e$ $\begin{gathered} n=p * q \\ e * d=1 \bmod \phi(n) \end{gathered}$ |  |
|  | public key ( $n, e$ ) | $\begin{gathered} m=111 \\ s=111^{47} \bmod 253=89 \end{gathered}$ |
|  | 2: Sign (only Alice can do that) $s=m^{d} \bmod n$ | $\begin{gathered} m^{*}=89^{3} \bmod 253=111 \\ \rightarrow \text { valid } \end{gathered}$ |
|  |  |  |
|  | 3: Verification (everybody can do that) $\begin{gathered} m^{*}=s^{e} \bmod n \\ m^{*}=m \end{gathered}$ |  |
| Remarks | No encryption, message m can/must be readable and understandable. A long message leads to a long verification. |  |
| Attacks | Authenticity of the public key must be secured (Certificates) |  |
|  | No-Message-Attack <br> 1. choose arbitrary number $s$ <br> 2. produce message $m=s^{e} \bmod n$ <br> 3. message $m$ will be accepted as a signed by Alice <br> -> message should contain redundancy. Enforce with redundancy function. | $\begin{gathered} s=10 \\ m=10^{3} \bmod 253=241 \\ m=m^{*} \\ m=123, R(m)=123^{\prime} 123 \end{gathered}$ |
|  | Multiplicative property of RSA $\begin{aligned} & s_{1}=m_{1}^{d} \bmod n \\ & s_{2}=m_{2}^{d} \bmod n \\ & m_{2}=s=\left(m_{1} * m_{2}\right)^{d} \bmod n \\ & \end{aligned}$ <br> Alice signs $m_{1}$ and $m_{2}$, but never $m$. Attacher can calc $s=s_{1} * s_{2}$ -> message should contain redundancy. |  |
| Hash-Function | A hash function is a computationally efficient function mapping binary strings of arbitrary length to binary strings of some fixed length. $h:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ <br> Result = Image <br> Input = Preimage |  |
| properties | never injective -> set of input value is larger than set of output values collision -> two different input values yield the same output -> very seldom | $000 \rightarrow 100 ; 101 \rightarrow 100$ |
| properties | preimage resistance $->$ difficult to find an input string from the output second preimage resistance -> find a second input which results the same collision resistance -> difficult to find two input which results the same | -> weak collision resistance <br> -> strong collision resistance |
| Examples | SHA (Secure Hash Algorithm) <br> - SHA-1 (160bit) -> no longer considered secure <br> - SHA-2 (224, 256, 384, 512bit) -> secure <br> MD-5 (Message Digest algorithm 5) <br> - MD-5 (128bit) -> no longer considered secure <br> RIPEMD (RACE Integrity Primitives Evaluation Message Digest) <br> - RIPEMD -> no longer considered secure <br> - RIPEMD-160, 320 -> considered secure <br> -> only data integrity |  |


| SHA-1 | uses a family of 80 logical functions: $f_{0} \ldots f_{79}(x, y, z)$ using $\wedge, \vee, \oplus$, ᄀ total of 8032 -bit constants $K_{t}(t=0 . .79)$ are defined <br> 1. Fill the message with bits so that the total length is a multiple of 512 <br> 2. Split the message into blocks $M^{(i)}(i=1 . . N)$ of length 512 <br> 3. Use the initial has value $H^{(0)}$ as described in the standard <br> 4. For each message block do the following <br> - Compute $W_{t}$ <br> - Initialize the five variables $a=H_{0}^{(i-1)}, b=H_{1}^{(i-1)}, c=H_{2}^{(i-1)}, d, e$ <br> - For $t=0$ to 79: Compute $T, e, d, c, b, a$ <br> - Compute $H_{0}^{(i)}, H_{1}^{(i)}, H_{2}^{(i)}, H_{3}^{(i)}, H_{4}^{(i)}$ | ${ }_{-}^{A_{N}}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Security | Finding collisions is easier than the theoretical limit -> use SHA-2 |  |  |  |  |  |
| Message Authentication Codes "parameterized hash function" | Family of functions with secret parameter $k$ <br> Can be computed efficiently <br> Maps an input x of arbitrary length to a MAC-value $h_{k}(x)$ of fixed length Authenticity and data integrity |  |  |  |  |  |
| Digital Signature with Hash function | Signature of an arbitrary long message $m$. <br> Generation of the signature: $s=h(m)^{d} \bmod n$ |  |  |  |  |  |
| properties | Sign only a short hash value instead of a long message m No-message-attack and multiplicative property attack do not work -> beca a message x that gives hash $h(m)$ <br> Exploiting the multiplicative property $\left(m=m_{1} * m_{2} \bmod n\right)$ is not possible <br> The signed message $m$ cannot be replaced by another text $m^{*}->$ pair $m$ and | the $\imath^{*} m$ |  |  |  | rate <br> rare |
| DSA (Digital <br> Signature <br> Algorithm) | Variation of El-Gamal digital signature algorithm |  |  |  |  |  |


| Public Key <br> Infrastructure (PKI) | Problem of any asymmetric scheme: <br> Authenticity and validity of the public key must be secured |  | CA = Certification Authority <br> RA $=$ Registration Authority <br> VA $=$ Validation Authority |
| :---: | :---: | :---: | :---: |
| Digital Certificate | A set of data that uniquely identifies a key pair and an authorized to use the key pair. The certificate contain key and possibly other information and is digitally sig Authority (i.e., a trusted party), thereby binding the owner. Like a passport. |  |  |
| Certification Authority | The entity in a Public Key Infrastructure (PKI) that is res certificates and exacting compliance with a PKI policy. | pons |  |
| Digital Signature | The result of a cryptographic transformation of data implemented, provides a mechanism for verifying or data integrity and signatory non-repudiation. | hat, w in au |  |
| Trust Models | - Direct trust (one to another) <br> - Hierarchical trust (root CA -> CA -> people) <br> - Web of trust (Each user can sign a key and defi trust that the key's owner can serve as certif | ne of |  |
| Example | Certificate Information <br> This certificate is intended for the following purpose(s): <br> - Ensures the identity of a remote computer <br> - Proves your identity to a remote computer <br> - Ensures software came from software publisher <br> - Protects software from alteration after publication <br> - Protects email messages <br> - Allows data to be signed with the current time <br> Issued to: Go Daddy Root Certificate Authority - G2 <br> Issued by: Go Daddy Root Certificate Authority - G2 <br> Valid from 01/09/2009 to 01/01/2038 |  | Value <br> v3 <br> 00 <br> sha256RSA <br> sha256 <br> Go Daddy Root Certificate Authorit... <br> 01 September 2009 01:00:00 <br> 01 January 2038 00:59:59 <br> fin nardiv Ront Certifirate Authnrit <br> ate Authority - G2 |

## 9. Elliptic Curve

| Why | smaller key size -> less space and better performance$128 \text { bit AES }=3072 \text { bit RSA/DH }=256 \text { ECC }$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Definition $\begin{aligned} & \operatorname{solve}\left(x^{\wedge} 3-\right. \\ & a x+b=0, x) \end{aligned}$ | Weierstrass equation combined with a field that has characteristic 2 or 3 . $y^{2}=x^{3}+a * x+b$ <br> The points of the elliptic curve, together with an extra point $\mathcal{O}$, called the point at infinity, can be used to define an additive group. <br> This equation has 3 real or 1 real and 2 complex roots (Nullstellen). |  |  |  |  |
| valid if $4 a^{3}+27 b^{2} \neq 0$ <br> = no multiple roots <br> /validate (ec) <br> /validate (x^3+8x -9) <br> /validmod (ec, p) <br> /validmod ( $x^{\wedge} 3,5$ ) | valid $a=-1, b=3$  | valid $a=-4, b=$ | valid | invalid $a=0, b=0$ | invalid |
| Addition <br> /add (ec, p, q) <br> /add (x^3-8x+9, <br> $\{0,3\},\{2,1\})$ $=\{-1,-4\}$ <br> / stepadd (ec, p,q) <br> addmod (ec, p, q, f) stepaddmod() |  |  | Given: $\begin{aligned} & P, Q \in E \\ & P \neq Q, P \neq-Q \end{aligned}$ <br> Construction of $P+Q=R$ : <br> Draw a line through $P$ and $Q$. <br> Invert intersection $-R$ to yield $R$ <br> Special Rules <br> point in infinity $\mathcal{O}$ in $Y$ is the neutral elem. $\begin{gathered} \mathcal{O}+\mathcal{O}=\mathcal{O} \\ P+(-P)=\mathcal{O} \\ P+\mathcal{O}=\mathcal{O}+P=P \\ \hline \end{gathered}$ |  | Algebraic <br> 1. Slope $m=\left\{\begin{array}{cc} \frac{y_{P}-y_{Q}}{x_{P}-x_{Q}} & P \neq \pm Q \\ \frac{3 * x_{P}^{2}+a}{2 * y_{P}} & P=Q \\ \infty \rightarrow \mathcal{O} & P=-Q \end{array}\right.$ <br> 2. Interference point $\begin{gathered} x_{R}=m^{2}-x_{P}-x_{Q} \\ y_{R}=m\left(x_{P}-x_{R}\right)-y_{P} \end{gathered}$ |
| Multiplication <br> /mult (ec, p, n) <br> /mult ( $x^{\wedge} 3-8 x+9$, <br> $\{2,1\}, 3)$ <br> $=\{-1,4\}$ <br> / stepmult (ec, p, n <br> /multmod (ec, p, n, <br> f) <br> / stepmultmod (ec, $\mathrm{p}, \mathrm{n}, \mathrm{f}$ ) |  |  | Given: $P \in E$ <br> Construction of $2 * P$ : <br> Draw the tangent line through $P$ Invert intersection $-R$ to yield $R=2 P$ |  | Algebraic see above $P=Q$ <br> btw: $\begin{aligned} & y^{2}(x)=x^{3}+a x+b \frac{\delta}{\delta x} \\ & 2 * y(x) * y^{\prime}(x)=3 x^{2}+a \end{aligned}$ |
| Finite Group <br> ...mod() | because we only used the 4 basic operations, these equations are valid in each field. egcd for division! |  |  |  |  |
| Order of a point <br> lorder (ec, p, f) | Smallest non-negative integer, for which $n * G=\mathcal{O}$ Should be as high as possible for cryptography cofactor: $h=\frac{\# E\left(\mathbb{F}_{p}\right)}{n} \in \mathbb{N}$ <br> -> Order of points always divides total number of points |  |  |  | $\operatorname{er}\left(x^{3}+x+1,\{0,1\}, 7\right)=5$ |
| Number of Points /numofpoints (p) | $\rightarrow$ see Theorem of Hasse $p+1-2 * \sqrt{p} \leq \# E\left(\mathbb{F}_{p}\right) \leq p+1+2 * \sqrt{p}$ <br> for large $\mathrm{p} \# E\left(\mathbb{F}_{p}\right) \approx p$ |  |  |  | $\begin{aligned} & \# p(7)=3 . .13 \\ & 2 \sqrt{7} \leq E\left(\mathbb{F}_{p}\right) \leq 8+2+\sqrt{7} \\ & 5.17 \leq E\left(\mathbb{F}_{p}\right) \leq 10.82 \\ & 6 \leq E\left(\mathbb{F}_{p}\right) \leq 10 \end{aligned}$ |


10. Quantum Cryptography

| Two-hole wall <br> Experiment | Electrons are particles. The probability of arrival behind a two-hole-wall is <br> distributed like the intensity of a wave. We observe interference. <br> $->$ It is not true that a single electron flies either though hole 1 or 2. |  |
| :--- | :--- | :--- |
| Observation | If we observe the electron it passes hole 1 or 2. |  |
| Notation | Probability for the transition from a start state $\Psi_{1}$ to an end state $\Psi_{2}$ <br> $\left\langle\Psi_{2} \mid \Psi_{1}\right\rangle$ |  |
| Photon | Can be polarized vertical $(\uparrow)$ or horizontal $(\leftrightarrow)$ or with an arbitrary angle $\phi$ <br> with respect to $x$-axis. <br> $\cos (\phi) *\|\leftrightarrow\rangle+\sin (\phi) *\|\Psi\rangle$ |  |

SKIP

11+12. Linear Block Codes

| Error Control Coding | Sizes: capacity C, entropy per second H <br> Claude Shannon: Error induces by a noisy channel can be reduced to any desired level (if $H \leq C$ ) |  |
| :---: | :---: | :---: |
| Channel Coding | Data transformations that are used for improving a system's error performance. <br> Encoder: add redundant information to the transmitted data (code word) - no memory <br> Decoder: check whether the received data is still exhibit the prearranged structure/regularity <br> -> Error Detection and Error Correction |  |
| (n, k)-Block Code $=\text { approx }$ |  | Message block $\boldsymbol{m}=\left(m_{1}, \ldots, m_{k}\right)$ <br> k information symbols of a finite field $G F\left(2^{x}\right)$ <br> Code word $\begin{gathered} \boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right) \\ \boldsymbol{u}=\left(m_{1}, \ldots, m_{k}, p\right) \end{gathered}$ <br> n code symbols <br> Demodulator <br> observe the signal $r(t)$ and produces received vector $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right)=\boldsymbol{u} \oplus \boldsymbol{e}$ <br> Hard decision: 0 / 1 <br> Soft decision: might be 0 / 1 <br> Error pattern $e=\left(e_{1}, \ldots, e_{n}\right)$ <br> $\mathrm{n}(\mathrm{t})=$ Rauschen |
| Parity codes | Even parity code $\quad p=m_{1} \oplus \ldots \oplus m_{k}$ | $m=1101 \rightarrow p=1$ |
|  | Two-dimensional parity code $p_{1}=m_{1} \oplus m_{2} \oplus m_{3} \oplus m_{4}$ <br>  $p_{2}=m_{5} \oplus m_{6} \oplus m_{7} \oplus m_{8}$ <br>  $p_{3}=m_{1} \oplus m_{5}, p_{4}=m_{2} \oplus m_{6}$ <br>  $p_{5}=m_{3} \oplus m_{7}, p_{6}=m_{4} \oplus m_{8}$ | $\begin{gathered} m=11010001 \\ p_{1}=1, p_{2}=1 \\ p_{3}=1, p_{4}=1 \\ p_{5}=0, p_{6}=0 \end{gathered}$ |
| Binary Linear Block Codes | A binary block code with $2^{k}$ code words of length $n$ is called linear ( $n, k$ ) code, if and only if its $2^{k}$ code words form a $k$-dimensional subspace of the vector space of the n-tuples over the field $G F(2)$. | (6,3) block code -> $\{0,1\}^{6}$ |
|  |  | Message $2^{3}$ Codeword |
|  |  | 000 000000 |
|  | => the sum of any two code words is a code word. Linear combination! <br> $\Rightarrow>$ the zero-code word is always a codeword in a linear block, $v+v=0$ <br> message: $m_{i} \in G F(2) \rightarrow 2^{k}$ code words <br> code word: $u_{i} \in G F(2) \rightarrow 2^{k}$ binary vectors of length n | 100 110100 |
|  |  | 010 011010 <br> 110 101110 |
|  |  | 110 |
|  |  | 001 101001 <br> 101  |
|  |  | 101 011101 |
|  |  | 1011 110011 |
|  |  | 111 |
| Vector Space | F: field of Scalars <br> $\mathbb{V}$ : vector space <br> Two operations: <br> - Vector addition: $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{V} \Rightarrow \boldsymbol{u}+\boldsymbol{v} \in \mathbb{V}$ <br> - Scalar multiplication $\boldsymbol{u} \in \mathbb{V}, k \in \mathbb{F} \Rightarrow k * \boldsymbol{u} \in \mathbb{V}$ <br> - 10 Axioms | $\begin{gathered} \mathrm{F}=G F(2) \\ V=\left\{\left(v_{1} \ldots v_{n}\right): v_{i} \in G F(2)\right\} \end{gathered}$ |
| Subspace | $\mathbb{W} \subseteq \mathbb{V}$ : Subset. If $\mathbb{W}$ is a vector space itself, it is called a subspace of $\mathbb{V}$. |  |
| Linear combination | $a_{1} * \boldsymbol{v}_{1}+\cdots+a_{k} * \boldsymbol{v}_{k}$ |  |
| Linear independent | $a_{1} * \boldsymbol{v}_{1}+\cdots+a_{k} * \boldsymbol{v}_{\boldsymbol{k}}=\mathbf{0}$ |  |
| Generator Matrix | It is possible to find k linearly independent code words $\boldsymbol{g}_{\boldsymbol{1}} \ldots \boldsymbol{g}_{\boldsymbol{k}}$ such that every code word $\boldsymbol{u}$ is a linear combination of these k code words. $\begin{gathered} \boldsymbol{u} \in C \leftrightarrow \boldsymbol{u}=m_{1} \boldsymbol{g}_{1}+m_{2} \boldsymbol{g}_{2}+\cdots+m_{k} \boldsymbol{g}_{\boldsymbol{k}}=\boldsymbol{m} * \boldsymbol{G} \\ \boldsymbol{u}=\boldsymbol{m} * \boldsymbol{G} \\ \text { vectors } g_{1}, g_{2}, \ldots, g_{k} \in C \text {, are linear independent } \\ m_{1}, m_{2}, \ldots, m_{3}: \text { Skalare }(\{0,1\}) \end{gathered}$ <br> A generation matrix is systematic, if it contains the identity matrix. Where it is, doesn't matter. $G=[P \mid I]$ or $[I \mid P]$ | $G=\left[\begin{array}{l}g_{1} \\ g_{2} \\ g_{3}\end{array}\right]$ $G=\left[\begin{array}{lllll}1 \\ 0 & 1 & 0 & 1 & 0\end{array}\right.$ $\left.\begin{array}{llllll}1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & \underbrace{0}_{P} 0 & 0 & 1\end{array}\right]$ |

FTP_CryptCod



## 13. Hamming, BCH and RS Codes

| Hamming Code | A Hamming Code is a linear block code there elements are binary vectors of $b$ without the zero-vector. all single bit errors are correctable, nothing else. $q=1$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $p(x)$ :primitive $\left\{0, \alpha^{0}, \alpha^{1}, \ldots, a^{2^{m}-2}\right\}$, not factorizable polynomial in $G F(2)$ <br> $\alpha$ : primitive element $p(x) \rightarrow p(\alpha)=0$-> checksum condition of hamming code -> to generate elements <br> $u:$ Codeword $=\left(u_{0}, \ldots, u_{n-1}\right), u_{i} \in G F(2)$ |  |  |  |
|  | Every code word consi Checksum $\sum_{j=0}^{n-1} u_{j} * a_{j}$ In $\mathbf{H}$ are all elements of | of $n=2^{m}-1$ binary digits $\left(\begin{array}{lll} u_{0} & \ldots & u_{n-1} \end{array}\right)\left[\begin{array}{c} \alpha^{0} \\ \ldots \\ a^{n-1} \end{array}\right]=\boldsymbol{u} * \boldsymbol{H}^{T}=0$ <br> (2 $2^{m}$ ) except $0 . \boldsymbol{H}=\left[\begin{array}{ll}a^{0} a^{1} \ldots a^{n-1}\end{array}\right]$ | $u_{0}(0$ | $\left.\begin{array}{l} m=2 \rightarrow n=3 \\ n(x)=x^{2}+x+1 \\ (2)=\{0,1, \alpha, \alpha+1\} \\ u_{1}(10)+u_{2}(11)=\left(\begin{array}{ll} 0 & 0 \end{array}\right) \\ 1 \end{array} u_{2}\right)\left[\begin{array}{lll} 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right]^{T}=\left[\begin{array}{l} 0 \\ 0 \end{array}\right] .$ |
| Cyclic Hamming Code | The primitive polynomial $m(x)$ of degree m is the generator polynomial $g(x)$ of the cyclic ( $2^{m}-1,2^{m}-m-1$ )-Hamming code <br> $u\left(a^{2}\right)=0$ for every code polynomial since in $G F(2): \sum_{i} a_{i}^{2}=\left(\sum_{i} a_{i}\right)^{2}$ |  |  |  |
| BCH Codes Bose-ChaudhuriHocquenghem | Choose a field $G F\left(2^{m}\right)$ Let $\alpha$ be a primitive el A code word consists $u=$ <br> This code can correct t <br> Checksum $\sum_{i=0}^{n-1} u_{i} * a^{i * q}=0$ <br> Each binary vector wh $2,4,6, \ldots$ are redundan | some positive integer $m$. nt of this field. $\begin{aligned} & =2^{m}-1 \text { binary digits } \\ & \left.\ldots u_{n-1}\right), u_{i} \in\{0,1\} \rightarrow \text { binary } \end{aligned}$ <br> ors if $r \geq 2 t-1$ $\begin{array}{r} u_{0} a^{0}+u_{1} a^{1}+\cdots+u_{n-1} * a^{n-1}= \\ u_{0} a^{2 * 0}+u_{1} a^{2 * 1}+\cdots+u_{n-1} * a^{2 *(n-} \\ u_{0} a^{3 * 0}+u_{1} a^{3 * 1}+\cdots+u_{n-1} * a^{3 *(n-} \end{array}$ <br> fulfils the check equation for $q=1,3,5,7$ $\left.\begin{array}{cccc} a^{1} & a^{2} & \cdots & a^{(n-1)} \\ a^{3} & a^{3^{2}} & \cdots & a^{3^{(n-1)}} \\ a^{5} & a^{5^{2}} & \cdots & a^{5^{(n-1)}} \\ & & & \vdots \\ a^{r} & a^{r^{2}} & \cdots & a^{r(n-1)} \end{array}\right]$ | 0 $\begin{aligned} & =0 \\ & =0 \end{aligned}$ <br> is valid. | $\begin{gathered} m=4 \\ a^{15}=1 \\ n=2^{m}-1=15 \\ r=3 \rightarrow 2 \text { errors } \\ m(x)=x^{4}+x+1 \end{gathered}$ <br> $\rightarrow$ from table $\rightarrow$ primitive over GF(2) $H=\begin{aligned} & a^{6}=a^{3}+a^{2} \\ & {\left[\begin{array}{cccccc} 1 & 0 & 0 & & 1 \\ 0 & 1 & 0 & & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & & 1 \\ 1 & 0 & 0 & & 1 \\ 0 & 0 & 0 & & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & & 1 \end{array}\right]} \end{aligned}$ <br> $\#$ rows $=2 * 4=8$ <br> $\rightarrow(15,7)$ code |
| property | $u\left(a^{q}\right)=u_{0}+u_{1} * \alpha^{q}+\cdots+u_{n-1} a^{q *(n-1)}=0, q=1,2, \ldots, 2 t$ <br> A binary n-tuple $u=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ is a code word of a t-errorcorrecting BCH code of length $n=2^{m}-1$ iff the polynomial $u(x)=u_{0}+$ $u_{1} * x+\cdots+u_{n-1} * x^{n-1}$ has $a, a^{2}, \ldots, a^{2 t}$ as roots |  |  |  |
| Generator Polynomial <br> lcm = least common divisor | Naive approach $g(x)=(x-a)\left(x-a^{2}\right) \ldots\left(x-a^{2 t}\right)$ <br> $->$ does not work because will not be binary <br> We need minimal polynomials -> binary coefficients that have $a, a^{2}, a^{2 t}$ as roots <br> Let $\Phi_{i}(x)$ be the minimal polynomial of $a^{i}$. Then $g(x)$ must be the least comon multiple of $\Phi_{1}(x), \Phi_{2}(x), \ldots, \Phi_{2 t}(x)$ $g(x)=\operatorname{lcm}\left(\Phi_{1}(x), \Phi_{2}(x), \ldots, \Phi_{2 t}(x)\right)$ |  |  |  |


| RS-Codes | N |
| :--- | :--- |
| Reed-Solomon | A |
| used for CD/DVD/ | A |
| Satellite/ADSL/ | G |
| xDSL/DVB | by |
| DFT | Dis |
|  |  |

Non-binary BCH codes -> $G F(q) \rightarrow$ usually $q=2^{m}$
A code word consists of $n=q-1$ code symbols
Attention! The code symbols $u_{i}$ are not binary digits but elements of $G F(q)$. However, if $q=2^{m}$, then every code symbol can be represented by a binary vector of length $m$.
Discrete Fourier Transformation of a real vector $\boldsymbol{v} \in \mathbb{R}^{n}$

$$
\begin{aligned}
v_{k}=\sum_{i=0}^{n-1} v_{i} * e^{-j * \frac{2 \pi}{n} * i * k}= & \sum_{i=0}^{n-1} v_{i} * a^{-i * k}, a=e^{j * \frac{2 \pi}{n}} \\
a^{i} \neq 1, \quad & 0<i<n
\end{aligned}
$$

$a^{n}=1$

| matrix |
| ---: |
| representation |


| DFT | Inverse Transformation |
| :---: | :---: |
| $V=v *\left[\begin{array}{cccc} \hline & V=v * A \\ a^{-0 * 0} & a^{-0 * 1} & \cdots & a^{-0 *(n-1)} \\ a^{-1 * 0} & a^{-1 * 1} & \cdots & a^{-1 *(n-1)} \\ \vdots & \vdots & \ddots & \vdots \\ a^{-(n-1) * 0} & a^{-(n-1) * 1} & \cdots & a^{-(n-1)(n-1)} \end{array}\right]$ | $v=\frac{1}{n} *\left[\begin{array}{cccc} a^{0 * 0} & a^{0 * 1} & \cdots & a^{0 *(n-1)} \\ a^{1 * 0} & a^{1 * 1} & \cdots & a^{1 *(n-1)} \\ \vdots & \vdots & \ddots & \vdots \\ a^{(n-1) * 0} & a^{(n-1) * 1} & \cdots & a^{(n-1)(n-1)} \end{array}\right]$ |

vector $\boldsymbol{v}=\left(v_{0}, v_{1}, \ldots, v_{(n-1)}\right)$ can be represented by polynomial $\boldsymbol{v}(x)=v_{0} x^{0}+v_{1} x^{1}+\cdots+v_{n-1} x^{n-1}$
the DFT of $v$ can be computed by evaluating the
polynomial $\boldsymbol{v}(x)$ at $x=a^{-k}$

$$
v_{k}=\sum_{i=0}^{n-1} v_{i} * a^{-i * k}=\boldsymbol{v}\left(a^{-k}\right)
$$

the inverse DFT of $v$ can be evaluated with:

$$
v_{i}=\frac{1}{n} \sum_{k=0}^{n-1} v_{k} * a^{i * k}=\frac{1}{n} \boldsymbol{v}\left(a^{i}\right)
$$

in $G F\left(2^{m}\right)$ Let $a$ be a primitive element of $G F\left(2^{m}\right)$

$$
\begin{gathered}
a^{j} \neq 1, j=1 \ldots 2^{m}-2 \\
a^{j}=1, j=2^{m}-1
\end{gathered}
$$

Validation A vector u is a code word iff its Fourier transform U contains $2 * t$ zeros.

| $u=\left(u_{0} . . u_{n-1}\right) \in C \Leftrightarrow U=(U_{0} \ldots U_{n-2 t-1} \underbrace{0 \ldots 0}_{2 t})$ |
| :--- |\(\quad \begin{aligned} \& U_{n-1}=u\left(\alpha^{-(n-1)}\right)=u\left(\alpha^{1}\right)=0 <br>

\& U_{n-2}=u\left(\alpha^{-(n-2)}\right)=u\left(\alpha^{2}\right)=0 <br>
\& <br>
\& U_{n-2 t}=u\left(\alpha^{n-2 t}\right)=u\left(\alpha^{2 t}\right)=0\end{aligned}\)
The polynomial representation $u(x)$ of a code word has $a^{1}, a^{2}, \ldots a^{2 t}$ as roots
$\Rightarrow$ if $u(x)=m(x) * g(x) \Rightarrow u(\alpha)=u\left(\alpha^{2}\right)=u\left(\alpha^{2 t}\right)=0 \Rightarrow u \in C$
$\Rightarrow u(x)$ must be a multiple of $g(x)=(x-\alpha) *\left(x-\alpha^{2}\right) * \ldots *\left(x-\alpha^{2 t}\right)$
$\Rightarrow$ any multiple of $g(x)$ is a valid code polynomial
Decoding
received vector $r=u+e$
discrete Fourier transform $R=U+E$

$$
\begin{aligned}
U_{i} & =0, \quad i=n-2 t, \ldots, n-1 \\
E_{i}=R_{i} & =\boldsymbol{r}\left(a^{-i}\right), \quad i=n-2 t, \ldots, n-1
\end{aligned}
$$

If the error pattern $\mathbf{e}$ contains $t$ or less errors, we can generate the whole vector $\mathbf{E}$ from $2^{*} \mathrm{t}$ known values.
-> Berlekamp-Massey Algorithm: Finds the shortest linear feedback shift register (LFSR) that generates the given values of $\mathbf{E}$.
If the number of symbol errors is $t$ or less, the LFSR will generate the whole vector $\mathbf{E}$.
Inverse DFT of $\mathbf{E}$ will give the error pattern $\mathbf{e}$.
14. Convolutional Coding (Faltungscodes) \& Turbo Codes

| Convolutional Coding | Encoder contains memory <br> n encoder outputs at any given time depend on the k inputs and on m previous input blocks <br> important special case: $k=1$ <br> encoder is a state machine <br> Rate des codes $=\mathrm{k} / \mathrm{n}$ (Eingangsbit durch Ausgangsbit) <br> häufig ist $\mathrm{k}=1$ |  |
| :---: | :---: | :---: |
| Encoder example | Every input bit $u_{k}$ yields two output bits $v_{k}^{(1)}$ and $v_{k}^{(2)}$ <br> The output bits depend on the actual input bit $u_{k}$ and two stored bits $u_{k-1}$ and $u_{k-2}$ <br> Number of states $=2^{\text {length of shift register }}=4$ | Generator Sequence to describe a state machine. visible in grafic. |
| polynomial representation | Binary sequences $\begin{aligned} & \mathbf{u}=\left(\begin{array}{llll} u_{1} & u_{2} & u_{3} & \cdots \end{array}\right) \\ & \mathbf{g}^{(1)}=\left(\begin{array}{lllll} g_{1}^{(1)} & g_{2}^{(1)} & g_{3}^{(1)} & \cdots \end{array}\right) \\ & \mathbf{g}^{(2)}=\left(\begin{array}{lllll} g_{1}^{(2)} & g_{2}^{(2)} & g_{3}^{(2)} & \cdots \end{array}\right) \\ & \mathbf{v}=\left(\begin{array}{lllll} v_{1} & v_{2} & v_{3} & \cdots \end{array}\right) \end{aligned}$ <br> - Polynomial representation $\begin{aligned} & \mathbf{u}(D)=u_{1} \oplus u_{2} \cdot D \oplus u_{3} \cdot D^{2} \oplus \ldots \\ & \mathbf{g}^{(1)}(D)=g_{1}^{(1)} \oplus g_{2}^{(1)} \cdot D \oplus g_{3}^{(1)} \cdot D^{2} \oplus \cdots \\ & \mathbf{g}^{(2)}(D)=g_{1}^{(2)} \oplus g_{2}^{(2)} \cdot D \oplus g_{3}^{(2)} \cdot D^{2} \oplus \cdots \\ & \mathbf{v}(D)=v_{1} \oplus v_{2} \cdot D \oplus v_{3} \cdot D^{2} \oplus \ldots \end{aligned}$ <br> Discrete convolution becomes multiplication $\begin{array}{ll} \mathbf{v}^{(1)}(D)=\mathbf{u}(D) \cdot \mathbf{g}^{(1)}(D) & \text { D: delay operator } \\ \mathbf{v}^{(2)}(D)=\mathbf{u}(D) \cdot \mathbf{g}^{(2)}(D) & \text { (place holder) } \\ \text { Code Word: } \mathbf{v}(D)=\mathbf{v}^{(1)}\left(D^{2}\right) \oplus D \cdot \mathbf{v}^{(2)}\left(D^{2}\right) & \text { - Similar to z- } \\ \text { transform } \end{array}$ | Transformation in digital technic <br> Faltung im Zeitbereich |
| encoder state diagram |  |  |


| Trellis Diagram |  <br> common assumption: encoder starts in the state $(0,0)$ sometiems: a number of zeros is added at the end of the message so that the encoder returns to the state $(0,0)$ |  |
| :---: | :---: | :---: |
| Decoding | Find the path through the trellis that best fits the received data. <br> - Hard decoding: receiver delivers a binary symbol (hamming distance) <br> - Soft decoding: receiver delivers a floating point value (confidence level) square euclidean distance $\left(r_{k}-v_{k}\right)^{2}$ about 2 dB better than hard decoding |  |
| V | Finds the path through the trellis with the largest (or smallest) metric MLSE - maximum likelihood sequence estimation <br> Principle <br> - At each step, compare the metrics of all path entering each state and store the path with the largest metric (survivor) together with its metric. Eliminate all other paths. <br> - At the end (or after a certain amount of time) the survivor with the best metric is selected and the (first few) bits on this path are chosen as the decoded bits |  |
|  | - $\mathrm{M}_{\mathrm{r}}[\mathrm{k}]$ : metric of the state r at time k <br> - p, q: predecessor states of the state $r$ <br> - $\mathrm{d}_{\mathrm{pr}}, \mathrm{d}_{\mathrm{qr}}$ : branch metrics (e.g. Hamming distance) $\begin{aligned} & M_{r}[0]=0 \\ & M_{r}[k]=\underset{\text { predecessor states } j}{ }\left(M_{j}[k-1]+d_{j r}\right) \end{aligned}$ |  |
|  |  |  |

## Turbo codes

kein Bestandteil der Prüfung.
BCJR: Formel: 3 Terme: etwas aus der Vergangenheit, etwas vom hier und jetzt und von der Zukunft Jacobi Symbol

## Representations in $\boldsymbol{G F}\left(\mathbf{2}^{\mathbf{4}}\right)$

- $\quad \ln G F\left(2^{x}\right) \rightarrow 2=0$

|  |  |  |  | Int | Hex | Bin $n_{3}, n_{2}, n_{1}, n_{0}$ | Polynomic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $G F\left(2^{4}\right)$ | $G F\left(2^{3}\right)$ | $G F\left(2^{2}\right)$ | $G F\left(2^{1}\right)$ | 0 | 0 | 0000 | 0 |
|  |  |  |  | 1 | 1 | 0001 | 1 |
|  |  |  |  | 2 | 2 | 0010 | $x$ |
|  |  |  |  | 3 | 3 | 0011 | $x+1$ |
|  |  |  |  | 4 | 4 | 0100 | $x^{2}$ |
|  |  |  |  | 5 | 5 | 0101 | $x^{2}+1$ |
|  |  |  |  | 6 | 6 | 0110 | $x^{2}+x$ |
|  |  |  |  | 7 | 7 | 0111 | $x^{2}+x+1$ |
|  |  |  |  | 8 | 8 | 1000 | $x^{3}$ |
|  |  |  |  | 9 | 9 | 1001 | $x^{3}+1$ |
|  |  |  |  | 10 | A | 1010 | $x^{3}+x$ |
|  |  |  |  | 11 | B | 1011 | $x^{3}+x+1$ |
|  |  |  |  | 12 | C | 1100 | $x^{3}+x^{2}$ |
|  |  |  |  | 13 | D | 1101 | $x^{3}+x^{2}+1$ |
|  |  |  |  | 14 | E | 1110 | $x^{3}+x^{2}+x$ |
|  |  |  |  | 15 | F | 1111 | $x^{3}+x^{2}+x+1$ |

## Roots of a polynomial

|  | degree | in $\mathbb{Q}$ | $G F(2)=[0,1]$ |  |
| :---: | :---: | :---: | :---: | :---: |
| $x$ | 1 | $[0]$ |  |  |
| $x+1$ | 1 | $[-1]$ |  |  |
| $x^{2}$ | 2 | $[0,0]$ |  |  |
| $x^{2}+1$ | 2 | irreducible | $(x+1)(x+1) \rightarrow[-1,-1]$ |  |
| $x^{2}+x$ | 2 | $[0,-1]$ |  |  |
| $x^{2}+x+1$ | 2 | irreducible | irreducible \& primitive |  |
| $x^{3}$ | 3 | $[0,0,0]$ |  |  |
| $x^{3}+1$ | 3 | $[-1]$ |  |  |
| $x^{3}+x$ | 3 | $[0]$ |  |  |
| $x^{3}+x+1$ | 3 | irreducible | irreducible \& primitive |  |
| $x^{3}+x^{2}$ | 3 | $[0,0,-1]$ |  |  |
| $x^{3}+x^{2}+1$ | 3 | irreducible | irreducible \& primitive |  |
| $x^{3}+x^{2}+x$ | 3 | $[0]$ |  |  |
| $x^{3}+x^{2}+x+1$ | 3 | $[-1]$ |  |  |

## Functions

| $\begin{aligned} & q=\operatorname{intDiv}(a, b) \\ & r=\bmod (a, b) \end{aligned}$ | int: $\mathrm{a}, \mathrm{b}$ | integer division $\mathrm{a} / \mathrm{b}$ modulo (a mod b) |  | $\begin{gathered} \operatorname{intDiv}(9,4)=2 \\ \bmod (9,4)=1 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \operatorname{gcd}(a, b) \\ & \backslash \operatorname{gcdstep}(a, b) \end{aligned}$ | int: $\mathrm{a}, \mathrm{b}$ | greatest common divisor |  | $\operatorname{gcd}(10,16)=2$ |
| $\begin{aligned} & \backslash \operatorname{egcd}(a, b) \\ & \backslash \operatorname{egcdstep}(a, b) \end{aligned}$ | int: $\mathrm{a}, \mathrm{b}$ | extended gcd |  | $\begin{gathered} \text { gcde }(10,16)=2 \\ 10 *(-3)+16 * 2=2 \end{gathered}$ |
| \phi(n) | int: n | Eulers phi function | phi(n) | phi 10 ) $=4$ |
| $\mathrm{e}=\backslash$ multord (g, n ) | int: g,n | multiplicative order | $g^{e} \equiv 1(\bmod n)$ | multord $(8,5)=4$ |
| $\backslash \mathrm{gen}(\mathrm{g}, \mathrm{p})$ | int: g prim: p | generator / primitive element multiplicative order |  | $\operatorname{gen}(2,7) \rightarrow$ no, ord $=3$ |
| \chin(m) | $\begin{aligned} & \text { matrix: } \mathrm{m} \\ & (n \times 2) \end{aligned}$ | Chinese remainder theorem | $x \equiv a_{i} \bmod m_{i}$ | $\begin{gathered} \text { chin }\left(\begin{array}{cc} 5 & 7 \\ 3 & 11 \\ 10 & 13 \end{array}\right) \\ =M_{i}\left(\begin{array}{c} 143 \\ 91 \\ 77 \end{array}\right), e_{i}\left(\begin{array}{l} 715 \\ 364 \\ 924 \end{array}\right) \\ x=894 \end{gathered}$ |
| $\begin{aligned} & \hline \backslash i n v m o d(m, n) \\ & \backslash i n v m o d s t e p(m, n) \\ & \hline \end{aligned}$ | matrix: m int: n | inverse of a matrix |  | $\text { invmodstep }\left(\left[\begin{array}{ll} 3 & 2 \\ 1 & 1 \end{array}\right], 4\right)=\left[\begin{array}{ll} 1 & 2 \\ 3 & 3 \end{array}\right]$ |
| \prifiadd(p) | prim: p | addition of prime field |  | prifiadd(7) |
| \prifimul(p) | prim: p | multiplication of prime field |  | prifimul(7) |
| \extfiadd(q,m) | int: q poly: m | addition of extended field | $\begin{gathered} G F(q) \\ m(x)=\cdots \end{gathered}$ | extfiadd $\left(2, x^{2}+x+1\right)$ |
| \extfimul(q,m) | int: q poly: m | multiplication of extended field | $\begin{gathered} G F(q) \\ m(x)=\cdots \end{gathered}$ | $\operatorname{extfimul}\left(2, x^{2}+x+1\right)$ |
| polyQuotient(f,m) | poly: f,m | quationt of a polynom division | $\mathrm{f} / \mathrm{m}$ | $\begin{gathered} \text { polyQuotient }\left(x^{3}+1, x^{2}+1\right) \\ =x \end{gathered}$ |
| polyRemainder(f,m) | poly: f,m | remainder of a polynom division | f/m | $\begin{gathered} \text { polyRemainder }\left(x^{3}+1, x^{2}+1\right) \\ =1-x \end{gathered}$ |
| \polgen(p,n,m) | int: $p, m$ poly: m | generate primitive polynoms modulo $m$ | $\begin{gathered} G F\left(p^{n}\right) \\ m(x)=\cdots \\ \hline \end{gathered}$ | $\operatorname{polgen}\left(2,3, x^{3}+x+1\right)$ |
| $\begin{aligned} & \backslash \operatorname{sam}(a, c, m) \\ & \backslash \operatorname{samstep}(a, c, m) \end{aligned}$ | int: a,c,m | square an multiply with modulo | $a^{c} \bmod m$ | $\operatorname{sam}(1234,5678,438)=316$ |
| $\begin{aligned} & \backslash \operatorname{sam2}(a, c) \\ & \backslash \operatorname{sam} 2 \operatorname{step}(a, c) \end{aligned}$ | int: a, c | square an multiply | $a^{c}$ | $\operatorname{sam}(3,4)=81$ |
| \isprobprime(n) | int n | miller-rabin primality test | isPrime (n) | isprobprime (317) = true |
| \isprobprimebase $(n, a)$ | int n , a | with a given base |  | isprobprimebase $(317,2)=$ true |
| \multmod(ec, p, n, f) \multmodstep | poly: ec point: p int n , f | multiplication on an eliptic curve with modulo | $n * p(\bmod f)$ |  |
| \addmod(ec, p, q,f) \addmodstep | poly: ec point: p,q int f | addition on an eliptic curve with modulo | $p+q(\bmod f)$ |  |
| \add(ec, p, q) | poly: ec point: p,q |  | $p+q$ |  |
| \mult(ec, p, n) | poly: ec point: p int: n |  | $n * p$ |  |
| \validate(ec) | poly: ec |  |  |  |
| \validatemod(ec,p) | poly: ec |  |  |  |
| \numberofpoints(p) | $p$ |  |  |  |
| $\operatorname{lorder}(e c, p, f)$ \orderstep | poly: ec point: $p$ int: f |  |  |  |
| $\backslash \operatorname{negmod}(\mathrm{p}, \mathrm{f})$ | point: p int: f |  |  |  |
| \listpoints(ec,f) |  |  |  |  |

