CRYPTOGRAPHY AND CODING THEORY

1+2. Algebraic b	asics			
Integer	$\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3,\}$	15 ∈ ℤ		
Divisibility	Let a and n be integers with $a \neq 0$, a divides n if and only	if there is an intege	r 5 15	
	b such that $n = a * b$: $a n \Leftrightarrow \exists b \in \mathbb{Z} : n = c$	<i>i</i> * <i>b</i>		
properties				
	If $a b$ and $b c$ then $a c$ $5 15$ and 15			
	If $a b \text{ and } a c \Rightarrow a (s * b + t * c)$ for all integers s and t		3 6 and 3 15	
			$\Rightarrow 3 (2*6+4*15)$ 9 = 2 * 4 + 1	
Division theorem	If a and b are integers with $b > 0$ then there are unique i			
	and r (rest) such that $a = q * b + r and 0$		$0 \le 1 \le 4$	
notation	$q = \left\lfloor \frac{a}{b} \right\rfloor$ (floor function = abrunde	en)	$q = \left \frac{9}{4}\right = 2$	
q=intDiv(a,b) r=mod(a,b)	$r = a - b * q = a \mod b$		r = 9 - 4 * 2 = 1	
Greatest Common	largest non-negative integer d that divides both a and b:	acd(a, b)	r = 9 = 4 + 2 = 1 gcd(18, 30) = 6	
Divisor (gcd)	Special case: $gcd(0,0) = 0 \rightarrow per definition$	g(u(u, b))	gcd(10, 30) = 0 gcd(-10, 20) = 10	
	gcd(a, 0) = a note: also valid for $a = 0$		gcd(-10, 20) = 10 gcd(-10, 0) = 10	
properties	$gcd(a, b) \ge 0$		gcd(-20, -14) = 2	
gcd(a,b)	For any integer q: $gcd(a + q * b, b) = gcd(a, b)$		gcd(3+8,4) = gcd(3,4)	
	"adding a multiple of one integer to the other does not ch	nange their gcd"	gcd(3 + 6,2) = gcd(3,2) gcd(3+6,2) = gcd(3,2)	
	if $b \neq 0$, we may choose $q = -\left\lfloor \frac{a}{b} \right\rfloor \rightarrow a + q * b = a - a$			
		$\begin{bmatrix} b \end{bmatrix} * b = a \mod b$	= gcd(14,6)	
	$gcd(a \bmod b, b) = gcd(a, b)$			
Euclidean	Based on $gcd(a, b) = gcd(b \mod a, a)$ and $gcd(a, 0) =$	a	a b r	
algorithm	<pre>gcd(a,b): while (a!=0):</pre>		gcd(15,25) 15 25 10	
/gcdstep(a,b)	$r=b \mod a; b = a; a = r$		= 5 10 15 5	
/ geuscep (a, b)	return b		5 10 0	
			0 5	
Extended	The set of all integer linear combinations of two integers with the set of all integers multiples of $rad(r, k)$	a and b coincides	4 * 2 + 6 * 1	
Euclidean Algorithm	with the set of all integer multiples of $gcd(a, b)$ $a * \mathbb{Z} + b * \mathbb{Z} = gcd(a, b) * \mathbb{Z}$		$= \gcd(4,6) * 7$	
	For any given integers a, b, n the equation $ax + by = n$ c	an he solved hy	4 * (-1) + 6 * 1 = 2	
in other words.	integers x and y if and only if $gcd(a, b) \mid n$ $a * x + b *$	-	$4 *? + 6 *? \neq 3$	
egcd(a, b):	x=0, y=1, u=1, v=0	$\begin{bmatrix} a & b & x & y \end{bmatrix}$	u v q r m n	
-0(-,,	while(a!=0):	4 5 0 1	1 0	
/egcd(a,b)	$q = \left \frac{b}{a} \right $, r=b mod a, m=x-u*q, n=y-v*q	1 4 1 0		
<pre>/egcdstep(a,b)</pre>	b=a, a=r, x=u, y=v, u=m, v=n	0 1 -1 1	5 -4 4 0 5 -4	
	return b, x, y	4 * (-	(-1) + 5 * 1 = 1	
modular	$19:00 + 8:00 = 27:00 \rightarrow 03:00$ represent the same	time		
arithmetic	We say that 3,27,51, are congruent module 24			
Congruences	Let a, b, n be integers with $n \neq 0$. We say that			
	$a \equiv b \pmod{n}$ "a is congruent to b modu	lo n"	$3 \equiv 27 \pmod{24}$	
mod(a,n)	If $(a - b)$ is a multiple (positive or negative) of n.			
	$a \equiv b (mod \ n) \Leftrightarrow a = b + n * k, k \in \mathbb{Z}$		3 = 27 + (-1) * 24	
	Suppose $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ Then		a = 3, c = 2, n = 7	
subtraction and	$a + c \equiv b + d(mod n)$		$3 + 2 \equiv 10 + 9 \pmod{7}$ $3 - 2 \equiv 10 - 9 \pmod{7}$	
multiplication	$a - c \equiv b - d(mod n)$ $a * c \equiv b * d(mod n)$		$3-2 \equiv 10-9(mod 7)$ $3*2 \equiv 10*9(mod 7)$	
Modular Inverses	Let a, n be integers with $n \neq 0$		$3 * 2 \equiv 10 * 9(mod 7)$ $3 * ? \equiv 1(mod 5)$	
	If the congruence $a * x \equiv 1 \pmod{n}$ has a solution $x \in \mathbb{Z}$	7.	$3 * 0 \pmod{5} \equiv 0$	
Be careful	we say a is invertible modulo n	$3 * 1 \pmod{5} \equiv 3$		
	and x is the multiplicative inverse for $a \pmod{n}$ $3 * 2 \pmod{5} \equiv 1$			
	mod inv of 3 mod 5 is 2			
/ecgd(a,b)	The integer a is invertible module n if and only if $gcd(a, r)$	-	gcd(3,5) = 1	
	Since $gcd(a, n) = 1$ ther exist integer x and y such that a	*x + n * y = 1	3 * 2 + 5 * (-1) = 1	
solving	$a * x \equiv b \pmod{n}$	1 17	$5 * 4 \equiv 6 \pmod{7}$	
	$gcd(a, n) = 1 \rightarrow$ use extended Euclidean algorithm to fin		5 * 3 + 7 * (-2) = 1	
	$\gcd(a,n) = c > 1 \rightarrow \left(\frac{a}{c}\right) * x \equiv \frac{b}{c} \left(mod \frac{n}{c}\right) \rightarrow \text{solutions: } x$	$x_0, x_0 + \frac{n}{c}, x_0 + \frac{2n}{c}$		
	a must be coprime (teilerfremd) with n.	mod inv of 2 mod 6 not exist		
	Therefore, we use prime numbers, because they are copr	ime except 0.	2 * 1 + 6 * 0 = 2	
	· · ·			

ZHAW/HSR	print date: 08.02.19	FTP_CryptCod
Fermat's Little	If p is a prime, then for every integer a	
Theorem	$a^p \equiv a \pmod{p}$	$2^5 \equiv 32 \equiv 2 \pmod{5}$
	If p is a prime and p does not divide a (coprime), then $p = 1 = 1$ (used a)	25-1 - 1(-1) (mod 5)
	$a^{p-1} \equiv 1 \pmod{p}$ Attention: There may be exponents $e such that a^e \equiv 1 \pmod{p}$	$2^{5-1} \equiv 16 \equiv 1 \pmod{5}$
usage	What is the remainder of $2^{10203} \mod 101$? $\rightarrow 2^{100} \equiv 1 \pmod{101}$	
usage	$2^{10203} \equiv (2^{100})^{102} * 2^3 \equiv (1)^{102} * 2^3 \equiv 2^3 \equiv 8 \pmod{101}$	
coprime (or	Two integers <i>a</i> and <i>b</i> are coprime (teilerfremd) if $gcd(a, b) = 1$	gcd(4,9) = 1
relatively prime)		
Euler's Phi-funct.	$\phi(n)$ = number of integers $1 \le a \le n$, such that $gcd(a, n) = 1$	$\phi(6) = 2 \rightarrow \{1, 2, 3, 4, 5, 6\}$
properties	$\phi(p) = p - 1, p \in \mathbb{P}$	$\phi(7) = 6 \rightarrow \{1, 2, 3, 4, 5, 6, 7\}$ $\phi(2 * 3) = 6 - 2 - 3 + 1$
	$\phi(p * q) = p * q -q -p +1 ,p,q \in \mathbb{P}, p \neq q$	
/phi(n) /phi(7)	mit p teilbar, mit q teilbar, da p*q 2mal gezählt $\phi(p^n) = p^n - p^{n-1} = p^{n-1} * (p-1)$	$= 2$ $\phi(2^3) = 8 - 4 = 4 * 1$
/ piir (/)	$\varphi(p^{n}) = p^{n} - p^{n-1} = p^{n-1} * (p-1)$	$\varphi(2^\circ) = 8 - 4 = 4 * 1$ {1,2,3,4,5,6,7,8}
	$\phi(m * n) = \phi(m) * \phi(n) \qquad \gcd(m n) = 1$	
	$\frac{\phi(m * n) = \phi(m) * \phi(n), \gcd(m, n) = 1}{n = p_1^{e_1} * p_2^{e_2} * \dots * p_k^{e_k}, p_i \in \mathbb{P}, p_i \neq p_j \text{ für } i \neq j}$	$\frac{\phi(2*3) = \phi(2)*\phi(3) = 2}{225 = 3^2 * 5^2}$
	$\phi(n) = \phi(p_{e_1}^{e_1}) * \phi(p_{e_2}^{e_2}) * \dots * \phi(p_{e_k}^{e_k})$	$\phi(225) = \phi(3^2) * \phi(5^2)$
	$\frac{k}{k} = \frac{k}{k} \left(\frac{1}{k} \right)$	I must know the prime
	$\phi(n) = \phi(p_1^{e_1}) * \phi(p_2^{e_2}) * \dots * \phi(p_k^{e_k})$ $\phi(n) = \prod_{k=1}^{k} p_i^{e_{i-1}} * (p_i - 1) = n * \prod_{k=1}^{k} \left(1 - \frac{1}{p_i}\right)$	factors.
	i=1 $i=1$	
Euler's Totient	if a und n are positive integers and relatively prime: d(n) = 1	$gcd(3,4) = 1$ $3^{\phi(4)} \equiv 3^2 \equiv 9 \equiv 1 \pmod{4}$
Theorem	$\frac{a^{\phi(n)} \equiv 1 \pmod{n}}{\frac{b^{\phi(n)} \equiv a^{p-1} \equiv 1 \pmod{n}}{1 + 1 + 1} + \frac{b^{\phi(n)}}{1 + 1} + \frac{b^{\phi(n)}}{1 + 1} + \frac{b^{\phi(n)}{1$	$\frac{3^{\varphi(4)} = 3^2}{3^4} \equiv 9 \equiv 1 \pmod{4}$ $3^4 \equiv 81 \equiv 1 \pmod{5}$
	if <i>n</i> is prime: $a^{\phi(p)} \equiv a^{p-1} \equiv 1 \pmod{p} \rightarrow$ Fermats little theorem What are the "last two digits" of $123^{562} \rightarrow mod \ 100$ which is not prime	5 = 61 = 1 (mou 5)
usage	<i>Euler's theorem</i> : $m^{\phi(100)} \equiv 1 \pmod{100}$ and $gcd(123,100) = 1$	
	$123^{\phi(100)} \equiv 123^{40} \equiv 1 \pmod{100}$	
	$123^{562} \equiv (123^{40})^{14} * 123^2 \equiv 1 * 123^2 = 23^2 = 29 \pmod{100}$	
Multiplicative	The multiplicative order of $g \mod n$ is the smallest positive integer e that:	<i>g</i> = 2, <i>n</i> = 5
Order	$g^e \equiv 1 \pmod{n}, g \in \mathbb{Z}$	$2^1 \equiv 2 \pmod{5}$
		$2^2 \equiv 4 \pmod{5}$
		$2^3 \equiv 8 \equiv 3 \pmod{5}$ $2^4 \equiv 16 \equiv 1 \pmod{5}$
		$2^{\circ} = 10 \equiv 1 \pmod{5}$ ord(2) = 4 (mod 5)
properties	$g^f \equiv 1 \pmod{n}$, $f \in \mathbb{N}$, if and only if f is divisible by the order e of g	$2^8 \equiv 1 \pmod{5}$
	$g^k \equiv g^l \pmod{n}$, if and only if $k \equiv l \pmod{e}$	$2^8 \equiv 1 \pmod{5}$ $2^{101} \equiv 2^{301} \pmod{5}$
<pre>/multord(g,n)</pre>		$da \ 101 \equiv 301 \ (mod \ 4)$
/multord(8,5)	$g^k = \frac{e}{\gcd(e,k)}, \qquad k \in \mathbb{N}$	$ord(2^2) = \frac{4}{\gcd(4,2)} = 2$
	gca(e, k)	
	$ord(2^{6}) \equiv ord(4), da \ 2^{6} \equiv 64 \equiv 4 \pmod{5}$	$ord(2^3) = \frac{4}{aad(4,2)} = 4$
Generators	$p \in \mathbb{P}, g \in \{1, 2, \dots, p-1\}$	$ord(2^{3}) = \frac{4}{\gcd(4,3)} = 4$ $g = 2, p = 7$ $g = 3, p = 5$
module p	<i>p</i> is a generator <i>mod p</i> if: $g^i \mod p$ with $1 \le i \le p-1$	$2^{1} \equiv 2$ $3^{1} \equiv 3$
generator /	generates 1,2,, $p-1$	$2^2 \equiv 4 \qquad \qquad 3^2 \equiv 4$
primitive element	$\rightarrow g$ is a generator if the order of $g \mod p$ is $p-1$	$2^{1} \equiv 2$ $2^{2} \equiv 4$ $2^{3} \equiv 1$ $2^{4} \equiv 2$ $3^{1} \equiv 3$ $3^{2} \equiv 4$ $3^{3} \equiv 2$ $3^{4} \equiv 1$
	There are generators for any prime p.	$2^4 \equiv 2 \qquad \qquad 3^4 \equiv 1$
/gen(g,p) /gen(2,7)	The number of generators $mod \; p$ is given by $\phi(p-1)$	$\begin{array}{c c} \rightarrow no & \rightarrow yes \\ ord(2) = 3 & ord(3) = 4 \end{array}$
Chinese	$x \equiv a_1 \pmod{m_1}$	$x = 5 \pmod{7}$
Remainder	$x \equiv a_2 \pmod{m_2} \qquad \qquad \gcd(m_i, m_i) = 1, i \neq j$	$x = 3 \pmod{7}$ $x = 3 \pmod{11}$
Theorem	$x \equiv a_n \pmod{m_n}$	$x = 10 \pmod{13}$
(Chinesischer		M = 7 * 11 * 13 = 1001
Restwertsatz)	$M = \prod_{i=1}^{n} m_i = m_1 * m_2 * \dots * m_n$	$M_1 = 143 \rightarrow e_1 = 715$ $M_1 = 91 \rightarrow e_2 = 364$
animt /	<i>i</i> =1 <i>M</i>	$M_2 = 91 \rightarrow e_2 = 364$ $M_3 = 77 \rightarrow e_3 = 924$
$(a_1 m_1)$	$M_i = \frac{1}{m_i} = m_1 * m_2 * \dots * m_{i-1} * m_{i+1} * \dots * m_n \to \gcd(m_i, M_i) = 1$	143 - 77 - 63 - 724
chin ()	$\rightarrow r_i * m_i + s_i * M_i = \gcd(m_i, M_i) = 1, \qquad e_i = s_i * M_i \pmod{M}$	
$(a_n m_n)$	$n = \left(\sum_{n=1}^{n} \sum_{i=1}^{n} \right)$	<i>x</i> = 894
	$M = \prod_{i=1}^{n} m_i = m_1 * m_2 * \dots * m_n$ $M_i = \frac{M}{m_i} = m_1 * m_2 * \dots * m_{i-1} * m_{i+1} * \dots * m_n \to \gcd(m_i, M_i) = 1$ $\to r_i * m_i + s_i * M_i = \gcd(m_i, M_i) = 1, \qquad e_i = s_i * M_i \pmod{M}$ $x = \left(\sum_{i=1}^{n} a_i * e_i\right) \mod M$	

ZHAW/HSK		print	date: 08.02.19	FIP_CryptCo
3a. Symmetric (Cryptography			
Terms	Cryptos = hidden (from Gree	(بار		
Terms	Desire of confidentiality -> p	-	n from disallowed reading	
Tasks			bobody has changed the received documen	+
IdSKS			isure who has sent this document.	ι.
		0.		
Current o guro un hu c	indisputable (undestreitbar)	-	e that, this person has done that.	
Cryptography			Encryption (Verschlüsselung)	
		i	$E_Z = \mathcal{X} \to \mathcal{Y} \text{ with } z \in \mathcal{Z}$	
			$\mathcal{E}, E_k = \mathcal{P} \rightarrow \mathcal{C} \text{ with } k \in \mathcal{K}$	
	\mathcal{X}, \mathcal{P} : set of plaintexts		\mathcal{Z},\mathcal{K} : set of keys	\mathcal{Y}, \mathcal{C} : set of ciphertexts
	readable,			readable,
	understandable			not understandable
		1	Decryption (Entschlüsseln)	
			$D_Z = \mathcal{Y} \to X \text{ with } z \in \mathcal{Z}$	
			$\mathcal{D}, D_k = \mathcal{C} \rightarrow \mathcal{P} \text{ with } k \in \mathcal{K}$	
C	The law date desmust see as			
Symmetric		-	omputed from the key <i>e</i> to encrypt.	
Attacks	The Attacker knows the algo			
		-	rests solely on the secrecy of the key.	
	And not on the missing know			
Scenarios		-	y the ciphertext (most difficult)	h,a,e,g,s,d,f
			ne part of the plaintext (realistic)	weather forecast
	Chosen Plaintext: try by mys			a,a,a,a,a -> x,x,x,x,x
	Brute force: Try all combinat	cions -> k	key space needs to be large	a,b,c,d,>
	Determine the key z in use.			
Block Ciphers	We have an alphabet ${\mathcal A}$ of p	lain text	and cipher text symbols	e.g. $\mathcal{A} = \{0,1\} \text{ or } \{a \dots z\}$
(Verschlüsselung)	n: fixed block length			e.g. 64-bit code
	$\mathcal{X} = \mathcal{A}^n$: set of plaintexts			
	$\mathcal{Y} = \mathcal{A}^n$: set of ciphertexts			
	does not say how long the ke			
requirements	Encryption = Permutation = 0			e.g. shuffle cards
	Injective (one-by-one): $f(x)$		-	each ${\mathcal P}$ has one unique ${\mathcal C}$
			uld result in the same ciphertext.	
	Surjective (onto): $y \in \mathcal{Y} \to \mathbb{R}$			each ${\mathcal C}$ has at least one ${\mathcal P}$
		-	ertexts without valid plaintexts.	
	→ Bijective Self-Mapping (In			$\mathcal{C} \leftrightarrow \mathcal{P}$
Linear functions			$\{0,1,\ldots,m-1\}$	e.g. $\mathcal{A} = \{025\}, m = 26$
	all computations are module) m, to e	nsure that result is between 0 and $m-1$	
linear	Scalars: $\alpha, \beta \in \mathbb{Z}_m$			
	Vectors: $\vec{v}, \vec{w} \in (\mathbb{Z}_m)^n$		$f(\alpha \vec{v} + \beta \vec{w}) = \alpha * f(\vec{v}) + \beta * f(\vec{w})$	
	Function $f: (\mathbb{Z}_m)^n \to (\mathbb{Z}_m)^k$			
affine	Map $M: (k \times n)$ -matrix with	entries	\mathbb{Z}_m	
= linear + bijective	b : vector in $(\mathbb{Z}_m)^k$, $b = 0 \rightarrow$	f is line	ear	
	f	\vec{v}) = (N	$(\vec{v} + \vec{b}) \mod m$	
/invmod(m,n)	an affine map is bijective if:		,	
/invmodstep	1. $k = n$			
	2. $gcd(det(M), m) =$	$1 \rightarrow (de)$	$et(M))^{-1}(mod \ m) \ exists$	
	determinant of M n	-		
determinant	The factor of area changes w	hen mu	Itiplying with a position vector.	
det()	If negative we flip the area (a			
	$2 \times 2 \rightarrow \text{calculate } a_x * b_y -$	-		
	$3 \times 3 \rightarrow$ Hand rule of Sarrus			
			or when multiplying> $det = 1$	1
Confusion			$(\vec{z}), i \in \{1 \dots n\}$	
(Verwirrung)			x -> linear functions are not enough	
(verwirtung)	For a given x and y, it is not f			
Diffusion	-> do this with different rounds (enough big): $E = E_R \circ E_{R-1} \circ \dots \circ E_1$			
(Streuung)	Every ciphertext bit should depend on every plaintext and every key bit. -> Changing a single bit in the plaintext (or the key), on the average 50% of			
(Streuting)			in the key, on the average 50% of	
	the ciphertext bits should ch	ange		1

print date: 08.02.19

Alg: Vigenère	Encryption: $E_Z: (\mathbb{Z}_m)^n \to (\mathbb{Z}_m)^n, \ \vec{v} \to \vec{v} + \vec{z} \pmod{m}$				
Cipher	Decryption: $D_Z: (\mathbb{Z}_m)^n \to (\mathbb{Z}_m)^n, \vec{v} \to \vec{v} - \vec{z} \pmod{m}$				
von Julius Caesar		Variation 1	Variation 2	Variation 3	One-Time-Pad
	Plaintext	a, b, c, \ldots, x, y, z	a, b, c, , x, y, z	a, b, c, , x, y, z	010001101110
affine encryption	Ciphertext	$d, e, f, \dots a, b, c$	e, i, x, , a, b, k	e.g. Apfel	101101010110
	Number of key	26	$26! = 4 * 10^{26}$		long as plaintext
	Encryption	Shift to right	Randomly permutate	abc.xyz	add a random key
			abcxyz efxhuk	a b c . x y z p g r . m n o	-11 - 2 - 1
				fgh.cde	
				efg.bcd	
	Brute force attack	easy, only #26	difficult, but possible	ciphertext too short	secure proven
		too little keys	word structure	word structure	key to long
	Example	(+3) haus -> kdxv	zac -> kex	zac -> zph	
Alg: Hill Cipher	\mathcal{Z} : set of all invertible $n imes n$ matrices with components from \mathbb{Z}_m				
	matrix must be invertible: $gcd(det(M), m) = 1$				
	Key: $M \in (\mathbb{Z}_m)^{n \times n}$				
	E_M	$(\mathbb{Z}_m)^n \to (\mathbb{Z}_m)^n$,	$\vec{v} \to M * \vec{v} \pmod{m}$		
	Linear permutations	s of vector of lengt	hn		
Alg: General Affine					
Cipher	M: invertible Matrix in $(\mathbb{Z}_m)^{n \times n}$				
	b: vector in $(\mathbb{Z}_m)^n$				
	Encryption: $E_{(M,b)}: (\mathbb{Z}_m)^n \to (\mathbb{Z}_m)^n, v \to Mv + b \pmod{m}$				
	Special Cases:				
	M = 1: Vignère				
	b = 0: Hill				
	Every affine encrypt	ion is solvable.			

4. Algebraic basics	2	
Algebraic Group	A group is a set G together with a binary operation \circ ,	$G = $ Set of Integer \mathbb{Z}
	which combines two elements of G.	$\circ = addition'+'$
properties	Closure (Abgeschlossenheit): $a, b \in G \Rightarrow a \circ b \in G$	$a + b \in \mathbb{Z}$
	Associativity: $(a \circ b) \circ c = a \circ (b \circ c)$	(a+b) + c = a + (b+c)
	Identity Element e (Einheitselement): $e \circ a = a \circ e = a$	0 + a = a + 0 = a
	Inverse Element a^{-1} : $a^{-1} \circ a = a \circ a^{-1} = e$	(-a) + a = a + (-a) = 0
Abelian Group	Commutative Group $a \circ b = b \circ a$	a+b=b+a
Algebraic Field	A field is a set F together with two binary operations \oplus and \otimes ,	$F = Rational numbers \mathbb{Q}$
(Körper)	satisfying the properties	$\oplus =' +', \otimes =' *'$
properties		(Q, +)
h	The identity element with respect to \oplus is denoted by 0.	e = 0
	$(F - \{0\}, \bigotimes)$ is an Abelian Group.	$(\mathbb{Q}-\{0\},\otimes)$
	The identity element with respect to \otimes is denoted by 1.	e = 1
	Distributive Law holds: $a \otimes (b \oplus c) = a \otimes b \oplus a \otimes c$	a * (b + c) = ab + ac
Remarks		
Remarks	"multiplication"	
	We can solve linear equality systems in an algebraic field, because of	
	the 4 basic operations (addition, subtraction, multiplication, division).	
	Modulo is not an algebraic field.	
nranartiaa	$\forall a \in F, a \otimes 0 = 0 \otimes a = 0$	a * 0 = 0 * a = 0
properties	$\forall a \in F, a \otimes 0 = 0 \otimes a = 0$ $\forall a, b \in F \text{ and } a, b \neq 0 \Rightarrow a \otimes b \neq 0$	a * 0 = 0 * a = 0 $1 * 2 \neq 0$
	$a \otimes b = 0 \text{ and } b \neq 0 \Rightarrow a \otimes b \neq 0$	$a * 5 = 0 \rightarrow a = 0$
	$a \otimes b = 0$ and $a \otimes b = a \otimes c \Rightarrow b = c$	$3 * a = 3 * b \rightarrow b = c$
Finite Fields /	GF(q): Field with a finite number q of elements	$GF(2) = \{0,1\} \rightarrow q = 2$
Galois Fields		$1+1=0 \pmod{2}$
	Smallest number λ such that $\sum_{i=1}^{\lambda} 1 = 0$	$\lambda = 2$
	λ is always a prime	<i>μ</i> – 2
	Finite Fields exist only if $q = \lambda^n$ with $n \in \mathbb{N}$ and $\lambda \in \mathbb{P}$	$2 = 2^1 \rightarrow \text{Prime}$
	$n = 1 \rightarrow$ Prime Field	$2 = 2^2 \rightarrow \text{Prime}$ $4 = 2^2 \rightarrow \text{Extended}$
Duine Field	$n > 1 \rightarrow$ Extended Field	
Prime Field	$GF(p)$ or \mathbb{Z}_p	$GF(2) \qquad GF(3) \\ m = 2 \qquad m = 2$
(Restklassenkörper)	Number of elements p is prime	$ \begin{array}{c c} p = 2 \\ F = \{0,1\} \end{array} \begin{array}{c c} p = 3 \\ F = \{0,1,2\} \end{array} $
A 1 1.1.	$F = \{0, 1, 2, \dots, p-1\}$	
Addition	$a \oplus b = a + b \bmod p$	\oplus 0 1 2 additive inv
/prifiadd(p)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
/pririadu(p)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Multiplication	$a \otimes b = a * b \mod p$	\otimes 0 1 2 multipl inv
/	since p is prime $gcd(a, p) = 1$ for all $a \in F - \{0\}$ and thus a^{-1} exists	$0 0 0 0 0^{-1}$ not exist
/prifimul(p)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		2 0 2 1 $2^{-1} = 2$
Polynomials	$ m(x) - \alpha + x^{m} \alpha + x^{m-1} \alpha + x \alpha = \alpha \in E$	
	$p(x) = a_m * x^m + a_{m-1} * x^{m-1} + \dots + a_1 * x + a_0, \qquad a_i \in F$	$p(x) = 3x^2 + x - 1$
-	if $a_m \neq 0$ then a_m is called the leading coefficient	leading coefficient: $a_m = 3$
-	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$	leading coefficient: $a_m = 3$ degree: $m = 2$
-	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$ if $a_m = 1$ then $p(x)$ is called monic (monisch)	leading coefficient: $a_m = 3$
-	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$ if $a_m = 1$ then $p(x)$ is called monic (monisch) The set of polynomials over the field F is denoted by $F[x]$	leading coefficient: $a_m = 3$ degree: $m = 2$
-	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$ if $a_m = 1$ then $p(x)$ is called monic (monisch)	leading coefficient: $a_m = 3$ degree: $m = 2$
properties	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$ if $a_m = 1$ then $p(x)$ is called monic (monisch) The set of polynomials over the field F is denoted by $F[x]$ $p(x) = 1.0 * x^2 + 1.0$ over $\mathbb{R} \rightarrow$ start in the real numbers $p(x) = 0 \rightarrow$ no solution in \mathbb{R}	leading coefficient: $a_m = 3$ degree: $m = 2$
properties	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$ if $a_m = 1$ then $p(x)$ is called monic (monisch) The set of polynomials over the field F is denoted by $F[x]$ $p(x) = 1.0 * x^2 + 1.0 \text{ over } \mathbb{R} \rightarrow \text{ start}$ in the real numbers $p(x) = 0 \rightarrow \text{no solution in } \mathbb{R}$ We define α such that $p(\alpha) = \alpha^2 + 1 = 0$	leading coefficient: $a_m = 3$ degree: $m = 2$
properties	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$ if $a_m = 1$ then $p(x)$ is called monic (monisch) The set of polynomials over the field F is denoted by $F[x]$ $p(x) = 1.0 * x^2 + 1.0 \text{ over } \mathbb{R} \rightarrow \text{ start}$ in the real numbers $p(x) = 0 \rightarrow \text{no solution in } \mathbb{R}$ We define α such that $p(\alpha) = \alpha^2 + 1 = 0$ 1. $\alpha \in \mathbb{R} \rightarrow \text{the solution of } p(x)$	leading coefficient: $a_m = 3$ degree: $m = 2$
properties	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$ if $a_m = 1$ then $p(x)$ is called monic (monisch) The set of polynomials over the field F is denoted by $F[x]$ $p(x) = 1.0 * x^2 + 1.0 \text{ over } \mathbb{R} \rightarrow \text{ start}$ in the real numbers $p(x) = 0 \rightarrow \text{no solution in } \mathbb{R}$ We define α such that $p(\alpha) = \alpha^2 + 1 = 0$ 1. $\alpha \in \mathbb{R} \rightarrow \text{the solution of } p(x)$ 2. $\alpha^2 + 1 = 0 \Rightarrow \alpha^2 - 1$	leading coefficient: $a_m = 3$ degree: $m = 2$
properties	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$ if $a_m = 1$ then $p(x)$ is called monic (monisch) The set of polynomials over the field F is denoted by $F[x]$ $p(x) = 1.0 * x^2 + 1.0$ over $\mathbb{R} \to $ start in the real numbers $p(x) = 0 \to $ no solution in \mathbb{R} We define α such that $p(\alpha) = \alpha^2 + 1 = 0$ 1. $\alpha \in \mathbb{R} \to $ the solution of $p(x)$ 2. $\alpha^2 + 1 = 0 \Rightarrow \alpha^2 - 1$ $E = \{a + b * \alpha a, b, \in \mathbb{R}\} \to $ define extended field	leading coefficient: $a_m = 3$ degree: $m = 2$
properties	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$ if $a_m = 1$ then $p(x)$ is called monic (monisch) The set of polynomials over the field F is denoted by $F[x]$ $p(x) = 1.0 * x^2 + 1.0$ over $\mathbb{R} \to $ start in the real numbers $p(x) = 0 \to $ no solution in \mathbb{R} We define α such that $p(\alpha) = \alpha^2 + 1 = 0$ 1. $\alpha \in \mathbb{R} \to $ the solution of $p(x)$ 2. $\alpha^2 + 1 = 0 \Rightarrow \alpha^2 - 1$ $E = \{a + b * \alpha a, b, \in \mathbb{R}\} \to $ define extended field $p(x) = x^2 + 1$ over $GF(2) = \{0,1\}$	leading coefficient: $a_m = 3$ degree: $m = 2$
properties	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$ if $a_m = 1$ then $p(x)$ is called monic (monisch) The set of polynomials over the field F is denoted by $F[x]$ $p(x) = 1.0 * x^2 + 1.0 \text{ over } \mathbb{R} \rightarrow \text{ start}$ in the real numbers $p(x) = 0 \rightarrow \text{no solution in } \mathbb{R}$ We define α such that $p(\alpha) = \alpha^2 + 1 = 0$ 1. $\alpha \in \mathbb{R} \rightarrow \text{the solution of } p(x)$ 2. $\alpha^2 + 1 = 0 \Rightarrow \alpha^2 - 1$ $E = \{a + b * \alpha a, b, \in \mathbb{R}\} \rightarrow \text{define extended field}$ $p(x) = x^2 + 1 \text{ over } GF(2) = \{0,1\}$ $p(x) = (x + 1)(x + 1) \rightarrow \text{Behauptung}$	leading coefficient: $a_m = 3$ degree: $m = 2$
properties	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$ if $a_m = 1$ then $p(x)$ is called monic (monisch) The set of polynomials over the field F is denoted by $F[x]$ $p(x) = 1.0 * x^2 + 1.0 \text{ over } \mathbb{R} \rightarrow \text{ start}$ in the real numbers $p(x) = 0 \rightarrow \text{no solution in } \mathbb{R}$ We define α such that $p(\alpha) = \alpha^2 + 1 = 0$ 1. $\alpha \in \mathbb{R} \rightarrow \text{the solution of } p(x)$ 2. $\alpha^2 + 1 = 0 \Rightarrow \alpha^2 - 1$ $E = \{a + b * \alpha a, b, \in \mathbb{R}\} \rightarrow \text{define extended field}$ $p(x) = x^2 + 1 \text{ over } GF(2) = \{0,1\}$ $p(x) = (x + 1)(x + 1) \rightarrow \text{Behauptung}$	leading coefficient: $a_m = 3$ degree: $m = 2$
properties	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$ if $a_m = 1$ then $p(x)$ is called monic (monisch) The set of polynomials over the field F is denoted by $F[x]$ $p(x) = 1.0 * x^2 + 1.0 \text{ over } \mathbb{R} \rightarrow \text{ start}$ in the real numbers $p(x) = 0 \rightarrow \text{no solution}$ in \mathbb{R} We define α such that $p(\alpha) = \alpha^2 + 1 = 0$ 1. $\alpha \in \mathbb{R} \rightarrow \text{the solution of } p(x)$ 2. $\alpha^2 + 1 = 0 \Rightarrow \alpha^2 - 1$ $E = \{a + b * \alpha a, b, \in \mathbb{R}\} \rightarrow \text{define extended field}$ $p(x) = x^2 + 1 \text{ over } GF(2) = \{0,1\}$ $p(x) = (x + 1)(x + 1) \rightarrow \text{Behauptung}$ $p(x) = x^2 + x + x + 1 = x^2 + x \underbrace{(1 + 1)}_{0} + 1 = x^2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $	leading coefficient: $a_m = 3$ degree: $m = 2$
properties example	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$ if $a_m = 1$ then $p(x)$ is called monic (monisch) The set of polynomials over the field F is denoted by $F[x]$ $p(x) = 1.0 * x^2 + 1.0$ over $\mathbb{R} \rightarrow$ start in the real numbers $p(x) = 0 \rightarrow$ no solution in \mathbb{R} We define α such that $p(\alpha) = \alpha^2 + 1 = 0$ 1. $\alpha \in \mathbb{R} \rightarrow$ the solution of $p(x)$ 2. $\alpha^2 + 1 = 0 \Rightarrow \alpha^2 - 1$ $E = \{a + b * \alpha a, b, \in \mathbb{R}\} \rightarrow$ define extended field $p(x) = x^2 + 1$ over $GF(2) = \{0,1\}$ $p(x) = (x + 1)(x + 1) \rightarrow$ Behauptung $p(x) = x^2 + x + x + 1 = x^2 + x \underbrace{(1 + 1)}_{0} + 1 = x^2 + 1 \rightarrow$ Beweis	leading coefficient: $a_m = 3$ degree: $m = 2$ $p(x) = x^2 + x - 1$
properties example	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$ if $a_m = 1$ then $p(x)$ is called monic (monisch) The set of polynomials over the field F is denoted by $F[x]$ $p(x) = 1.0 * x^2 + 1.0$ over $\mathbb{R} \rightarrow$ start in the real numbers $p(x) = 0 \rightarrow$ no solution in \mathbb{R} We define α such that $p(\alpha) = \alpha^2 + 1 = 0$ 1. $\alpha \in \mathbb{R} \rightarrow$ the solution of $p(x)$ 2. $\alpha^2 + 1 = 0 \Rightarrow \alpha^2 - 1$ $E = \{a + b * \alpha a, b, \in \mathbb{R}\} \rightarrow$ define extended field $p(x) = x^2 + 1$ over $GF(2) = \{0,1\}$ $p(x) = (x + 1)(x + 1) \rightarrow$ Behauptung $p(x) = x^2 + x + x + 1 = x^2 + x \underbrace{(1 + 1)}_{0} + 1 = x^2 + 1 \rightarrow$ Beweis A polynomial with coefficients in a field F is said to be irreducible over	leading coefficient: $a_m = 3$ degree: $m = 2$ $p(x) = x^2 + x - 1$ $x^2 + 1$ is irreducible over \mathbb{Q} ,
example	if $a_m \neq 0$ then a_m is called the leading coefficient and m is the degree of $p(x)$ if $a_m = 1$ then $p(x)$ is called monic (monisch) The set of polynomials over the field F is denoted by $F[x]$ $p(x) = 1.0 * x^2 + 1.0$ over $\mathbb{R} \rightarrow$ start in the real numbers $p(x) = 0 \rightarrow$ no solution in \mathbb{R} We define α such that $p(\alpha) = \alpha^2 + 1 = 0$ 1. $\alpha \in \mathbb{R} \rightarrow$ the solution of $p(x)$ 2. $\alpha^2 + 1 = 0 \Rightarrow \alpha^2 - 1$ $E = \{a + b * \alpha a, b, \in \mathbb{R}\} \rightarrow$ define extended field $p(x) = x^2 + 1$ over $GF(2) = \{0,1\}$ $p(x) = (x + 1)(x + 1) \rightarrow$ Behauptung $p(x) = x^2 + x + x + 1 = x^2 + x \underbrace{(1 + 1)}_{0} + 1 = x^2 + 1 \rightarrow$ Beweis	leading coefficient: $a_m = 3$ degree: $m = 2$ $p(x) = x^2 + x - 1$

	print date. 08.02.15	
Extended Fields	Start with a polynomial $m(x)$ of degree $n > 1$	$m(x) = x^2 + x + 1$
(Erweiterungs-körper)	that is irreducible over a given field F.	$F = GF(2) = \{0,1\}$
	The elements of the extended field E are all polynomials in $F[x]$ with	
	degree less than n. $E = \{a_{n-1}x^{n-1} + \dots + a_1x + a_0, a_i \in F\}$	
Addition		
Multiplication		
	2. Divide my $m(x)$	
	3. Take the remainder (degree is always less than n)	
1. irreducible	a. $m(x) = x^2 = x * x \rightarrow reducible$	
polynomial of degree	b. $m(x) = x^2 + 1 = (x + 1)(x + 1) \rightarrow reducible$	
n = 2	c. $m(x) = x^2 + x = x(x + 1) \rightarrow reducible$	
	d. $m(x) = x^2 + x + 1 \rightarrow irreducible$ (there has to be one)	
2. extended field	$E = \{0 * x + 0, 0 * x + 1, 1 * x + 0, 1 * x + 1\}$	
	$E = \{0, 1, x, x + 1\}$	
3. addition table	\oplus 0 1 x x+1	
	0 0 1 x x+1	
<pre>/extfiadd(q,m)</pre>	1 1 0 $x+1$ $x+1+1=x$	
/extfiadd(2, x^2+x+1)	x x $x + 1$ $2x = 0x = 0$ $2x + 1 = 1$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
4. multiply table		$x^2 \equiv -x - 1 \equiv x + 1$
/extfimul(q,m)		$x = x^{-1} = x^{-1}$ $x(x + 1) = x^{2} + x^{-1}$
<pre>/extfimul(2,x^2+x+1)</pre>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	= x + 1 + x = 1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(x+1)(x+1)
<pre>polyRemainder(f,m)</pre>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$= x^{2} + 2x + 1 = x^{2} + 1$
		= x + 1 + 1 = x
remarks	we calculate with module irreducible polynom. $m(x) \equiv 0 \pmod{m(x)}$	
	no signs in <i>GF</i> (2)	
Primitive element	The powers of (e.g. x) generate all non-zero elements of E	$x^0 = 1, x^1 = x$
		$x^2 = x + 1$
Primitive polynomial	A polynomial $p(x)$ of degree n over $GF(q)$ is primitive if:	$GF(2^2) \rightarrow q = 4$
	p(x) is irreducible	p=2
	$p(x) x^{q-1}-1, \qquad q=p^n$	$x^2 + x + 1 x^3 - 1$
	$p(x) \nmid x^k - 1, \qquad 0 < k < p^n - 1$	$x^2 + x + 1 \neq x^2 - 1$
	The root α of a primitive polynomial $p(x)$ of degree n over $GF(p)$ is a	
	primitive element of the field $GF(p^n)$	
	$p(x) x^{q-1} - 1 \Leftrightarrow x^{q-1} - 1 = p(x) * k(x), \qquad q = p^n$	
	Let α be a root of $p(x)$: $p(\alpha) = 0$	
	We conclude: α is a $q - 1$ -root of unity	
	However, $\alpha^k \neq 1$ for $0 < k < q - 1$	
	Otherwise $p(x)$ would divide $x^k - 1$ for $0 < k < q - 1$	
Example	$p(x) = x^3 + x + 1 \pmod{x^3 + x + 1} = 0, n = 3, GF(2)$	$q = 2^n = 8$
	$x^{3} = -x - 1 = x + 1$	$\alpha = x$
	Power Polynomial in α binary int	-
/polgen(p,n,m)	0 0 0 0 0	Use the table for multiplying
polgen(2,3,x^3+x+1)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11
$p^n (mod n)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	We use primitive
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	polynomials because x is a
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	generator element.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		4
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	41
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\begin{array}{c c} & = x^2 + 1 \\ \hline x^7 & x * x^6 = x^3 + x = 2x + 1 = 1 \\ \hline \end{array}$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	J
	$x^2(x^2 + x + 1) = x^2 * x^5$	
multorder	= first element with value 1 except $x^0 = 1$	

print date: 08.02.19

ZHAW/HSR

FTP_CryptCod

5. Symmetric Encryption Algorithms						
DES - Data Encryption Standard	AES - Advanced Encryption Standard	IDEA - International Data Encryption Algorithm				
Algorithm based on 'Lucifer'		PES - not secure -> Differential Crypto				
Published in 1975 -> IBM und NSA		Improved Proposed Encryption Standard				
Block cypher, Feistel network		1991				
Block size: 64 bits	Block size: 128 bits	128bit key				
Key size: 56 (+8 parity bits / prüf bits)	Key size: 128/192/256 bits	Key size: 16 bits				
unsecure, too small -> Brute Force Attack	secure	As much provable security as possible #rounds = 6				
#rounds: 16 (to get a good diffusion)	<pre>#rounds = 10/12/14 (key size dependent)</pre>	Scalable: Mini-versions with 2/4/8 bit				
Plain Text Key	Store input bits into state matrix	Transparency: no "random-looking"				
64 56	AddRoundKey	tables or "mysterious" S-Boxes				
Permutation Initial Permutation	For each round (except last one)	Easy to substitute for DES Fast in Software and Hardware				
	ShiftRows	x_1 x_2 x_3 x_4 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow				
Round 1	SubBytes					
L_1 R_1 S_1	AddRoundKey					
L ₁₅ R ₁₅ S ₁₅	MixColumns					
L ₁₆ R ₁₆	ShiftRows					
Permutation Inverse Initial Permutation	SubBytes	Y ₁ Y ₂ Y ₃ Y ₄				
64	AddRoundKey	final round				
Cipher Text	Return state matrix					
Permutation -> no crypto significance		$Z_1 \rightarrow \bigcirc Z_2 \rightarrow \bigcirc \downarrow \qquad \qquad$				
One Round	Store input bits into state matrix	3 incompatible operations -> Confusion				
L _{i1} R _{i1} S _{i1}	16*8=128bit input -> insert in state	\oplus Bit-by-bit modulo-two addition (xor)				
	matrix (4x4 with 8bit values)	\boxplus Addition modulo 2^{16}				
Expansion		\odot Multiplication modulo $2^{16} + 1$ of non-				
Permutation Shift Shift	Add round key (XOR)	zero numbers				
48 28 Permutation	early to avoid reversion by the attacker	$-2^{16} + 1$ is prime				
Choice	and 9 hit value are interpreted as	- 2 ¹⁶ is represented by the all-zero string				
	each 8-bit value are interpreted as elements of $GF(2^8)$	Multiply-Add (M-A) Box -> Diffusion				
48	with polynomial					
S-Boxes	$m(x) = x^8 + x^4 + x^3 + x + 1$	z				
32	Key Expansion = Generate a round key					
Permutation	from the key					
32		<u>4</u> 4				
	Add Round Key at the end	=;				
32	operations can be inverted -> encryption	TI				
		each output depends on every input				
1. Expansion Permutation	SubBytes = Non-linear byte substitution	Encryption/Decryption Similarity				
see Expansion Permutation table;	-> Confusion	final round causes that the same				
1 -> 2&48; 2 -> 3; 4 -> 5 & 7	i) take the multiplicative inverse of	structure can be used to encrypt and to				
Expansion, because several bits of the	$GF(2^8)$, map {00} to {00}	decrypt> Mult-Add-Add-Mult				
input will be used twice.	ii) Affine transformation over $GF(2^8)$					
XOR (step 1. and key K)	Shift rows = copy first row,					
S-Boxes (S=Substitution) -> Confusion	shift 2nd by 1, 3rd by 2 and last by 3					
8 Boxes = each 6 input bits, 4 output bits	Mix Columns = matrix multiplication of a					
Take first & last bits -> $0 \le i \le 3$ -> row	column (polynomial) with const matrix					
Take middle 4 bits $0 \le j \le 15$ -> column	-> modulo $m(x) = x^4 + 1$ in $GF(2^8)$,					
see S-Boxes table (non-linear)	$03 \rightarrow x^2 + 1$					
protect against differential analysis	Add round key = XOR each column of the					
Permutation (see permutation table) $1 \leftarrow 16$ $2 \leftarrow 7$ $2 \leftarrow 20$	state matrix with the corresponding					
$1 \leftarrow 16, \qquad 2 \leftarrow 7, \qquad 3 \leftarrow 20$	word from the round key					

	Left half plaintext Right half plaintext T XOR Fx() K = round key M L -> Regardless of $F_K(R)$, the same structure can be used to decrypt, by changing left and right at the beginning.	$T(L,R) = (L \bigoplus F_K(R), R)$ $M(L,R) = (R,L)$
	2 DES after each other -> with meet-in-the-middle attackable	
	attack from left and right and compare the result $2^{56} + 2^{56} = 2^{57}$	
	I know what goes in and what comes out	
Triple DES	$Plaintext \longrightarrow \begin{array}{c} Key 1 \\ Heightarrow Key 2 \\ Heightarrow Key 2 \\ Heightarrow Key 3 \\$	
	$\begin{array}{c} Key 3 \\ \hline \\ Ciphertext \end{array} \xrightarrow{DES} \\ Dechiff. \end{array} \xrightarrow{B} \\ \hline \\ DES \\ Dechiff. \end{array} \xrightarrow{A} \\ DES \\ Dechiff. \end{array} \xrightarrow{DES} \\ \hline \\ Dechiff. \end{array} \xrightarrow{Plaintext} \\ Fey 1,2 and 3 should be independent \\ \end{array}$	
	If all three keys are identic -> single DES	

ZHAW/HSK		.00
3b. Block (Ciphe	r) Modes	
	What should we do, when we have more than 64/128-bit data to encrypt?	
Electronic Code	Each plaintext block (of length n) is encrypted individually (with same key)	
Book (ECB)	-> not appropriate, except input blocks are random	-
drawbacks	Repetitions of plaintext blocks will be perceivable Same plaintext block will always be mapped to same ciphertext block Attacker can change order of ciphertext blocks (or can introduce new blocks)	
Cipher Block	incremental blocks	
Chaining (CBC)	initialization vector (not secret, unpredictable)	
drawbacks	not parallelizable in encryption, parallelizable in decryption Bit errors in a ciphertext block will affect decryption of the actual (50%) and the subsequent block (1bit)	
encryption	Plaintext 1 Plaintext 2 Plaintext 3	
	$\begin{array}{c} \text{Initialization} \\ \text{Vector} \end{array} \xrightarrow{} E_k \\ E_k \\ \xrightarrow{E_k \\ \xrightarrow{E_k$	
	Ciphertext 1 Ciphertext 2 Ciphertext 3	
Cipher Feedback (CFB)	Feedback of ciphertext blocks into the input of the encryption algorithm Encryption cannot be performed in parallel Bit errors in a ciphertext block will affect decryption of actual and subsequent block	
	Plaintext 1 Plaintext 2 Plaintext 3	
	Initialization Vector E_k E_k E_k E_k E_k	
	Ciphertext 1 Ciphertext 2 Ciphertext 3	;
Output Feedback (OFB)	Encryption algorithm is used as a pseudo random generator \rightarrow additive stream cipher IV must be unique for each execution of the mode (but not unpredictable) Needs synchronization between transmitter and receiver No error propagation (1-bit error -> 1-bit in cyphertext)	
CFB and OFB are similar	Plaintext 1 Plaintext 2 Plaintext 3	
	Initialization Vector E_k E_k E_k E_k	
	Ciphertext 1 Ciphertext 2 Ciphertext 3	
Counter (CTR)	Encryption/Decryption can be performed in parallel Each counter value should only be used once with the same key \rightarrow Nonce (Number used only once) No error propagation	
	Counter Plaintext 1 Counter Plaintext 2 Counter Plaintext 3 E_k E_k E_k E_k E_k E_k]
	Ciphertext 1 Ciphertext 2 Ciphertext 3	
CFB + OFB + CTR	use encryption algorithm for encryption and decryption, but invert order of E_k	

•			
6+7. Asymmetrie	c Cryptography		
Problem of	Key must be kept secret!		
Symmetric Crypto		her secret key -> number of keys grows $ ightarrow n^2$	
Asymmetric		it is feasible to compute $e \in \mathcal{K}$. d must be kept secret	$D_d(E_e(p)) = p$
Cryptosystem		$e \in \mathcal{K}$, it is computationally infeasible to compute $d \in$	
ci yptosystem	\mathcal{K} , such that D_d ist the inverse of E_e . 'e' can be made public.		
One-Way Function	Easy to compute on every input		
One-way Function	Hard to invert, given the image		
		-	
Tuendeenfunction		s is still a conjecture (Vermutung).	
Trapdoor function	One-way function that can be		5 15 110
Candidates of one-	Multiplication and factoring	Easy: given two primes p and q compute $n = q * p$	7 * 17 = 119
way functions		Difficult: given $n = p * q$, find the two primes p and q	
	Discrete Logarithm Function	Easy: given g, x and p, compute $g^x \mod p$	$2^8 \mod 5 \equiv 1$
		Difficult: given $g^x \mod p$, g and p, find x	
	Elliptic Curves	Easy: given the point P and n , compute $n * P$	
		Difficult: given $n * P$ and P , compute n	
DHKE	based on discrete logarithm	Alice Unsecure Channel Bob	
Diffie-Hellman		Agree on Drime n and Constator a	public:
Key Exchange	Not secure against man-in-	Agree on Prime p and Generator g	p = 5, g = 2
	the-middle attack		secret:
		choose a choose b	a = 3, b = 6
	Works for any cyclic group	$A = g^a \mod p \qquad \qquad B = g^b \mod p$	public:
			A = 3, B = 4
	p has to be prime and big	Exchange A and B	
	-> avoid brute force		secret:
	g has to be generator for \mathbb{Z}_p^*	$K = B^a \mod p \qquad \qquad K = A^b \mod p$	K = 4
ElGamal	based on discrete logarithm		
Encryption	as difficult to break as DH	Alice Unsecure Channel Bob	p = 11,
Encryption	as unifcult to break as DH	1: Set-up (by the receiver, only once)	p = 11, g = 2, b = 6
n at least 1024bits		choose prime p , generator g and b	g = 2, b = 0 $B = 2^6 \mod 11$
p at least 1024bits	Works for any cyclic group	$B = g^b \mod p$	$B = 2 \mod 11$ $B = 9$
$b \in \{2, \dots, p-2\}$			$k_{pub} = (11,2,9)$
		send $k_{pub} = (p, g, B)$	$\kappa_{pub} = (11, 2, 5)$
α Γ (2 μ 2)		2: Encryption (by the sender)	a = 4, m = 7
$a \in \{2, \dots, p-2\}$			a = 4, m = 7 $A = 2^4 \mod 11 = 5$
	A: ephemeral/temporary key	$A = g^a \mod p$	$A = 2 \mod 11 = 3$ $c = 9^4 * 7 \mod 11$
	c: shared key	$c = B^a * m \mod p$	c = 9 * 7 mou 11 $c = 2$
		send (<i>A</i> , <i>c</i>)	c = 2 send(5,2)
			<i>Senu</i> (<i>3</i> , <i>2</i>)
		3: Decryption (by the receiver)	$m = 2 * 5^{11-1-6}$
		$m = c * A^{p-1-b} \mod p$	m = 2 + 3 $mod \ 11 = 7$
RSA	use Euler's Totient Theorem	Alice Unsecure Channel Bob	
(Ronald Rivest,		1: Key generation	p = 53, q = 59
Adi Shamir,	p and q need to be large,	choose primes p and q randomly	n = 53 * 59 n = 3127
Leonard Adleman)	independent, large factors	n = p * q (at least 2000 bits)	
	n=3072 bits = sym alg 128bits	$\phi(n) = (p-1) * (q-1)$	$\phi(n) = 52 * 58$
	$1 < e < \phi(n)$	choose <i>e</i> , such that $gcd(e, \phi(n)) = 1$	$\phi(n) = 3016$
	$\#e:\phi(\phi(n))-1$		e = 3 d = -1005 = 2011
	d=private key	1	u = -1005 = 2011
		publish (e, n)	
	$0 \le m < n$	2: Encryption	M = "hi"
	if we knew $\phi(n)$, we could	everybody can do that, e and n is needed	M = hl m = 89
	compute d -> egcd	map plain message M to integers	m = 89 $c = 89^3 \mod{3127}$
	factoring n is as hard as	$c = m^e \mod n$	$c = 89^{\circ} mod 3127$ c = 1394
	computing $\phi(n)$ and the only	i	c = 1394
	way to find d (probably).	(c)	
	if we now m/4 of first or last	3: Decryption	$m = 1394^{2011}$
	digits we can effic. factor n	only Alice can do that, d is needed	$m = 1394^{2011}$ mod 3127
	if e is small we use Chinese	$m = c^d \mod n$	mod 3127 m = 89
	remainder to compute c		m = 69

ZHAW/HSR	print date: 08.02.19	FTP_CryptCod
Euler's Totient	$a^{\phi(n)} \equiv 1 \pmod{n}$	$3^{\phi(4)} = 3^2 = 9 \equiv 1 \pmod{4}$
Theorem	with $1^{k} = 1$: $a^{k*\phi(n)} \equiv 1 \pmod{n}$	$3^{3*2} = 729 \equiv 1 \pmod{4}$
	multiply $a: a^{k*\phi(n)+1} \equiv a \pmod{n}$	
	$e * d = k * \phi(n) + 1$	
square and	compute $a^c \mod m$ for large numbers	$1234^{5678} \mod 438 = 316$
multiply	c can be written as binary number $c = b_0 * 2^0 + b_1 * 2^1 + \dots + b_n * 2^n$	
/sam(a,c,m) /sam2(a,c)	re = 1	
$a^c \mod m$	<pre>for i = n0 res = res^2 mod m</pre>	
u mou m	if b i = 1	
/samstep	res = (res*a) mod m	
/sam2step	end if	
	end_for	
Miller-Rabin	Question: Is n prime or composite? Not the same as factoring!	
Primality Test	Let n be an integer	
/isProbPrime(n)	Suppose there exist integer x and y with $x^2 \equiv y^2 \pmod{n}$,	
/isProbPrimeBase(n,a)	but $x \neq \pm y \pmod{n}$	
	Then n is composite and $gcd(x - y, n)$ gives a nontrivial factor of n.	
composite	1. Assume that n is odd and write $n - 1 = 2^k * m$	n = 53
= not prime		$\frac{52}{2^1} = 26, \frac{52}{2^2} = 13, \frac{52}{2^3} = 6.5$
		2^{1} 2^{2} 2^{3}
		k = 2, m = 13
	2. Randomly choose a base a with $1 < a < n - 1$	k = 2, m = 13 $a = 2$
	3. Compute the starting value $b_0 = a^m \mod n$	$b_0 = 2^{13} \mod{53} = 30$
		, , , , , , , , , , , , , , , , , , ,
	4. Compute the sequence b_0, b_1, \dots, b_k with recursion $b_i = (b_{i-1})^2 \mod n$	$b_{1} = 30^{2} \mod 53 = -1$ $b_{0} = \begin{cases} +1 \rightarrow Prime \\ -1 \rightarrow Prime \\ else \rightarrow continue \\ +1 \rightarrow Composite \\ -1 \rightarrow Prime \\ else \rightarrow continue \end{cases}$
	5. If n is prime then	$(+1 \rightarrow Prime$
	$b_k \equiv a^{2^k * m} \equiv a^{n-1} \equiv 1 \pmod{n} \rightarrow \text{Fermat}$	$b_0 = \{ -1 \rightarrow Prime \}$
	$b_i = 1 \pmod{n}$ and $b_{i-1} \equiv \pm 1 \pmod{n}$	$(else \rightarrow continue)$ $(+1 \rightarrow Composite)$
	otherwise $(b_i)^2 \equiv (b_{i-1})^2 \pmod{n}$, but $b_i \neq n_{i-1}$	$b_{1,k} = \begin{cases} -1 \rightarrow Prime \end{cases}$
	-> sequence $(b_0, b_1,, b_k)$ must either start with a 1 or it must	$(else \rightarrow continue)$
	somewhere contain a -1	
	if n is prime, it will pass the test for any a	M = 50
	a composite number passes the test for at most 1/4 or the possible bases	$M = 50 \\ \left(\frac{1}{4}\right)^{50} < 10^{-30}$
	a -> it is then called a strong pseudoprime for the base a	(4) < 10
	repeating the test M times with randomly chosen values of a, the	
	probability that a composite n passes all the tests is at most $\left(\frac{1}{4}\right)^M$	
Attacks on RSA	In general, if $gcd(e_A, e_B) = 1$, we can use egcd to find x and y such that:	
	$x * e_A + y * e_B = 1$	
	and thus:	
	$\frac{c_A^x * c_B^x = m^{x*e_A} * m^{y*e_B} = m^{x*e_A} + m^{y*e_B} = m}{\text{If } e = 3, m = 128 \text{bit}, n = 1024}$	
	t e = 3, m = 128bit, n = 1024	
	$m = \sqrt[e]{c} = \sqrt[3]{c}$	

ZHAW/HSR	print date: 00.02.15			
8. Digital Signati	ures			
Definition	The result of a cryptographic transformation of data that, when properly im	plemented, provides a		
	mechanism for verifying origin authentication, data integrity and signatory i			
origin	Signature can be matched to an entity without a doubt. Nobody can forge (fälschen) the signature.			
authentication		, 3		
data integrity	The signature will no longer be valid if the content of the message is change	d after the message has been		
0,	signed. The signature and the content of the message are unambiguously linked to each other.			
	The signature of a document cannot be used for another document.			
non-repudiation	The signer cannot repudiate (leugnen) his signature.			
Signature	The process of using a digital signature algorithm and a private key to	private key (d, n)		
generation	generate a digital signature on data. Only one person can do that.			
Signature	The process of using a digital signature algorithm and a public key to verify	public key (e, n)		
verification	a digital signature on data. Everybody can do that.			
RSA-Signature	Alice Unsecure Channel Bob			
U U				
	1: key generation (only Alice can do that) choose prime <i>p</i> , generator <i>g</i> and <i>e</i>	p = 11, q = 23, e = 3		
	n = p * q	n = 11 * 23 = 253		
	$n = p * q$ $e * d = 1 \mod \phi(n)$	$\rightarrow d = 147$		
	$e + u - 1 mou \varphi(n)$			
	public key (n, e)	m = 111		
		$s = 111^{47} \mod 253 = 89$		
	2: Sign (only Alice can do that)			
	$s = m^d \mod n$			
	send (<i>s</i> , <i>m</i>)	* 003		
	2: Verification (overvlady can do that)	$m^* = 89^3 \mod 253 = 111$		
	3: Verification (everybody can do that) $m^* = s^e \mod n$	\rightarrow valid		
	$m^* = m$			
Deveender				
Remarks	No encryption, message m can/must be readable and understandable. A long message leads to a long verification.			
Attacks	Authenticity of the public key must be secured (Certificates)			
Allacks	No-Message-Attack			
	1. choose arbitrary number s	<i>s</i> = 10		
	2. produce message $m = s^e \mod n$	$m = 10^3 \mod 253 = 241$		
	3. message m will be accepted as a signed by Alice	$m = m^*$		
	-> message should contain redundancy. Enforce with redundancy function.	m = 123, R(m) = 123'123		
	Multiplicative property of RSA			
	$s_1 = m_1^d \mod n$ $s_2 = m_2^d \mod n \rightarrow s = (m_1 * m_2)^d \mod n$			
	$m_2 = m * m_1^{-1}$			
	Alice signs m_1 and m_2 , but never m . Attacher can calc $s = s_1 * s_2$			
	-> message should contain redundancy.			
Hash-Function	A hash function is a computationally efficient function mapping binary			
	strings of arbitrary length to binary strings of some fixed length.			
	$h: \{0,1\}^* \to \{0,1\}^n$			
	Result = Image			
	Input = Preimage			
properties	never injective -> set of input value is larger than set of output values			
	collision -> two different input values yield the same output -> very seldom	$000 \rightarrow 100; 101 \rightarrow 100$		
properties				
	second preimage resistance -> find a second input which results the same	-> weak collision resistance		
	collision resistance -> difficult to find two input which results the same	-> strong collision resistance		
Examples				
	 SHA-1 (160bit) -> no longer considered secure 			
	• SHA-2 (224, 256, 384, 512bit) -> secure			
	MD-5 (Message Digest algorithm 5)			
	 MD-5 (128bit) -> no longer considered secure 			
	RIPEMD (RACE Integrity Primitives Evaluation Message Digest)			
	 RIPEMD -> no longer considered secure 			
	 RIPEMD-160, 320 -> considered secure 			
	-> only data integrity			

ZHAW/HSR	print date: 08.02.19	FTP_CryptCod
SHA-1 Security Message	uses a family of 80 logical functions: $f_0 \dots f_{79}(x, y, z)$ using \land , \lor , \bigoplus , \neg total of 80 32-bit constants K_t ($t = 0.79$) are defined 1. Fill the message with bits so that the total length is a multiple of 512 2. Split the message into blocks $M^{(i)}(i = 1N)$ of length 512 3. Use the initial has value $H^{(0)}$ as described in the standard 4. For each message block do the following • Compute W_t • Initialize the five variables $a = H_0^{(i-1)}, b = H_1^{(i-1)}, c = H_2^{(i-1)}, d, e$ • For $t = 0$ to 79: Compute T, e, d, c, b, a • Compute $H_0^{(i)}, H_1^{(i)}, H_2^{(i)}, H_3^{(i)}, H_4^{(i)}$	$FIP_CryptCod$
Authentication Codes "parameterized hash function"	Can be computed efficiently Maps an input x of arbitrary length to a MAC-value $h_k(x)$ of fixed length Authenticity and data integrity	
Digital Signature with Hash function	Signature of an arbitrary long message m. Generation of the signature: $s = h(m)^d \mod n$ Alice Hash Value Hash Value	
properties	Sign only a short hash value instead of a long message m No-message-attack and multiplicative property attack do not work -> becau a message x that gives hash $h(m)$ Exploiting the multiplicative property ($m = m_1 * m_2 \mod n$) is not possible The signed message m cannot be replaced by another text m^* -> pair m and	
DSA (Digital Signature Algorithm)	Variation of El-Gamal digital signature algorithmBobAliceUnsecure ChannelBob1: key generation (only Alice can do that)1. select a prime q $2^{159} < q < 2^{160}$ 2. choose t : $0 \le t \le 8$ 3. select a prime p : $2^{511+64t} and q \mid (p-1)4. choose h:0 < h < p5. compute g = h^{\frac{p-1}{q}} \mod p, repeat if q = 16. select a random integer x:1 \le x \le q - 1 -> secret key7. compute y = g^x \mod p$	
	2: Sign (only Alice can do that) 1. select a random integer k: $0 < k < q$ -> multiple signs differ 2. compute $r = (g^k \mod p) \mod q$ 3. compute $s = (k^{-1} * (h(m) + x * r)) \mod q$ Signature (r, s) 3: Verification (everybody can do that) 1. Verify that $0 < r < q$ and $0 < s < q$ 2. Compute $w = (s^{-1}) \mod q$	
	3. Compute $u1 = (w * h(m)) \mod q$ 4. Compute $u2 = (w * r) \mod q$ 5. Compute $v = ((g^{u1} * y^{u2}) \mod p) \mod q$ 6. Accept signature if and only if $v = r$	

	plint date: 08.02.15					
Public Key	Problem of any asymmetric scheme: CA = Certification Author					
Infrastructure (PKI)	Authenticity and validity of the public key must be se	cured	RA = Registration Authority VA = Validation Authority			
	CA	VA				
		http://www.internationality.com				
Digital Certificate	A set of data that uniquely identifies a key pair and a	n owner that is				
	authorized to use the key pair. The certificate contair	is the owner's public				
	key and possibly other information and is digitally sig	ned by a Certification				
	Authority (i.e., a trusted party), thereby binding the p	oublic key to the				
	owner. Like a passport.					
Certification	The entity in a Public Key Infrastructure (PKI) that is r	esponsible for issuing				
Authority	certificates and exacting compliance with a PKI policy					
Digital Signature	The result of a cryptographic transformation of data t					
	implemented, provides a mechanism for verifying ori	gin authentication,				
	data integrity and signatory non-repudiation.					
Trust Models	 Direct trust (one to another) 					
	 Hierarchical trust (root CA -> CA -> people) 					
	 Web of trust (Each user can sign a key and d 	efine the level of				
	trust that the key's owner can serve as certif	ier of other keys)				
Example	Certificate Information	Field	Value			
		Version	V3			
	This certificate is intended for the following purpose(s):	Serial number	00			
	 Ensures the identity of a remote computer 	Signature algorithm	sha256RSA			
	 Proves your identity to a remote computer Ensures software came from software publisher 	Signature hash algorithm				
	 Protects software from alteration after publication 	Valid from	Go Daddy Root Certificate Authorit 01 September 2009 01:00:00			
	 Protects email messages Allows data to be signed with the current time 	Valid to	01 January 2038 00:59:59			
	• Allows data to be signed with the current time	Subject	Go Daddy Root Certificate Authorit			
		CN = Go Daddy Root Certific	ate Authority - G2			
	Issued to: Go Daddy Root Certificate Authority - G2	O = GoDaddy.com, Inc. L = Scottsdale S = Arizona				
	Issued by: Go Daddy Root Certificate Authority - G2	C = US				
	Valid from 01/09/2009 to 01/01/2038					

ZHAW/HSR		FTP_CryptCod				
9. Elliptic Curve						
Why		naller key size -> less space and better performance 28bit AES = 3072bit RSA/DH = 256 ECC				
Definition	y ² The points of the elliptic curv point at infinity, can be used	The field that has characteristic 2 or 3. $y^2 = x^3 + a * x + b$ points of the elliptic curve, together with an extra point O , called the nt at infinity, can be used to define an additive group.				
ax+b=0,x)		real and 2 complex roots (Nullstellen).				
<pre>valid if 4a³ + 27b² ≠ 0 = no multiple roots /validate(ec) /validate(x^3+8x -9) /validmod(ec,p)</pre>	valid a = -1, b = 3 a = -4, b a = -4, b	= 2 a = 1, b = -1 a = 0, b = 0 a = 0, b = 0	0 a = -3, b = 2			
<pre>/validmod(x^3,5) Addition /add(ec,p,q) /add(x^3-8x+9, {0,3},{2,1}) ={-1,-4} /stepadd(ec,p,q)</pre>	-R	Given : $P, Q \in E$ $P \neq Q, P \neq -Q$ Construction of $P + Q = R$: Draw a line through P and Q. Invert intersection $-R$ to yield R	Algebraic 1. Slope $m = \begin{cases} \frac{y_P - y_Q}{x_P - x_Q} & P \neq \pm Q \\ \frac{3 * x_P^2 + a}{2 * y_P} & P = Q \\ \infty \rightarrow O & P = -Q \end{cases}$			
<pre>addmod(ec,p,q,f) stepaddmod()</pre>	• R = P + Q	Special Rules point in infinity O in Y is the neutral elem O + O = O P + (-P) = O P + O = O + P = P				
<pre>Multiplication /mult(ec,p,n) /mult(x^3-8x+9, {2,1},3) ={-1,4} /stepmult(ec,p,n /multmod(ec,p,n, f) /stepmultmod(ec, p,n,f)</pre>	R = 2P	Given: $P \in E$ Construction of $2 * P$:Draw the tangent line through PInvert intersection $-R$ to yield $R = 2P$	Algebraic see above $P = Q$ btw: $y^{2}(x) = x^{3} + ax + b \frac{\delta}{\delta x}$ $2 * y(x) * y'(x) = 3x^{2} + a$			
Finite Group		asic operations, these equations are valid	in each field.			
mod() Order of a point /order(ec,p,f)	egcd for division! Smallest non-negative intege Should be as high as possible cofactor: $h = \frac{\#E(\mathbb{F}_p)}{n} \in \mathbb{N}$ -> Order of points always divi	for cryptography	$order(x^3 + x + 1, \{0,1\}, 7) = 5$			
Number of Points	\rightarrow see Theorem of Hasse		#p(7) = 313			

	-> Order of points always divides total number of points	
Number of Points	\rightarrow see Theorem of Hasse	#p(7) = 313
/numofpoints(p)	$p+1-2*\sqrt{p} \le \#E(\mathbb{F}_p) \le p+1+2*\sqrt{p}$	$8 - 2\sqrt{7} \le E(\mathbb{F}_p) \le 8 + 2 + \sqrt{7}$
	for large p $\#E(\mathbb{F}_p) \approx p$	$5.17 \le E(\mathbb{F}_p) \le 10.82$
		$6 \le E(\mathbb{F}_p) \le 10$

print date: 08.02.19

ZHAW/HSR			print date: 08.02.19			FTP_CryptCod
EC-DHKE	Alice		Unsecure Channel		Bob	p =
(Elliptic curve			Agree on <i>p</i> , <i>a</i> , <i>b</i> , <i>G</i> , <i>n</i>			
Diffie-Hellman) $p \in \mathbb{P} \rightarrow field$	choose $d_A \leq n$	— 1		choose d_B	$\leq n-1$	
$p \in \mathbb{F}_p \to field$ $a, b \in \mathbb{F}_p \to curve$	calc $Q_A = d_A *$			calc $Q_B =$		
$G \in E(\mathbb{F}_p) \to base$			Q_A, Q_B	CB		
$n \in \mathbb{P} \rightarrow order$			ו		→	
	calc $P = d_A * d_A$	- 2		$\operatorname{calc} P = d$		
	$= d_A * d_B$	* 6		$= a_B *$	$* d_A * G$	
	If $P \neq \mathcal{O}$ then Al	ice and	Bob take the x-coordinate :	x_p as the sl	hared key.	
ECDLP (Elliptic	Given an elliptic	curve E	$\mathbb{P}(\mathbb{F}_p)$ over a finite field \mathbb{F}_p ,	a point G d	on that curve	
Curve Discrete	and another poi	nt Q you	know to be an integer mu	ltiple of G.	The problem	
Logarithm		-	uch that $n * G = Q$.			
Problem)			to solve, even with today's	-		
			tion is how many times the	operation	is applied	
Attacks	Attacker knows Attacker does no					
	from <i>n</i> , <i>G</i> calcula					
		-	mining <i>n</i> is hard $\rightarrow ECDLP$			
ECDSA			rithm, but in a different fie	ld.		
(Elliptic curve		U				
Digital Signature	Alice		Unsecure Channel		Bob	
Algorithm)	1: Generation	(only on				
			ve, base point and order			
		public key (p, a, b, G, n)				
	2: Sign (each m					
			eger k $1 < k < n - 1$		i	
	2. compute k *	-				
	3. compute $r = 4$. compute k^-		d n, if $r = 0$ goto step 1			
	5. compute $e =$					
			$(e + n_A * r) \mod n$, if $s =$	0 goto ste	p 1	
				0		
			Signature (r,s)			
		3: Ve	rification (everybody can d	o that)		
			rify that r and s are integer		ı — 1]	
			mpute $e = Hash(m)$	[-),	L	
	1		mpute $w = s^{-1} \mod n$			
			mpute $u_1 = e * w \mod n$ a	-		
			mpute $X = u_1 * G + u_2 * Q$			
	6. If $X = O$ then reject otherwise $v = x_1 \mod n$					
		7. Acc	cept the signature if and on	Iy if $v = r$.	·	
	:				-	

10. Quantum C	10. Quantum Cryptography				
Two-hole wall	Electrons are particles. The probability of arrival behind a two-hole-wall is	Electrons are particles. The probability of arrival behind a two-hole-wall is			
Experiment	distributed like the intensity of a wave. We observe interference.				
	-> It is not true that a single electron flies either though hole 1 or 2.				
Observation	If we observe the electron it passes hole 1 or 2.				
Notation	Probability for the transition from a start state Ψ_1 to an end state Ψ_2 $\langle \Psi_2 \Psi_1 \rangle$				
Photon	Can be polarized vertical (\updownarrow) or horizontal (\leftrightarrow) or with an arbitrary angle ϕ				
	with respect to x-axis.				
	$\cos(\phi) * \leftrightarrow\rangle + \sin(\phi) * \updownarrow\rangle$				

SKIP

L1+12. Linear Bl	ock Codes					
Error Control	Sizes: capacity C, entropy per second H					
Coding	Claude Shannon : Error induces by a noisy channel can be reduced to any desired level (if $H \leq C$)					
Channel Coding	Data transformations that are used for improving a system's error performa	ince.				
	Encoder: add redundant information to the transmitted data (code word) -	•				
	Decoder: check whether the received data is still exhibit the prearranged st	ructure/regularity				
	-> Error Detection and Error Correction	1				
(n, k)-Block Code	Transmitter	Message block				
	Antenna 🗸	$\boldsymbol{m} = (m_1, \dots, m_k)$				
^	li Y i	k information symbols of a finite field $GF(2^x)$				
= approx.	(n,k) Code	Code word				
	Message Vector Channel Encoder Codeword Waveform	$\boldsymbol{u} = (u_1, \dots, u_n)$				
	U = mG Modulator	$\boldsymbol{u} = (m_1, \dots, m_k, p)$				
	m U <i>s(t)</i>	n code symbols				
		Demodulator				
	Receiver	observe the signal $r(t)$ and				
	∇	produces received vector				
	Ϋ́	$\boldsymbol{r} = (r_1, \dots, r_n) = \boldsymbol{u} \oplus \boldsymbol{e}$				
	m Received Received	Hard decision: 0 / 1				
	Channel Decoder Vector Demodulator/ Waveform	Soft decision: might be 0 / 1				
	$\hat{U} = r + \hat{e}$ $r = U + e$	Error pattern $e = (e_1, \dots, e_n)$				
	$\hat{m} = \mathbf{G}^{-1}\hat{\mathbf{U}}$ r $r(t) = s(t) + n(t)$	n(t) = Rauschen				
Parity codes	Even parity code $p = m_1 \oplus \oplus m_k$	$m = 1101 \rightarrow p = 1$				
	Two-dimensional parity code $p_1 = m_1 \oplus m_2 \oplus m_3 \oplus m_4$	m = 11010001				
	$p_2 = m_5 \oplus m_6 \oplus m_7 \oplus m_8$	$p_1 = 1, p_2 = 1$				
	$p_3 = m_1 \oplus m_5, p_4 = m_2 \oplus m_6$	$p_3 = 1, p_4 = 1$				
	$p_5 = m_3 \oplus m_7, p_6 = m_4 \oplus m_8$	$p_5 = 0, p_6 = 0$				
Binary Linear Block Codes	A binary block code with 2^k code words of length n is called linear (n, k) code, if and only if its 2^k code words form a k-dimensional subspace of the	(6,3) block code -> $\{0,1\}^6$ Message 2 ³ Codeword				
DIOCK COUES	vector space of the n-tuples over the field $GF(2)$.	000 000000				
		100 110100				
	=> the sum of any two code words is a code word. Linear combination!	010 011010				
	=> the zero-code word is always a codeword in a linear block, $v + v = 0$	110 101110				
		001 101001				
	message: $m_i \in GF(2) \rightarrow 2^k$ code words	101 011101				
	code word: $u_i \in GF(2) \rightarrow 2^k$ binary vectors of length n	011 110011				
		111 000111				
Vector Space	F: field of Scalars	$\mathbb{F} = GF(2)$				
	V: vector space	$V = \{(v_1 v_n) : v_i \in GF(2)\}$				
	Two operations:					
	- Vector addition: $u, v \in \mathbb{V} \Rightarrow u + v \in \mathbb{V}$					
	- Scalar multiplication $u \in \mathbb{V}, k \in \mathbb{F} \Rightarrow k * u \in \mathbb{V}$					
Subspace	 - 10 Axioms W ⊆ V: Subset. If W is a vector space itself, it is called a subspace of V. 					
Linear combination						
Linear	$a_1 * \boldsymbol{v}_1 + \dots + a_k * \boldsymbol{v}_k$ $a_1 * \boldsymbol{v}_1 + \dots + a_k * \boldsymbol{v}_k = \boldsymbol{0}$					
independent						
Generator Matrix	It is possible to find k linearly independent code words $m{g_1}$ $m{g_k}$ such that	[91]				
	every code word \boldsymbol{u} is a linear combination of these k code words.	$G = \begin{bmatrix} g_2 \\ g_3 \end{bmatrix}$				
	$\boldsymbol{u} \in \mathcal{C} \leftrightarrow \boldsymbol{u} = m_1 \boldsymbol{g_1} + m_2 \boldsymbol{g_2} + \dots + m_k \boldsymbol{g_k} = \boldsymbol{m} * \boldsymbol{G}$	$\begin{bmatrix} & & \begin{bmatrix} g_3 \end{bmatrix} \\ & \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \end{bmatrix}$				
	u = m * G					
	mators a a c C analine su indenendant	$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$				
	vectors $g_1, g_2,, g_k \in C$, are linear independent $m_1, m_2,, m_3$: Skalare ({0,1})	$P \underbrace{I_k}$				
	m_1, m_2, \dots, m_3 : Skulul e ({0,1})					
	A generation matrix is systematic , if it contains the identity matrix.					

FTP_CryptCod

ZHAW/HSR	print date: 08.02.19	FTP_CryptCod
Hamming weight	$w(\boldsymbol{u}) = number of nonzero elements in \boldsymbol{u}$	$\boldsymbol{u} = (110100) \rightarrow w(\boldsymbol{u}) = 3$
Hamming distance	$d(\boldsymbol{u}, \boldsymbol{v}) = number of bit positions in which \boldsymbol{u} and \boldsymbol{v} differ$	v = (101001)
		$\rightarrow d(\mathbf{u}, \mathbf{v}) = 4$
properties	$d(\boldsymbol{u},\boldsymbol{v}) = w(\boldsymbol{u} + \boldsymbol{v})$	4 = w(011101) = 4
	$d(\boldsymbol{u}, \boldsymbol{0}) = w(\boldsymbol{u})$	3 = 3
	$d(\boldsymbol{u},\boldsymbol{v}) \leq d(\boldsymbol{u},\boldsymbol{w}) + d(\boldsymbol{w},\boldsymbol{v})$	$4 \le 4 + 4$
min properties	Minimum Hamming weight of a code C (C) = min (u) = C = (C)	
	$w_{\min}(C) = \min\{w(u): u \in C, u \neq 0\}$	
	Minimum Hamming distance of a code C $d = C = \min \left(d(x, y), y, y \in C, y \neq y \right)$	
Theorem	$d_{\min}(\mathcal{C}) = \min\{d(\boldsymbol{u}, \boldsymbol{v}): \boldsymbol{u}, \boldsymbol{v} \in \mathcal{C}, \boldsymbol{u} \neq \boldsymbol{v}\}$ The minimum distance of a linear code block code is equal to the	
meorem	minimum weight of its nonzero code words.	
Decoding	We assume that no bits got lost. $r = (r_1 \dots r_n) = c + e$	
Decouning	Find the code word that differs the least from the received vector.	
	Error detection $\epsilon = d_{\min} - 1$ Error correction $t = \left\lfloor \frac{d_{\min} - 1}{2} \right\rfloor$	
Parity Check	A linear (n, k) block code is defined by $n - k$ parity check equations.	
, Matrix H	These equations can be written in matrix form: $\mathbf{u} * \mathbf{H}^{T} = 0$	$\boldsymbol{H} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ \hline I_k & 0 & 1 & 1 \\ \hline P^T \end{bmatrix}$
	Dimensions of H: $(n - k) \times n$	$\mathbf{n} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 \end{bmatrix}$
	Any vector u that satisfies this equation is a valid code word.	
	$\boldsymbol{u} \in \mathcal{C} \Leftrightarrow \mathbf{u} \ast \mathbf{H}^{\mathrm{T}} = 0$	$u_1 + u_4 + u_6 = 0$
	$u * h_1^T = 0, u * h_2^T = 0, (= dot products)$	$u_2 + u_4 + u_5 = 0 u_3 + u_5 + u_6 = 0$
G and H	The rows of G are orthogonal to the rows of H. $G * H^T = 0$	$u_3 + u_5 + u_6 - 0$
C unu n	$G = [P I_{k\times k}] \Rightarrow H = [I_{(n-k)\times(n-k)} P^T]$	
Syndrome Testing	Is the received vector r a valid code word? $s = r * H^T$	
Synuronne resung	1. case: $s = 0 \Rightarrow r \in C$ (<i>r</i> ist a valid code word), but is it correct?	
	a) $r = u$, error free	
	b) $r \neq u$, not the sent one, not recognizable error -> $e \in C \setminus \{0\}$	
	2. case: $s \neq 0 \Rightarrow Fehler!$	
	The syndrome only depends on the error pattern e	
	$a = \mathbf{x} + \mathbf{U}^T = (\mathbf{x} + \mathbf{z}) + \mathbf{U}^T = a + \mathbf{U}^T + a + \mathbf{U}^T$	
	$\mathbf{S} = \mathbf{I} * \mathbf{n}^{T} = (\mathbf{u} + \mathbf{e}) * \mathbf{n}^{T} = \underbrace{\mathbf{C} * \mathbf{n}^{T}}_{=0} + \mathbf{e} * \mathbf{n}^{T}$ $\mathbf{S} = \mathbf{e} * \mathbf{H}^{T}$ $n-k \ check \ equations \qquad n \ code \ bits$ $2^{n-k} \ syndrome \ vectors \qquad 2^{n} \ error \ patterns$	
	$\underline{s} = e * \underline{H}^T$	
	n-k check equations n code bits 2^{n-k} syndrome vectors 2^n error patterns	
	For any value of the syndrome vector, there is more than one possible	
	error pattern -> We just pick the most likely.	
Compute		$s = r * H^T$
Syndrome	Received $r_1 \rightarrow r_2 \rightarrow r_3 \rightarrow r_4 \rightarrow r_5 \rightarrow r_6$	
	+ + + + + + + + + + + + + + + + + + +	
	Syndrome \$	search s in H
Determine most		-> results in error e
likely error pattern		
	الملام الملام الملام الملام الملام	calc all s of each error
	From	• if unique -> correctable
	Error Pattern e	 if not -> not correctable
Correct received		
vector	Vector r $\overline{r_1}$ + $\overline{r_2}$ + $\overline{r_3}$ + $\overline{r_4}$ + $\overline{r_5}$ + $\overline{r_6}$ +	u = r + e
	Corrected u_1 u_2 u_3 u_4 u_5 u_6	
	Output U U U U U U U U U U U U U U U U U U U	

ZHAW/HSR		print date: 08.02.19				FTP	CryptCo	
Cyclic Codes	Linear block code. Every cyclic shift of a code word is a code word. <i>g</i>					$g(x) = x^3 + x + 1, n = 7$		
	Using polynomials to represent a binary vector.				n - k = 3, k = 4			
		$\boldsymbol{u} = u_0, u_1, \dots, u_{n-1}$		m = (1010)				
	u	$(x) = u_0 + u_1 * x + \dots + u_{n-1} * x^{n-1}$	m	$(x) = 1 + 0x + 1x^2 + 0x^3$				
		code exists exactly one code polynomial		$= 1 + x^2$				
polynomial	of degree $n-k$		u(x)	$ \underbrace{) = \underbrace{(1 + x^2)}_{Grad < k} * \underbrace{(x^3 + x + 1)}_{Grad = n - k} \\ \underbrace{x^3 + x + 1 + x^5 + x^3 + x^2}_{K} $				
	$\boldsymbol{g}(x) =$	$1 + g_1 * x + \dots + g_{n-k-1} * k^{n-k-1} + x^{n-k}$	_	Gi x ³ ⊥x	rad < k $\perp 1 \perp r$	Gra v ⁵ ⊥v	d=n-k	
		$\boldsymbol{u} \in \mathcal{C} \Leftrightarrow \boldsymbol{u}(x) = \boldsymbol{m}(x) * \boldsymbol{g}(x)$;		+1+	$\frac{1}{\sqrt{n}}$	<u> </u>	
must be		$\boldsymbol{u} = (p_0, \dots, p_{n-k-1}, m_0, \dots, m_{k-1})$		= 1	Grad + x + z	$x^{2} + x$	5	
systematic		$\boldsymbol{u}(x) = \boldsymbol{p}(x) + x^{n-k} * \boldsymbol{m}(x)$		<i>u</i> =	= (111	0010)		
must be a	$\boldsymbol{u}(\boldsymbol{x})$	$\mathbf{x}) = \mathbf{p}(x) + x^{n-k} * m(x) = \mathbf{q}(x)\mathbf{g}(x)$	-> not	system	natic			
code word		$\rightarrow \mathbf{p}(x) = x^{n-k} * m(x) \mod \mathbf{g}(x)$						
Encoding with		Switch 1		Ŀ	g(x) =			
linear shift register	Xº	x^1 x^2 x^3		m(x) = (1011)				
\rightarrow division				cycle	cell b		1 out	
		Up at Shift 4		0	000 0	1	1	
				1 110 1 1 1 2 101 1 0 0				
		Switch 2		3	100 1	1	1	
			Output	4	100 -	-	0	
	Input C	Dueue 1011	Queue	5	010 -	-	0	
		Up at Shift 4		6	001 -	-	1	
	Cycle 0 to k-1	switch 2 is down -> message directly fed to the out	-	7				
		at the end, cells contain $p(x) = x^{n-k} * m(x) \mod x$	g(x)	-				
	Cycle k to n-1	switch 2 is up						
		the content of the cells will be shifted to the output	t					
Error correction	We compute the	e syndrom polynomial $\boldsymbol{s}(x) = \boldsymbol{r}(x) \mod \boldsymbol{g}(x)$						
		$s(x) = 0 \rightarrow valid$						
		$s(x) \neq 0 \rightarrow error$						
		$\boldsymbol{s}(x) = \boldsymbol{e}(x) \bmod \boldsymbol{g}(x)$						

13. Hamming, B	CH and RS Codes		
Hamming Code	A Hamming Code is a linear block code there elements are binary vectors of b without the zero-vector. all single bit errors are correctable, nothing else. $q = 1$ $p(x)$:primitive $\{0, \alpha^0, \alpha^1, \dots, \alpha^{2^m-2}\}$, not factorizable polynomial in $GF(2)$ α : primitive element $p(x) \rightarrow p(\alpha) = 0$ -> checksum condition of hamming code -> to generate elements u : Codeword = $(u_0, \dots, u_{n-1}), u_i \in GF(2)$ Every code word consists of $n = 2^m - 1$ binary digits Checksum $\sum_{j=0}^{n-1} u_j * a_j = (u_0 \dots u_{n-1}) \begin{bmatrix} \alpha^0 \\ \dots \\ a^{n-1} \end{bmatrix} = u * H^T = 0$ In H are all elements of $GF(2^m)$ except 0. $H = [a^0 a^1 \dots a^{n-1}]$ In H are all elements of $GF(2^m)$ except 0. $H = [a^0 a^1 \dots a^{n-1}]$		
Cyclic Hamming	The primitive polynomial $m(x)$ of degree m is the generator polynomial		
Code	$g(x)$ of the cyclic $(2^m - 1, 2^m - m - 1)$ -Hamming code $u(a^2) = 0$ for every code polynomial since in $GF(2)$: $\sum_i a_i^2 = (\sum_i a_i)^2$		
BCH Codes Bose-Chaudhuri- Hocquenghem	Choose a field $GF(2^m)$ for some positive integer m. Let α be a primitive element of this field. A code word consists of $n = 2^m - 1$ binary digits $u = (u_0 \dots u_{n-1}), u_i \in \{0,1\} \rightarrow binary$ This code can correct t errors if $r \ge 2t - 1$ Checksum $u_0a^{0} + u_1a^1 + \dots + u_{n-1} * a^{n-1} = 0$ $u_0a^{2*0} + u_1a^{2*1} + \dots + u_{n-1} * a^{2*(n-1)} = 0$ $u_0a^{3*0} + u_1a^{3*1} + \dots + u_{n-1} * a^{3*(n-1)} = 0$ Each binary vector which fulfils the check equation for $q = 1,3,5,7$ is valid. 2,4,6, are redundant. $H = \begin{bmatrix} 1 & a^1 & a^2 & \dots & a^{(n-1)} \\ 1 & a^3 & a^{3^2} & \dots & a^{3^{(n-1)}} \\ 1 & a^5 & a^{5^2} & \dots & a^{5^{(n-1)}} \\ \vdots & & \vdots \\ 1 & a^r & a^{r^2} & \dots & a^{r(n-1)} \end{bmatrix}$ #rows = 2 * m	$m = 4$ $a^{15} = 1$ $n = 2^{m} - 1 = 15$ $r = 3 \rightarrow 2 \ errors$ $m(x) = x^{4} + x + 1$ $\rightarrow from \ table$ $\rightarrow primitive \ over \ GF(2)$ $a^{6} = a^{3} + a^{2}$ $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ $H = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ $H = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ $H = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$	
property	$\begin{aligned} u(a^q) &= u_0 + u_1 * a^q + \dots + u_{n-1}a^{q*(n-1)} = 0, q = 1,2,\dots,2t\\ \text{A binary n-tuple } u &= (u_0, u_1, \dots, u_{n-1}) \text{ is a code word of a t-error-correcting BCH code of length } n = 2^m - 1 \text{ iff the polynomial } u(x) = u_0 + u_1 * x + \dots + u_{n-1} * x^{n-1} \text{ has } a, a^2, \dots, a^{2t} \text{ as roots}\\ \text{Naive approach } g(x) &= (x-a)(x-a^2) \dots (x-a^{2t}) \end{aligned}$		
	-> does not work because will not be binary We need minimal polynomials -> binary coefficients that have a, a^2, a^{2t} as roots Let $\Phi_i(x)$ be the minimal polynomial of a^i . Then $g(x)$ must be the least comon multiple of $\Phi_1(x), \Phi_2(x),, \Phi_{2t}(x)$		
common divisor	$g(x) = lcm(\Phi_1(x), \Phi_2(x), \dots, \Phi_{2t}(x))$		

ZHAW/HSR

print date: 08.02.19

	P				
RS-Codes	Non-binary BCH codes -> $GF(q) \rightarrow usually q = 2^m$				
Reed-Solomon	A code word consists of $n = q - 1$ code symbols				
used for CD/DVD/	Attention! The code symbols u_i are not binary digits but elements of				
Satellite/ADSL/	$GF(q)$. However, if $q = 2^m$, then every code symbol				
xDSL/DVB	by a binary vector of length m.	•			
DFT	Discrete Fourier Transformation of a real vector $v \in$	\mathbb{R}^n			
2					
	$v_k = \sum_{i=0}^{n-1} v_i * e^{-j * \frac{2\pi}{n} * i * k} = \sum_{i=0}^{n-1} v_i * a^{-i * k}$ $a^i \neq 1, \qquad 0 < i < n$	$a = e^{j*\frac{2\pi}{n}}$			
	$V_{R} = \sum_{i=0}^{i} v_{i} + c \qquad = \sum_{i=0}^{i} v_{i} + a \qquad =$				
	$a^{i} \neq 1, 0 < i < n$				
	$a^n = 1$				
matrix		Inverse Transformation			
representation		$v = V * A^{-1}$			
representation	$\begin{bmatrix} v - v + h \\ r - 0 + 0 & r - 0 + 1 \end{bmatrix}$	$ \begin{array}{c} \nu - \nu + n \\ \Gamma a^{0*0} a^{0*1} a^{0*(n-1)} \end{array} $			
	$V = v * \begin{bmatrix} a^{-0*0} & a^{-0*1} & \cdots & a^{-0*(n-1)} \\ a^{-1*0} & a^{-1*1} & \cdots & a^{-1*(n-1)} \\ \vdots & \vdots & \ddots & \vdots \\ a^{-(n-1)*0} & a^{-(n-1)*1} & \cdots & a^{-(n-1)(n-1)} \end{bmatrix}$	1 1 $-1*0$ $-1*1$ $-1*(n-1)$			
	v = v *	$v = \frac{1}{n} * \begin{bmatrix} a^{1/2} & a^{1/2} & \cdots & a^{1/(n-2)} \end{bmatrix}$			
	(n-1)*0 - (n-1)*1 - (n-1)(n-1)	$n : : \cdot : \cdot : (n-1)*0 = (n-1)*1 = (n-1)(n-1)$			
	vector $\boldsymbol{v} = (v_0, v_1, \dots, v_{(n-1)})$ can be represented by				
	the DFT of v can be computed by evaluating the	the inverse DFT of v can be evaluated with:			
	polynomial $v(x)$ at $x = a^{-k}$	$1\sum^{n-1}_{\sum}$ $i*k$ 1 (i)			
	$\sum_{i=1}^{n-1}$ introduction	$v_i = \frac{1}{n} \sum_{k=1}^{n-1} v_k * a^{i*k} = \frac{1}{n} \boldsymbol{v}(a^i)$			
	$v_k = \sum_{i=1}^{k-1} v_i * a^{-i*k} = \boldsymbol{v}(a^{-k})$	k=0			
· (27)	l=0				
$\ln GF(2^m)$	Let <i>a</i> be a primitive element of $GF(2^m)$				
	$a^{j} \neq 1, j = 1 \dots 2^{m} - 2$ $a^{j} = 1, j = 2^{m} - 1$				
Validation	A vector u is a code word iff its Fourier transform U c	ontains 2 * t zeros.			
	$u = (u_0 \dots u_{n-1}) \in C \Leftrightarrow U = \left(U_0 \dots U_{n-2t-1} \underbrace{0 \dots 0}_{2t}\right)$	$U_{n-1} = u(\alpha^{-(n-1)}) = u(\alpha^{1}) = 0$			
	$ \begin{bmatrix} u - (u_0 \dots u_{n-1}) \in \mathcal{C} \Leftrightarrow \mathcal{O} = \begin{pmatrix} \mathcal{O}_0 \dots \mathcal{O}_{n-2t-1} \underbrace{\mathcal{O}_{1} \dots \mathcal{O}_{2t}}_{2t} \end{pmatrix} $	$U_{n-2} = u(\alpha^{-(n-2)}) = u(\alpha^2) = 0$			
	The polynomial representation $u(x)$ of a code word	$U_{n-2t} = u(\alpha^{n-2t}) = u(\alpha^{2t}) = 0$			
	The polynomial representation $u(x)$ of a code word	has $a^1, a^2, \dots a^{2t}$ as roots			
	\Rightarrow if $u(x) = m(x) * g(x) \Rightarrow u(\alpha) = u(\alpha^2) = u(\alpha^2)$	$(t) = 0 \Rightarrow u \in C$			
	$\Rightarrow u(x)$ must be a multiple of $g(x) = (x - \alpha) * (x - \alpha)$				
	\Rightarrow any multiple of $g(x)$ is a valid code polynomial				
Decoding	received vector $r = u + e$				
	discrete Fourier transform $R = U + E$				
	$U_i = 0, \qquad i = n - 2t, \dots, n - 1$				
	$E_i = R_i = r(a^{-i}),$				
	If the error pattern e contains t or less errors, we can				
	-> Berlekamp-Massey Algorithm: Finds the shortest li	-			
	the given values of E .	mean recapack smit register (LI SN) that generates			
	-	ill concrete the whole vector F			
	If the number of symbol errors is t or less, the LFSR w	mi generate the whole vector E .			
	Inverse DFT of E will give the error pattern e .				

ZHAW/HSR	print date: 08.02.19	FTP_CryptCod						
14. Convolutional Coding (Faltungscodes) & Turbo Codes								
Convolutional Coding	Encoder contains memory n encoder outputs at any given time depend on the k inputs and on m previous input blocks important special case: $k = 1$ encoder is a state machine Rate des codes = k/n (Eingangsbit durch Ausgangsbit) häufig ist k=1	$u[.] \xrightarrow{k} \underbrace{memory}_{k} \underbrace{k} \xrightarrow{m \cdot k}_{k} \underbrace{logic}_{k} $						
Encoder example	$u_{k} \qquad \qquad$	Generator Sequence to describe a state machine. visible in grafic. $g^{(1)} = (g_0 g_1 g_2) = (1 \ 1 \ 1)$ $\rightarrow Encoder$ $g^{(1)}(D) = g_0 D^0 + g_1 D^1$ $+ g_2 D^2$ $= 1 + D + D^2$ $g^{(2)} = (1 \ 0 \ 1)$						
polynomial representation	 Binary sequences Polynomial representation u = (u₁ u₂ u₃ ···) g⁽¹⁾ = (g₁⁽¹⁾ g₂⁽¹⁾ g₃⁽¹⁾ ···) g⁽²⁾ = (g₁⁽²⁾ g₂⁽²⁾ g₃⁽²⁾ ···) u (D) = u₁ ⊕ u₂ · D ⊕ u₃ · D² ⊕ ··· g⁽¹⁾ (D) = g₁⁽¹⁾ ⊕ g₂⁽¹⁾ · D ⊕ g₃⁽¹⁾ · D² ⊕ ··· g⁽²⁾ (D) = g₁⁽²⁾ ⊕ g₂⁽²⁾ · D ⊕ g₃⁽²⁾ · D² ⊕ ··· v = (v₁ v₂ v₃ ···) v = (v₁ v₂ v₃ ···) v (D) = v₁ ⊕ v₂ · D ⊕ v₃ · D² ⊕ ··· v (D) = v₁ ⊕ v₂ · D ⊕ v₃ · D² ⊕ ··· Discrete convolution becomes multiplication v⁽¹⁾ (D) = u(D) · g⁽¹⁾ (D) v⁽²⁾ (D) = u(D) · g⁽²⁾ (D) Code Word: v(D) = v⁽¹⁾ (D²) ⊕ D · v⁽²⁾ (D²) D: delay operator (place holder) Similar to z- transform 	Transformation in digital technic Faltung im Zeitbereich						
encoder state diagram	$\begin{array}{c} \begin{array}{c} u_k / v^{(1)}_k \ v^{(2)}_k \\ \end{array} \\ 0 / 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$							

Trellis Diagram	state	
	00 0/00 0/00 0/00 0/00 0/00 0/00 0/11 1/11 0/11 0/11 0/11	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	common assumption: encoder starts in the state (0,0) sometiems: a number of zeros is added at the end of the message so that	
	the encoder returns to the state (0,0)	
Decoding	Find the path through the trellis that best fits the received data. - Hard decoding: receiver delivers a binary symbol (hamming distance) - Soft decoding: receiver delivers a floating point value (confidence level) square euclidean distance $(r_k - v_k)^2$ about 2dB better than hard	
) (it a whii Allera with we	decoding	
Viterbi Algorithm	Finds the path through the trellis with the largest (or smallest) metric MLSE – maximum likelihood sequence estimation Principle	
	- At each step, compare the metrics of all path entering each state and	
	store the path with the largest metric (survivor) together with its metric.	
	Eliminate all other paths.	
	- At the end (or after a certain amount of time) the survivor with the best	
	metric is selected and the (first few) bits on this path are chosen as the decoded bits	
	N (L 4)	
	M _r [k]: metric of the state r at time k	
	 p, q: predecessor states of the state r 	
	■ d _{pr} , d _{qr} : branch metrics (e.g. Hamming distance)	
	$M_r[0] = 0$	
	$M_{r}[k] = \max_{\text{predecessor states } j} \left(M_{j}[k-1] + d_{jr} \right)$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	1/01 3 0/01 1/01 2 0/01 1/10 1/10 1/10 1/10 1/10	
	r = 10 10 00 11 00	

Turbo codes

kein Bestandteil der Prüfung.

BCJR: Formel: 3 Terme: etwas aus der Vergangenheit, etwas vom hier und jetzt und von der Zukunft Jacobi Symbol

Representations in $GF(2^4)$

٠	$\ln GF(2^x) \rightarrow$	2	=	0

		,		Int	Hex	Bin	Polynomic
						n_3, n_2, n_1, n_0	
$GF(2^{4})$	$GF(2^{3})$	$GF(2^{2})$	$GF(2^{1})$	0	0	0000	0
				1	1	0001	1
				2	2	0010	x
				3	3	0011	<i>x</i> + 1
				4	4	0100	<i>x</i> ²
				5	5	0101	$x^2 + 1$
				6	6	0110	$x^{2} + x$
				7	7	0111	$x^2 + x + 1$
				8	8	1000	<i>x</i> ³
				9	9	1001	$x^3 + 1$
				10	А	1010	$x^{3} + x$
				11	В	1011	$x^3 + x + 1$
				12	С	1100	$x^3 + x^2$
				13	D	1101	$x^3 + x^2 + 1$
				14	E	1110	$x^3 + x^2 + x$
				15	F	1111	$x^3 + x^2 + x + 1$

Roots of a polynomial

nooto or a porynomia				
	degree	in $\mathbb Q$	GF(2) = [0,1]	
x	1	[0]		
<i>x</i> + 1	1	[-1]		
<i>x</i> ²	2	[0,0]		
$x^2 + 1$	2	irreducible	$(x+1)(x+1) \to [-1, -1]$	
$x^2 + x$	2	[0, -1]		
$x^2 + x + 1$	2	irreducible	irreducible & primitive	
x ³	3	[0,0,0]		
$x^3 + 1$	3	[-1]		
$x^{3} + x$	3	[0]		
$x^3 + x + 1$	3	irreducible	irreducible & primitive	
$x^3 + x^2$	3	[0,0,-1]		
$x^3 + x^2 + 1$	3	irreducible	irreducible & primitive	
$x^3 + x^2 + x$	3	[0]		
$x^3 + x^2 + x + 1$	3	[-1]		

Functions				
q=intDiv(a,b)	int: a,b	integer division a/b		intDiv(9,4) = 2
r=mod(a,b)		modulo (a mod b)		mod(9,4) = 1
gcd(a,b) \gcdstep(a,b)	int: a,b	greatest common divisor		gcd(10,16) = 2
\egcd(a,b)	int: a,b	extended gcd		gcde(10,16) = 2
\egcdstep(a,b)				10 * (-3) + 16 * 2 = 2
\phi(n)	int: n	Eulers phi function	phi(n)	phi(10) = 4
e=\multord(g,n)	int: g,n	multiplicative order	$g^e \equiv 1 \; (mod \; n)$	multord(8,5) = 4
\gen(g,p)	int: g	generator / primitive element		$gen(2,7) \rightarrow no, ord = 3$
$\lambda = h + m (m)$	prim: p	multiplicative order		
\chin(m)	matrix: m	Chinese remainder theorem	$x \equiv a_i \mod m_i$	$\begin{pmatrix} 5 \\ 2 \\ 11 \end{pmatrix}$
	(<i>n</i> × 2)			$chin\begin{pmatrix} 5 & 7\\ 3 & 11\\ 10 & 13 \end{pmatrix} = M_i \begin{pmatrix} 143\\ 91\\ 77 \end{pmatrix}, e_i \begin{pmatrix} 715\\ 364\\ 924 \end{pmatrix}$
				x = 894
<pre>\invmod(m,n) \invmodstep(m,n)</pre>	matrix: m int: n	inverse of a matrix		<i>invmodstep</i> $\begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$, 4 $ = \begin{bmatrix} 1 & 2 \\ 3 & 3 \end{bmatrix}$
\prifiadd(p)	prim: p	addition of prime field		prifiadd(7)
\prifimul(p)	prim: p	multiplication of prime field		prifimul(7)
\extfiadd(q,m)	int: q	addition of	GF(q)	$extfiadd(2, x^2 + x + 1)$
	poly: m	extended field	$m(x) = \cdots$	
\extfimul(q,m)	int: q	multiplication of	GF(q)	$extfimul(2, x^2 + x + 1)$
	poly: m	extended field	$m(x) = \cdots$	
<pre>polyQuotient(f,m)</pre>	poly: f,m	quationt of a polynom division	f/m	$polyQuotient(x^3 + 1, x^2 + 1) = x$
<pre>polyRemainder(f,m)</pre>	poly: f,m	remainder of a polynom division	f/m	= x polyRemainder(x ³ + 1, x ² + 1) $= 1 - x$
<pre>\polgen(p,n,m)</pre>	int: p,m	generate primitive	$GF(p^n)$	$= 1 - x$ $polgen(2,3, x^3 + x + 1)$
	poly: m	polynoms modulo m	$m(x) = \cdots$	
\sam(a,c,m)	int: a,c,m	square an multiply	a ^c mod m	sam(1234,5678,438) = 316
\samstep(a,c,m)		with modulo		
\sam2(a,c)	int: a,c	square an multiply	a ^c	sam(3,4) = 81
\sam2step(a,c)				
\isprobprime(n)	int n	miller-rabin primality test	isPrime(n)	isprobprime(317) = true
<pre>\isprobprimebase (n,a)</pre>	int n,a	with a given base		isprobprimebase(317,2) = true
<pre>\multmod(ec,p,n,f)</pre>	poly: ec	multiplication on an eliptic	$n * p \pmod{f}$	
\multmodstep	point: p	curve with modulo		
	int n,f			
<pre>\addmod(ec,p,q,f) \addmodstar</pre>	poly: ec	addition on an eliptic	$p+q \pmod{f}$	
\addmodstep	point: p,q int f	curve with modulo		
\add(ec,p,q)	poly: ec		p+q	
(444(20))))))	point: p,q		P ' Y	
\mult(ec,p,n)	poly: ec		n * p	
	point: p		-	
	int: n			
<pre>\validate(ec)</pre>	poly: ec			
<pre>\validatemod(ec,p)</pre>	poly: ec			
<pre>\numberofpoints(p)</pre>	р			
<pre>\order(ec,p,f)</pre>	poly: ec			
\orderstep	point: p			
	int: f			
$\negmod(p,f)$	point: p			
	int: f			
<pre>\listpoints(ec,f)</pre>				