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CRYPTOGRAPHY AND CODING THEORY 

1+2. Algebraic basics 

Integer ℤ = {0, ±1,±2,±3,… } 15 ∈ ℤ 

Divisibility Let a and n be integers with 𝑎 ≠ 0, a divides n if and only if there is an integer 
b such that 𝑛 = 𝑎 ∗ 𝑏: 𝑎|𝑛 ⇔ ∃𝑏 ∈ ℤ: 𝑛 = 𝑎 ∗ 𝑏 

5|15 
 

properties 𝑎|0, 𝑎|𝑎, 1|𝑛 5|0, 5|5, 1|5 
If 𝑎|𝑏 and 𝑏|𝑐 𝑡ℎ𝑒𝑛 𝑎|𝑐 5|15 𝑎𝑛𝑑 15|60 → 5|60 

If 𝑎|𝑏 𝑎𝑛𝑑 𝑎|𝑐 ⇒ 𝑎|(𝑠 ∗ 𝑏 + 𝑡 ∗ 𝑐) for all integers 𝑠 and 𝑡 3|6 𝑎𝑛𝑑 3|15 
⇒ 3|(2 ∗ 6 + 4 ∗ 15) 

Division theorem If 𝑎 and 𝑏 are integers with 𝑏 > 0 then there are unique integers 𝑞 (quotient) 
and 𝑟 (rest) such that 𝑎 = 𝑞 ∗ 𝑏 + 𝑟 𝑎𝑛𝑑 0 ≤ 𝑟 < 𝑏 

9 = 2 ∗ 4 + 1 
0 ≤ 1 ≤ 4 

notation 
q=intDiv(a,b) 

r=mod(a,b) 

𝑞 = ⌊
𝑎

𝑏
⌋ (𝑓𝑙𝑜𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑏𝑟𝑢𝑛𝑑𝑒𝑛) 

𝑟 = 𝑎 − 𝑏 ∗ 𝑞 = 𝑎 𝑚𝑜𝑑 𝑏 

𝑞 = ⌊
9

4
⌋ = 2 

𝑟 = 9 − 4 ∗ 2 = 1 

Greatest Common 
Divisor (gcd) 

largest non-negative integer 𝑑 that divides both a and b: gcd(𝑎, 𝑏) 
Special case: gcd(0,0) = 0 → 𝑝𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 

gcd(18, 30) = 6 
gcd(−10, 20) = 10 

properties 
 

gcd(a,b) 

gcd(𝑎, 0) = |𝑎| note: also valid for 𝑎 = 0 gcd(−10, 0) = 10 

gcd(𝑎, 𝑏) ≥ 0 gcd(−20,−14) = 2 
For any integer q: 𝑔𝑐𝑑(𝑎 + 𝑞 ∗ 𝑏, 𝑏) = gcd(𝑎, 𝑏) 
"adding a multiple of one integer to the other does not change their gcd" 

gcd(3 + 8,4) = gcd(3,4) 
gcd(3 + 6,2) = gcd (3,2) 

𝑖𝑓 𝑏 ≠ 0,𝑤𝑒 𝑚𝑎𝑦 𝑐ℎ𝑜𝑜𝑠𝑒 𝑞 = − ⌊
𝑎

𝑏
⌋ → 𝑎 + 𝑞 ∗ 𝑏 = 𝑎 − ⌊

𝑎

𝑏
⌋ ∗ 𝑏 = 𝑎 𝑚𝑜𝑑 𝑏 

𝑔𝑐𝑑(𝑎 𝑚𝑜𝑑 𝑏, 𝑏) = 𝑔𝑐𝑑(𝑎, 𝑏) 

gcd(14 𝑚𝑜𝑑 6,6)
= gcd(14,6) 

Euclidean 
algorithm 
 
/gcdstep(a,b) 

Based on gcd(𝑎, 𝑏) = gcd(𝑏 𝑚𝑜𝑑 𝑎, 𝑎)  𝑎𝑛𝑑 gcd(𝑎, 0) = |𝑎| 
gcd(a,b): 
  while (a!=0): 
    r=b mod a; b = a; a = r 
  return b 

 a b r 

gcd(15,25) 
= 𝟓 

15 25 10 

10 15 5 

5 10 0 

0 5  
 

Extended 
Euclidean 
Algorithm 

The set of all integer linear combinations of two integers 𝑎 and 𝑏 coincides 
with the set of all integer multiples of gcd(𝑎, 𝑏) 

𝑎 ∗ ℤ + 𝑏 ∗ ℤ = gcd(𝑎, 𝑏) ∗ ℤ 

4 ∗ 2 + 6 ∗ 1 
= gcd(4,6) ∗ 7 

in other words: For any given integers 𝑎, 𝑏, 𝑛 the equation 𝑎𝑥 + 𝑏𝑦 = 𝑛 can be solved by 
integers 𝑥 and 𝑦 if and only if gcd(𝑎, 𝑏) | 𝑛 𝑎 ∗ 𝑥 + 𝑏 ∗ 𝑦 = gcd (𝑎, 𝑏) 

𝟒 ∗ (−1) + 𝟔 ∗ 1 = 2 
𝟒 ∗?+𝟔 ∗?≠ 3 

egcd(a, b): 
 

/egcd(a,b) 

/egcdstep(a,b) 

x=0, y=1, u=1, v=0 
while(a!=0): 

  q=⌊
𝑏

𝑎
⌋, r=b mod a, m=x-u*q, n=y-v*q 

  b=a, a=r, x=u, y=v, u=m, v=n 
return b, x, y 

𝒂 𝒃 𝒙 𝒚 𝒖 𝒗 𝒒 𝒓 𝒎 𝒏 
𝟒 𝟓 0 1 1 0 − − − − 
1 4 1 0 −1 1 1 1 −1 1 
0 𝟏 −𝟏 𝟏 5 −4 4 0 5 −4 

4 ∗ (−𝟏) + 5 ∗ 𝟏 = 𝟏 

modular 
arithmetic 

19: 00 + 8: 00 = 27: 00 → 03: 00 … represent the same time 
We say that 3,27,51, … are congruent module 24 

 

Congruences 
 

mod(a,n) 

Let 𝑎, 𝑏, 𝑛 be integers with 𝑛 ≠ 0. We say that 
𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)  "𝑎 𝑖𝑠 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 𝑡𝑜 𝑏 𝑚𝑜𝑑𝑢𝑙𝑜 𝑛" 

If (𝑎 − 𝑏) is a multiple (positive or negative) of n. 
𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) ⇔ 𝑎 = 𝑏 + 𝑛 ∗ 𝑘, 𝑘 ∈ ℤ 

 
3 ≡ 27(𝑚𝑜𝑑 24) 

 
3 = 27 + (−1) ∗ 24 

addition, 
subtraction and 

multiplication 

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) 𝑎𝑛𝑑 𝑐 ≡ 𝑑(𝑚𝑜𝑑 𝑛) 𝑇ℎ𝑒𝑛 
𝑎 + 𝑐 ≡ 𝑏 + 𝑑(𝑚𝑜𝑑 𝑛) 
𝑎 − 𝑐 ≡ 𝑏 − 𝑑(𝑚𝑜𝑑 𝑛) 
𝑎 ∗ 𝑐 ≡ 𝑏 ∗ 𝑑(𝑚𝑜𝑑 𝑛) 

𝑎 = 3, 𝑐 = 2, 𝑛 = 7 
3 + 2 ≡ 10 + 9(𝑚𝑜𝑑 7) 
3 − 2 ≡ 10 − 9(𝑚𝑜𝑑 7) 
3 ∗ 2 ≡ 10 ∗ 9(𝑚𝑜𝑑 7) 

Modular Inverses 
 

Be careful 
with division! 

 
/ecgd(a,b) 

Let a, n be integers with 𝑛 ≠ 0 
If the congruence 𝑎 ∗ 𝑥 ≡ 1 (𝑚𝑜𝑑 𝑛) has a solution 𝑥 ∈ ℤ, 
we say 𝑎 is invertible modulo 𝑛 
and 𝑥 is the multiplicative inverse for 𝑎 (𝑚𝑜𝑑 𝑛) 

3 ∗ ?≡ 1(𝑚𝑜𝑑 5) 
3 ∗ 0 (𝑚𝑜𝑑 5) ≡ 0 
3 ∗ 1 (𝑚𝑜𝑑 5) ≡ 3 
3 ∗ 𝟐 (𝑚𝑜𝑑 5) ≡ 𝟏 

mod inv of 3 mod 5 is 2 

The integer 𝑎 is invertible module 𝑛 if and only if gcd(𝑎, 𝑛) = 1 
Since gcd(𝑎, 𝑛) = 1 ther exist integer x and y such that 𝑎 ∗ 𝑥 + 𝑛 ∗ 𝑦 = 1 

gcd(3,5) = 1 
3 ∗ 2 + 5 ∗ (−1) = 1 

solving 𝑎 ∗ 𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) 
gcd(𝑎, 𝑛) = 1 → use extended Euclidean algorithm to find 𝑠 and 𝑡 

gcd(𝑎, 𝑛) = 𝑐 > 1 → (
𝑎

𝑐
) ∗ 𝑥 ≡

𝑏

𝑐
(𝑚𝑜𝑑

𝑛

𝑐
) →solutions: 𝑥0, 𝑥0 +

𝑛

𝑐
, 𝑥0 +

2𝑛

𝑐
 

5 ∗ 4 ≡ 6 (𝑚𝑜𝑑 7) 
5 ∗ 3 + 7 ∗ (−2) = 1 

 𝑎 must be coprime (teilerfremd) with n. 
Therefore, we use prime numbers, because they are coprime except 0. 

mod inv of 2 mod 6 not exist 
2 ∗ 1 + 6 ∗ 0 = 2 
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Fermat’s Little 
Theorem 

If 𝑝 is a prime, then for every integer 𝑎 
𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝) 

If 𝑝 is a prime and 𝑝 does not divide 𝑎 (coprime), then 
𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝) 

  Attention: There may be exponents 𝑒 < 𝑝 − 1 such that 𝑎𝑒 ≡ 1 (𝑚𝑜𝑑 𝑝) 

 

25 ≡ 32 ≡ 2 (𝑚𝑜𝑑 5) 
 
25−1 ≡ 16 ≡ 1 (𝑚𝑜𝑑 5) 

usage What is the remainder of 210203 𝑚𝑜𝑑 101? → 2100 ≡ 1 (𝑚𝑜𝑑 101) 
210203 ≡ (2100)102 ∗ 23 ≡ (1)102 ∗ 23 ≡ 23 ≡ 8 (𝑚𝑜𝑑 101) 

 

coprime (or 
relatively prime) 

Two integers 𝑎 and 𝑏 are coprime (teilerfremd) if gcd(𝑎, 𝑏) = 1 gcd (4,9) = 1 

Euler’s Phi-funct. 𝜙(𝑛) = number of integers 1 ≤ 𝑎 ≤ 𝑛, such that 𝑔𝑐𝑑(𝑎, 𝑛) = 1 𝜙(6) = 2 → {1,2,3,4,5,6} 

properties 
 

/phi(n) 

/phi(7) 

𝜙(𝑝) = 𝑝 − 1, 𝑝 ∈ ℙ 𝜙(7) = 6 → {1,2,3,4,5,6,7} 
𝜙(𝑝 ∗ 𝑞) = 𝑝 ∗ 𝑞 −𝑞⏟

𝑚𝑖𝑡 𝑝 𝑡𝑒𝑖𝑙𝑏𝑎𝑟,

−𝑝⏟
𝑚𝑖𝑡 𝑞 𝑡𝑒𝑖𝑙𝑏𝑎𝑟,

+1⏟
𝑑𝑎 𝑝∗𝑞 2𝑚𝑎𝑙 𝑔𝑒𝑧äℎ𝑙𝑡

, 𝑝, 𝑞 ∈ ℙ, 𝑝 ≠ 𝑞 𝜙(2 ∗ 3) = 6 − 2 − 3 + 1 
= 2 

𝜙(𝑝𝑛) = 𝑝𝑛 − 𝑝𝑛−1 = 𝑝𝑛−1 ∗ (𝑝 − 1) 𝜙(23) = 8 − 4 = 4 ∗ 1 
{1,2,3,4,5,6,7,8} 

𝜙(𝑚 ∗ 𝑛) = 𝜙(𝑚) ∗ 𝜙(𝑛), gcd(𝑚, 𝑛) = 1 𝜙(2 ∗ 3) = 𝜙(2) ∗ 𝜙(3) = 2 

𝑛 = 𝑝1
𝑒1 ∗ 𝑝2

𝑒2 ∗ …∗ 𝑝𝑘
𝑒𝑘 ,  𝑝𝑖 ∈ ℙ, 𝑝𝑖 ≠ 𝑝𝑗  𝑓ü𝑟 𝑖 ≠ 𝑗 

𝜙(𝑛) = 𝜙(𝑝1
𝑒1) ∗ 𝜙(𝑝2

𝑒2) ∗ …∗ 𝜙( 𝑝𝑘
𝑒𝑘) 

𝜙(𝑛) =∏𝑝𝑖
𝑒𝑖−1 ∗ (𝑝𝑖 − 1)

𝑘

𝑖=1

= 𝑛 ∗∏(1 −
1

𝑝𝑖
)

𝑘

𝑖=1

 

225 = 32 ∗ 52 
𝜙(225) = 𝜙(32) ∗ 𝜙(52) 

I must know the prime 
factors. 

Euler’s Totient 
Theorem 

if 𝑎 und 𝑛 are positive integers and relatively prime: 

𝑎𝜙(𝑛) ≡ 1 (𝑚𝑜𝑑 𝑛) 

gcd(3,4) = 1 

3𝜙(4) ≡ 32 ≡ 9 ≡ 1 (𝑚𝑜𝑑 4) 

properties if 𝑛 is prime: 𝑎𝜙(𝑝) ≡ 𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝) →Fermats little theorem 34 ≡ 81 ≡ 1 (𝑚𝑜𝑑 5) 

usage What are the "last two digits" of 123562 → 𝑚𝑜𝑑 100 which is not prime 

𝐸𝑢𝑙𝑒𝑟′𝑠 𝑡ℎ𝑒𝑜𝑟𝑒𝑚:𝑚𝜙(100) ≡ 1 (𝑚𝑜𝑑 100) and gcd(123,100) = 1 

123𝜙(100) ≡ 12340 ≡ 1(𝑚𝑜𝑑 100) 
123562 ≡ (12340)14 ∗ 1232 ≡ 1 ∗ 1232 = 232 = 29 (𝑚𝑜𝑑 100) 

 

Multiplicative 
Order 

The multiplicative order of 𝑔 𝑚𝑜𝑑 𝑛 is the smallest positive integer 𝑒 that: 
𝑔𝑒 ≡ 1 (𝑚𝑜𝑑 𝑛), 𝑔 ∈ ℤ 

𝑔 = 2, 𝑛 = 5 
21 ≡ 2 (𝑚𝑜𝑑 5) 
22 ≡ 4 (𝑚𝑜𝑑 5) 

23 ≡ 8 ≡ 3 (𝑚𝑜𝑑 5) 
2𝟒 ≡ 16 ≡ 1 (𝑚𝑜𝑑 5) 
𝑜𝑟𝑑(2) = 4 (𝑚𝑜𝑑 5) 

properties 
 

/multord(g,n) 

/multord(8,5) 

𝑔𝑓 ≡ 1 (𝑚𝑜𝑑 𝑛), 𝑓 ∈ ℕ, if and only if 𝑓 is divisible by the order 𝑒 of 𝑔 28 ≡ 1 (𝑚𝑜𝑑 5) 

𝑔𝑘 ≡ 𝑔𝑙  (𝑚𝑜𝑑 𝑛), if and only if 𝑘 ≡ 𝑙 (𝑚𝑜𝑑 𝑒) 2101 ≡ 2301 (𝑚𝑜𝑑 5) 
da 101 ≡ 301 (𝑚𝑜𝑑 4) 

𝑔𝑘 =
𝑒

gcd(𝑒, 𝑘)
, 𝑘 ∈ ℕ 

 
𝑜𝑟𝑑(26) ≡ 𝑜𝑟𝑑(4), 𝑑𝑎 26 ≡ 64 ≡ 4 (𝑚𝑜𝑑 5) 

𝑜𝑟𝑑(22) =
4

gcd(4,2)
= 2 

𝑜𝑟𝑑(23) =
4

gcd(4,3)
= 4 

Generators 
module p 
generator / 
primitive element 
 

/gen(g,p) 

/gen(2,7) 

𝑝 ∈ ℙ, 𝑔 ∈ {1,2, … , 𝑝 − 1} 
𝑔 is a generator 𝑚𝑜𝑑 𝑝 if: 𝑔𝑖  𝑚𝑜𝑑 𝑝 with 1 ≤ 𝑖 ≤ 𝑝 − 1 
generates 1,2, … , 𝑝 − 1 
→ 𝑔 is a generator if the order of 𝑔 𝑚𝑜𝑑 𝑝 is 𝑝 − 1 
There are generators for any prime p. 
The number of generators 𝑚𝑜𝑑 𝑝 is given by 𝜙(𝑝 − 1) 

𝑔 = 2, 𝑝 = 7 
21 ≡ 𝟐 
22 ≡ 4 
23 ≡ 1 
24 ≡ 𝟐 
→ 𝑛𝑜 

𝑜𝑟𝑑(2) = 3 

𝑔 = 3, 𝑝 = 5 
31 ≡ 3 
32 ≡ 4 
33 ≡ 2 
34 ≡ 1 
→ 𝑦𝑒𝑠 

𝑜𝑟𝑑(3) = 4 

Chinese 
Remainder 
Theorem 
(Chinesischer 
Restwertsatz) 

 
crypt/ 

chin(

𝑎1 𝑚1
… …
𝑎𝑛 𝑚𝑛

) 

𝑥 ≡ 𝑎1 (𝑚𝑜𝑑 𝑚1) 
𝑥 ≡ 𝑎2 (𝑚𝑜𝑑 𝑚2) 
𝑥 ≡ 𝑎𝑛 (𝑚𝑜𝑑 𝑚𝑛) 

gcd(𝑚𝑖 , 𝑚𝑗) = 1, 𝑖 ≠ 𝑗 

𝑀 =∏𝑚𝑖

𝑛

𝑖=1

= 𝑚1 ∗ 𝑚2 ∗ … ∗ 𝑚𝑛 

𝑀𝑖 =
𝑀

𝑚𝑖

= 𝑚1 ∗ 𝑚2 ∗ … ∗ 𝑚𝑖−1 ∗ 𝑚𝑖+1 ∗ … ∗ 𝑚𝑛 → gcd(𝑚𝑖, 𝑀𝑖) = 1 

→ 𝑟𝑖 ∗ 𝑚𝑖 + 𝑠𝑖 ∗ 𝑀𝑖 = gcd(𝑚𝑖, 𝑀𝑖) = 1, 𝑒𝑖 = 𝑠𝑖 ∗ 𝑀𝑖  (𝑚𝑜𝑑 𝑀) 

𝑥 = 5 (𝑚𝑜𝑑 7) 
𝑥 = 3 (𝑚𝑜𝑑 11) 
𝑥 = 10 (𝑚𝑜𝑑 13) 

𝑀 = 7 ∗ 11 ∗ 13 = 1001 
𝑀1 = 143 → 𝑒1 = 715 
𝑀2 = 91 → 𝑒2 = 364 
𝑀3 = 77 → 𝑒3 = 924 

𝑥 = (∑𝑎𝑖 ∗ 𝑒𝑖

𝑛

𝑖=1

)𝑚𝑜𝑑 𝑀 
𝑥 = 894 
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3a. Symmetric Cryptography 

Terms Cryptos = hidden (from Greek) 
Desire of confidentiality -> protection from disallowed reading. 

 

Tasks Integrity (Integrität) = Ensure that nobody has changed the received document. 
Authenticity (Authentifizierung) = Ensure who has sent this document. 
Indisputable (unbestreitbar) = Ensure that, this person has done that. 

Cryptography 

 
Symmetric The key 𝑑 to decrypt can easily be computed from the key 𝑒 to encrypt.  

Attacks The Attacker knows the algorithm.  

Kerckhoffs's 
principle 

The security of an encryption system rests solely on the secrecy of the key. 
And not on the missing knowledge of the algorithm. 

 

Scenarios Ciphertext-only: attacker knows only the ciphertext (most difficult) 
Known Plaintext: he also knows some part of the plaintext (realistic) 
Chosen Plaintext: try by myself, with chosen input 
Brute force: Try all combinations -> key space needs to be large 

h,a,e,g,s,d,f 
weather forecast 
a,a,a,a,a -> x,x,x,x,x 

a,b,c,d, ... -> 

Goal Determine the key 𝑧 in use.  

Block Ciphers 
(Verschlüsselung) 

We have an alphabet 𝒜 of plain text and cipher text symbols 
n: fixed block length 
𝒳 = 𝒜𝑛: set of plaintexts 
𝒴 = 𝒜𝑛: set of ciphertexts 
does not say how long the key is 

e.g. 𝒜 = {0,1} 𝑜𝑟 {𝑎 … 𝑧} 
e.g. 64-bit code 

requirements Encryption = Permutation = change bit order 
Injective (one-by-one): 𝑓(𝑥) = 𝑓(𝑦) → 𝑥 = 𝑦, 
otherwise, two equally plaintext would result in the same ciphertext. 
Surjective (onto): 𝑦 ∈ 𝒴 → ∃𝑥 ∈ 𝒳: 𝑓(𝑥) = 𝑦, 
otherwise, there would be valid ciphertexts without valid plaintexts. 
→ Bijective Self-Mapping (Injective and Surjective) 

e.g. shuffle cards 

each 𝒫 has one unique 𝒞 
 
each 𝒞 has at least one 𝒫 
 

𝒞 ↔ 𝒫 

Linear functions 𝒜 = ℤ𝑚 = {0,1, … ,𝑚 − 1} 
all computations are modulo m, to ensure that result is between 0 and 𝑚 − 1 

e.g. 𝒜 = {0. .25},𝑚 = 26 

linear Scalars: 𝛼, 𝛽 ∈ ℤ𝑚 
Vectors: �⃗�, �⃗⃗⃗� ∈ (ℤ𝑚)

𝑛 

Function 𝑓: (ℤ𝑚)
𝑛 → (ℤ𝑚)

𝑘  
𝑓(𝛼�⃗� + 𝛽�⃗⃗⃗�) = 𝛼 ∗ 𝑓(�⃗�) + 𝛽 ∗ 𝑓(�⃗⃗⃗�) 

 

affine 
= linear + bijective 
 

/invmod(m,n) 

/invmodstep 

Map 𝑀: (𝑘 × 𝑛)-matrix with entries ℤ𝑚 

𝑏: vector in (ℤ𝑚)
𝑘, 𝑏 = 0 → 𝑓 𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟 

𝑓(�⃗�) = (𝑀�⃗� + �⃗⃗�) 𝑚𝑜𝑑 𝑚 

an affine map is bijective if: 
1. 𝑘 = 𝑛 
2. gcd(det(𝑀) ,𝑚) = 1 → (det(𝑀))−1(𝑚𝑜𝑑 𝑚) 𝑒𝑥𝑖𝑠𝑡𝑠 

determinant of M must be coprime with m 

 

determinant 
det() 

The factor of area changes when multiplying with a position vector. 
If negative we flip the area (antisymmetric) 
2 × 2 → calculate 𝑎𝑥 ∗ 𝑏𝑦 − 𝑏𝑥 ∗ 𝑎𝑦 

3 × 3 → Hand rule of Sarrus 

 

 Unity matrix does not change a vector when multiplying. -> 𝑑𝑒𝑡 = 1  

Confusion 

(Verwirrung) 
𝑦𝑖 = 𝐹𝑖(�⃗�, 𝑧), 𝑖 ∈ {1…𝑛} 

𝐹𝑖  should be mathematically complex -> linear functions are not enough 
For a given x and y, it is not feasible to solve for z. 
-> do this with different rounds (enough big): 𝐸 = 𝐸𝑅 ∘ 𝐸𝑅−1 ∘ … ∘ 𝐸1 

 

Diffusion 

(Streuung) 
Every ciphertext bit should depend on every plaintext and every key bit. 
-> Changing a single bit in the plaintext (or the key), on the average 50% of 
the ciphertext bits should change 

 

𝒳,𝒫: set of plaintexts 
readable, 

understandable 

𝒴, 𝒞: set of ciphertexts 
readable, 

not understandable 

𝒵,𝒦: set of keys 

Encryption (Verschlüsselung) 
𝐸𝑍 = 𝒳 → 𝒴 𝑤𝑖𝑡ℎ 𝑧 ∈ 𝒵 

ℰ, 𝐸𝑘 = 𝒫 → 𝒞 𝑤𝑖𝑡ℎ 𝑘 ∈ 𝒦 

Decryption (Entschlüsseln) 
𝐷𝑍 = 𝒴 → 𝑋 𝑤𝑖𝑡ℎ 𝑧 ∈ 𝒵 
𝒟,𝐷𝑘 = 𝒞 → 𝒫 𝑤𝑖𝑡ℎ 𝑘 ∈ 𝒦 
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Alg: Vigenère 
Cipher 
von Julius Caesar 
 
affine encryption 

Encryption: 𝐸𝑍: (ℤ𝑚)
𝑛 → (ℤ𝑚)

𝑛, �⃗� → �⃗� + 𝑧 (𝑚𝑜𝑑 𝑚) 
Decryption: 𝐷𝑍: (ℤ𝑚)

𝑛 → (ℤ𝑚)
𝑛 , �⃗� → �⃗� − 𝑧 (𝑚𝑜𝑑 𝑚) 

 Variation 1 Variation 2 Variation 3 One-Time-Pad 

Plaintext 𝑎, 𝑏, 𝑐, … , 𝑥, 𝑦, 𝑧 𝑎, 𝑏, 𝑐, … , 𝑥, 𝑦, 𝑧 𝑎, 𝑏, 𝑐, … , 𝑥, 𝑦, 𝑧 010001101110 

Ciphertext 𝑑, 𝑒, 𝑓, … 𝑎, 𝑏, 𝑐 𝑒, 𝑖, 𝑥, … , 𝑎, 𝑏, 𝑘 e.g. Apfel 101101010110 

Number of key 26 26! = 4 ∗ 1026  long as plaintext 

Encryption Shift to right Randomly permutate 

a b c ... x y z 

e f x ... h u k 
 

a b c . x y z 
a b c . x y z 
p q r . m n o 
f g h . c d e 
e f g . b c d 
l m n . i j k 

 

add a random key 
e.g. 
111100111000 

Brute force attack easy, only #26 
too little keys 

difficult, but possible 
word structure 

ciphertext too short 
word structure 

secure proven 
key to long 

Example (+3) haus -> kdxv zac -> kex zac -> zph  
 

Alg: Hill Cipher 𝒵: set of all invertible 𝑛 × 𝑛 matrices with components from ℤ𝑚 
matrix must be invertible: gcd(det(𝑀) ,𝑚) = 1 
Key: 𝑀 ∈ (ℤ𝑚)

𝑛×𝑛 
𝐸𝑀: (ℤ𝑚)

𝑛 → (ℤ𝑚)
𝑛 , �⃗� → 𝑀 ∗ �⃗� (𝑚𝑜𝑑 𝑚) 

Linear permutations of vector of length n 

 

Alg: General Affine 
Cipher 

Key: (𝑀, 𝑏) 
M: invertible Matrix in (ℤ𝑚)

𝑛×𝑛 
b: vector in (ℤ𝑚)

𝑛 
Encryption: 𝐸(𝑀,𝑏): (ℤ𝑚)

𝑛 → (ℤ𝑚)
𝑛, 𝑣 → 𝑀𝑣 + 𝑏 (𝑚𝑜𝑑 𝑚) 

Special Cases: 
𝑀 = 1: Vignère 
𝑏 = 0: Hill 
Every affine encryption is solvable. 
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4. Algebraic basics 2 

Algebraic Group A group is a set 𝐺 together with a binary operation ∘, 
which combines two elements of G. 

𝐺 = Set of Integer ℤ 
∘ = addition ′+′ 

properties Closure (Abgeschlossenheit): 𝑎, 𝑏 ∈ 𝐺 ⇒ 𝑎 ∘ 𝑏 ∈ 𝐺 
Associativity: (𝑎 ∘ 𝑏) ∘ 𝑐 = 𝑎 ∘ (𝑏 ∘ 𝑐) 
Identity Element e (Einheitselement): 𝑒 ∘ 𝑎 = 𝑎 ∘ 𝑒 = 𝑎 
Inverse Element 𝑎−1: 𝑎−1 ∘ 𝑎 = 𝑎 ∘ 𝑎−1 = 𝑒 

𝑎 + 𝑏 ∈ ℤ 
(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) 

0 + 𝑎 = 𝑎 + 0 = 𝑎 
(−𝑎) + 𝑎 = 𝑎 + (−𝑎) = 0 

Abelian Group Commutative Group 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎 𝑎 + 𝑏 = 𝑏 + 𝑎 

Algebraic Field 
(Körper) 

A field is a set F together with two binary operations ⊕ and ⊗, 
satisfying the properties 

𝐹 = 𝑅𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 ℚ 
⊕=′ +′,⊗=′∗′ 

properties (𝐹,⊕) is an Abelian Group. 
The identity element with respect to ⊕ is denoted by 0. 

(ℚ,+) 
𝑒 = 0 

(𝐹 − {0},⊗) is an Abelian Group. 
The identity element with respect to ⊗ is denoted by 1. 

(ℚ − {0},⊗) 
𝑒 = 1 

Distributive Law holds: 𝑎 ⊗ (𝑏 ⊕ 𝑐) = 𝑎 ⊗ 𝑏⊕ 𝑎⊗ 𝑐 𝑎 ∗ (𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 

Remarks ⊕ is commonly called "addition", ⊗ is commonly called 
"multiplication" 

 

We can solve linear equality systems in an algebraic field, because of 
the 4 basic operations (addition, subtraction, multiplication, division). 

 

Modulo is not an algebraic field.  

properties ∀𝑎 ∈ 𝐹, 𝑎 ⊗ 0 = 0⊗ 𝑎 = 0 
∀𝑎, 𝑏 ∈ 𝐹 𝑎𝑛𝑑 𝑎, 𝑏 ≠ 0 ⇒ 𝑎 ⊗ 𝑏 ≠ 0 
𝑎 ⊗ 𝑏 = 0 𝑎𝑛𝑑 𝑏 ≠ 0 ⇒ 𝑎 = 0 

𝑎 ≠ 0 𝑎𝑛𝑑 𝑎 ⊗ 𝑏 = 𝑎 ⊗ 𝑐 ⇒ 𝑏 = 𝑐 

𝑎 ∗ 0 = 0 ∗ 𝑎 = 0 
1 ∗ 2 ≠ 0 

𝑎 ∗ 5 = 0 → 𝑎 = 0 
3 ∗ 𝑎 = 3 ∗ 𝑏 → 𝑏 = 𝑐 

Finite Fields / 
Galois Fields 

𝐺𝐹(𝑞): Field with a finite number 𝑞 of elements 𝐺𝐹(2) = {0,1} → 𝑞 = 2 

Smallest number 𝜆 such that ∑ 1𝜆
𝑖=1 = 0 

𝜆 is always a prime 

1 + 1 = 0 (𝑚𝑜𝑑 2) 
𝜆 = 2 

Finite Fields exist only if 𝑞 = 𝜆𝑛 with 𝑛 ∈ ℕ and 𝜆 ∈ ℙ 
𝑛 = 1 → Prime Field 
𝑛 > 1 → Extended Field 

 
2 = 21 →Prime 
4 = 22 →Extended 

Prime Field 
(Restklassenkörper) 

 

𝐺𝐹(𝑝) or ℤ𝑝 

Number of elements p is prime 
𝐹 = {0,1,2, … , 𝑝 − 1}  

𝐺𝐹(2) 
𝑝 = 2 

𝐹 = {0,1} 

𝐺𝐹(3) 
𝑝 = 3 

𝐹 = {0,1,2} 

Addition 
 

/prifiadd(p) 

𝑎 ⊕ 𝑏 = 𝑎 + 𝑏 𝑚𝑜𝑑 𝑝 ⊕ 0 1 2  additive inv 

0 0 1 2 −0 = 0 
−1 = 2 
−2 = 1 

1 1 2 0 
2 2 0 1 

 

Multiplication 
 

/prifimul(p) 

𝑎 ⊗ 𝑏 = 𝑎 ∗ 𝑏 𝑚𝑜𝑑 𝑝 
since 𝑝 is prime gcd(𝑎, 𝑝) = 1 for all 𝑎 ∈ 𝐹 − {0} and thus 𝑎−1 exists 

⊗ 0 1 2 multipl inv 

0 0 0 0 0−1 not exist 
1−1 = 1 
2−1 = 2 

1 0 1 2 
2 0 2 1 

 

Polynomials 𝑝(𝑥) = 𝑎𝑚 ∗ 𝑥
𝑚 + 𝑎𝑚−1 ∗ 𝑥

𝑚−1 +⋯+ 𝑎1 ∗ 𝑥 + 𝑎0, 𝑎𝑖 ∈ 𝐹 𝑝(𝑥) = 3𝑥2 + 𝑥 − 1 

properties if 𝑎𝑚 ≠ 0 then 𝑎𝑚 is called the leading coefficient 
and m is the degree of 𝑝(𝑥) 

leading coefficient: 𝑎𝑚 = 3 
degree: 𝑚 = 2 

if 𝑎𝑚 = 1 then 𝑝(𝑥) is called monic (monisch) 𝑝(𝑥) = 𝑥2 + 𝑥 − 1 

The set of polynomials over the field F is denoted by 𝐹[𝑥]  

example 𝑝(𝑥) = 1.0 ∗ 𝑥2 + 1.0 𝑜𝑣𝑒𝑟 ℝ → start in the real numbers 
𝑝(𝑥) = 0 →no solution in ℝ 
We define 𝛼 such that 𝑝(𝛼) = 𝛼2 + 1 = 0 

1. 𝛼 ∈ ℝ → the solution of 𝑝(𝑥) 
2. 𝛼2 + 1 = 0 ⇒ 𝛼2 − 1 

E = {a + b ∗ α|a, b, ∈ ℝ} →define extended field 
𝑝(𝑥) = 𝑥2 + 1 over 𝐺𝐹(2) = {0,1} 
𝑝(𝑥) = (𝑥 + 1)(𝑥 + 1) → Behauptung 
𝑝(𝑥) = 𝑥2 + 𝑥 + 𝑥 + 1 = 𝑥2 + 𝑥 (1 + 1)⏟    

0

+ 1 = 𝑥2 +

1 →Beweis 

 

Irreducible 
polynomials 

factor() 

A polynomial with coefficients in a field 𝐹 is said to be irreducible over 
𝐹 if it is non-constant and cannot be factored into the product of two 
or more non-constant polynomials with coefficients in 𝐹. 

𝑥2 + 1 is irreducible over ℚ, 
but reducible over 𝐺𝐹(2): 
𝑥 + 1 = (𝑥 + 1)(𝑥 + 1) 
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Extended Fields 
(Erweiterungs-körper) 

Start with a polynomial 𝑚(𝑥) of degree 𝑛 > 1 
that is irreducible over a given field F. 
The elements of the extended field E are all polynomials in 𝐹[𝑥] with 
degree less than n. 𝐸 = {𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0, 𝑎𝑖 ∈ 𝐹} 

𝑚(𝑥) = 𝑥2 + 𝑥 + 1 
𝐹 = 𝐺𝐹(2) = {0,1} 

Addition Coefficients of the polynomials are added in F  

Multiplication 1. Multiply the polynomials (keep in mind that coefficients are in F) 
2. Divide my 𝑚(𝑥) 
3. Take the remainder (degree is always less than n) 

 

1. irreducible 
polynomial of degree 
𝑛 = 2 

a. 𝑚(𝑥) = 𝑥2 = 𝑥 ∗ 𝑥 → 𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 
b. 𝑚(𝑥) = 𝑥2 + 1 = (𝑥 + 1)(𝑥 + 1) → 𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 
c. 𝑚(𝑥) = 𝑥2 + 𝑥 = 𝑥(𝑥 + 1) → 𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 
d. 𝑚(𝑥) = 𝑥2 + 𝑥 + 1 → 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 (𝑡ℎ𝑒𝑟𝑒 ℎ𝑎𝑠 𝑡𝑜 𝑏𝑒 𝑜𝑛𝑒) 

 

2. extended field 𝐸 = {0 ∗ 𝑥 + 0, 0 ∗ 𝑥 + 1, 1 ∗ 𝑥 + 0, 1 ∗ 𝑥 + 1} 
𝐸 = {0,1, 𝑥, 𝑥 + 1} 

 

3. addition table 
 

/extfiadd(q,m) 

/extfiadd(2,x^2+x+1) 

⊕ 0 1 𝑥 𝑥 + 1 
0 0 1 𝑥 𝑥 + 1 
1 1 0 𝑥 + 1 𝑥 + 1 + 1 = 𝑥 
𝑥 𝑥 𝑥 + 1 2𝑥 = 0𝑥 = 0 2𝑥 + 1 = 1 

𝑥 + 1 𝑥 + 1 𝑥 + 1 + 1 = 𝑥 2𝑥 + 1 = 1 2𝑥 + 2 = 0 
 

 

4. multiply table 
/extfimul(q,m) 

/extfimul(2,x^2+x+1) 

 

polyRemainder(f,m) 

⊗ 0 1 𝑥 𝑥 + 1 
0 0 0 0 0 
1 0 1 𝑥 𝑥 + 1 
𝑥 0 𝑥 𝑥 + 1 1 

𝑥 + 1 0 𝑥 + 1 1 𝑥 
 

𝑥2 ≡ −𝑥 − 1 ≡ 𝑥 + 1 
𝑥(𝑥 + 1) = 𝑥2 + 𝑥 
= 𝑥 + 1 + 𝑥 = 1 
(𝑥 + 1)(𝑥 + 1) 

= 𝑥2 + 2𝑥 + 1 = 𝑥2 + 1 
= 𝑥 + 1 + 1 = 𝑥 

remarks we calculate with module irreducible polynom. 𝑚(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑚(𝑥)) 

no signs in 𝐺𝐹(2) 

 

Primitive element The powers of (e.g. 𝑥) generate all non-zero elements of 𝐸 𝑥0 = 1, 𝑥1 = 𝑥 
𝑥2 = 𝑥 + 1 

Primitive polynomial A polynomial 𝑝(𝑥) of degree 𝑛 over 𝐺𝐹(𝑞) is primitive if: 
𝑝(𝑥) is irreducible 
𝑝(𝑥)|𝑥𝑞−1 − 1, 𝑞 = 𝑝𝑛 
𝑝(𝑥) ∤ 𝑥𝑘 − 1, 0 < 𝑘 < 𝑝𝑛 − 1 

𝐺𝐹(22) → 𝑞 = 4 
𝑝 = 2 

𝑥2 + 𝑥 + 1|𝑥3 − 1 
𝑥2 + 𝑥 + 1 ∤ 𝑥2 − 1 

The root 𝛼 of a primitive polynomial 𝑝(𝑥) of degree 𝑛 over 𝐺𝐹(𝑝) is a 
primitive element of the field 𝐺𝐹(𝑝𝑛) 

 

𝑝(𝑥)|𝑥𝑞−1 − 1 ⇔ 𝑥𝑞−1 − 1 = 𝑝(𝑥) ∗ 𝑘(𝑥), 𝑞 = 𝑝𝑛  

Let 𝛼 be a root of 𝑝(𝑥): 𝑝(𝛼) = 0  

We conclude: 𝛼 is a 𝑞 − 1-root of unity  

However, 𝛼𝑘 ≠ 1 for 0 < 𝑘 < 𝑞 − 1 

Otherwise 𝑝(𝑥) would divide 𝑥𝑘 − 1 for 0 < 𝑘 < 𝑞 − 1 

 

Example 
 
 

/polgen(p,n,m) 

polgen(2,3,x^3+x+1) 

𝑝𝑛(𝑚𝑜𝑑 𝑛) 

𝑝(𝑥) = 𝑥3 + 𝑥 + 1 (𝑚𝑜𝑑 𝑥3 + 𝑥 + 1) = 0, 𝑛 = 3, 𝐺𝐹(2) 
𝑥3 = −𝑥 − 1 = 𝑥 + 1 

Power Polynomial in 𝛼 binary int 

0 0 (0 0 0) 0 

𝑥0 1 (0 0 1) 1 

𝑥1 𝑥 (0 1 0) 2 

𝑥2 𝑥2 (1 0 0) 4 

𝑥3 𝑥 + 1 (0 1 1) 3 

𝑥4 𝑥 ∗ 𝑥3 = 𝑥 ∗ (𝑥 + 1) = 𝑥2 + 𝑥 (1 1 0) 6 

𝑥5 𝑥 ∗ 𝑥4 = 𝑥3 ∗ 𝑥2 = 𝑥3 + 𝑥2 = 𝑥2 + 𝑥 + 1 (1 1 1) 7 

𝑥6 𝑥 ∗ 𝑥5 = 𝑥3 + 𝑥2 + 𝑥 = 𝑥2 + 2𝑥 + 1
= 𝑥2 + 1 

(1 0 1) 5 

𝑥7 𝑥 ∗ 𝑥6 = 𝑥3 + 𝑥 = 2𝑥 + 1 = 1   

𝑥2(𝑥2 + 𝑥 + 1) = 𝑥2 ∗ 𝑥5 

𝑞 = 2𝑛 = 8 
𝛼 = 𝑥 

 
Use the table for multiplying 
 
We use primitive 
polynomials because x is a 
generator element. 

multorder = first element with value 1 except 𝑥0 = 1  
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5. Symmetric Encryption Algorithms 

DES - Data Encryption Standard AES - Advanced Encryption Standard IDEA - International Data Encryption Algorithm 

Algorithm based on 'Lucifer' 
Published in 1975 -> IBM und NSA 
Block cypher, Feistel network 

 PES - not secure -> Differential Crypto 
Improved Proposed Encryption Standard 
1991 

Block size: 64 bits 
Key size: 56 (+8 parity bits / prüf bits) 
unsecure, too small -> Brute Force Attack 
#rounds: 16 (to get a good diffusion) 

Block size: 128 bits 
Key size: 128/192/256 bits 
secure 
#rounds = 10/12/14 (key size dependent) 

128bit key 
Key size: 16 bits 
As much provable security as possible 
#rounds = 6 

 
Permutation -> no crypto significance 

 

Scalable: Mini-versions with 2/4/8 bit 
Transparency: no "random-looking" 
tables or "mysterious" S-Boxes 
Easy to substitute for DES 
Fast in Software and Hardware 

 
final round 

 
One Round 

 

Store input bits into state matrix 
16*8=128bit input -> insert in state 
matrix (4x4 with 8bit values) 
 
Add round key (XOR) 
early to avoid reversion by the attacker 
 
each 8-bit value are interpreted as 
elements of 𝐺𝐹(28) 
with polynomial 

𝑚(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 
 
Key Expansion = Generate a round key 
from the key 
 
Add Round Key at the end 
operations can be inverted -> encryption 

3 incompatible operations -> Confusion 
⨁ Bit-by-bit modulo-two addition (xor) 
⊞ Addition modulo 216 
⨀ Multiplication modulo 216 + 1 of non-
zero numbers 
- 216 + 1 is prime 
- 216 is represented by the all-zero string 
 
Multiply-Add (M-A) Box -> Diffusion 

 
each output depends on every input 

1. Expansion Permutation 
see Expansion Permutation table; 
1 -> 2&48; 2 -> 3; 4 -> 5 & 7 
Expansion, because several bits of the 
input will be used twice. 
XOR (step 1. and key K) 
S-Boxes (S=Substitution) -> Confusion 
8 Boxes = each 6 input bits, 4 output bits 
Take first & last bits -> 0 ≤ 𝑖 ≤ 3 -> row 
Take middle 4 bits 0 ≤ 𝑗 ≤ 15 -> column 
see S-Boxes table (non-linear) 
protect against differential analysis 
Permutation (see permutation table) 

1 ← 16, 2 ← 7, 3 ← 20 

SubBytes = Non-linear byte substitution 
-> Confusion 

i) take the multiplicative inverse of 
𝐺𝐹(28), map {00} 𝑡𝑜 {00} 

ii) Affine transformation over 𝐺𝐹(28) 
Shift rows = copy first row, 
shift 2nd by 1, 3rd by 2 and last by 3 

Mix Columns = matrix multiplication of a 
column (polynomial) with const matrix 
-> modulo 𝑚(𝑥) = 𝑥4 + 1 𝑖𝑛 𝐺𝐹(28), 

03 −>  𝑥2 + 1 
Add round key = XOR each column of the 
state matrix with the corresponding 
word from the round key 

Encryption/Decryption Similarity 
final round causes that the same 
structure can be used to encrypt and to 
decrypt. -> Mult-Add-Add-Mult 

Store input bits into state matrix 

AddRoundKey 

For each round (except last one) 

ShiftRows 

SubBytes 

AddRoundKey 

MixColumns 

ShiftRows 

SubBytes 

AddRoundKey 

Return state matrix 
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Structure: 
Feistel Network 

 
-> Regardless of 𝐹𝐾(𝑅), the same structure can be used to decrypt, by 
changing left and right at the beginning. 

𝑇(𝐿, 𝑅) = (𝐿 ⊕ 𝐹𝐾(𝑅), 𝑅) 
𝑀(𝐿, 𝑅) = (𝑅, 𝐿) 

2-DES 2 DES after each other -> with meet-in-the-middle attackable 
attack from left and right and compare the result 

256 + 256 = 257 
I know what goes in and what comes out 

 

Triple DES 

 
Key 1,2 and 3 should be independent 
If all three keys are identic -> single DES 

 

 
  

Left half plaintext Right half plaintext 

= round key 

XOR 
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3b. Block (Cipher) Modes 

 What should we do, when we have more than 64/128-bit data to encrypt? 

 
Electronic Code 
Book (ECB) 

Each plaintext block (of length n) is encrypted individually (with same key) 
-> not appropriate, except input blocks are random 

 

drawbacks Repetitions of plaintext blocks will be perceivable 
Same plaintext block will always be mapped to same ciphertext block 
Attacker can change order of ciphertext blocks (or can introduce new blocks) 

Cipher Block 
Chaining (CBC) 

incremental blocks 
initialization vector (not secret, unpredictable) 

 

drawbacks not parallelizable in encryption, parallelizable in decryption 
Bit errors in a ciphertext block will affect decryption of the actual (50%) and the 
subsequent block (1bit) 

encryption 

 
Cipher Feedback 
(CFB) 

Feedback of ciphertext blocks into the input of the encryption algorithm 
Encryption cannot be performed in parallel 
Bit errors in a ciphertext block will affect decryption of actual and subsequent block 

 

 
Output Feedback 
(OFB) 

Encryption algorithm is used as a pseudo random generator → additive stream cipher 
IV must be unique for each execution of the mode (but not unpredictable) 
Needs synchronization between transmitter and receiver 
No error propagation (1-bit error -> 1-bit in cyphertext) 

CFB and OFB are 
similar 

 
Counter (CTR) Encryption/Decryption can be performed in parallel 

Each counter value should only be used once with the same key → Nonce (Number used only once) 
No error propagation 

 

 
CFB + OFB + CTR use encryption algorithm for encryption and decryption, but invert order of 𝐸𝑘   

  

Initialization 
Vector 

Ciphertext 1 

Plaintext 2 Plaintext 1 

⨁ 𝐸𝑘  ⨁ 

Ciphertext 2 

𝐸𝑘  ⨁ 

Plaintext 3 

𝐸𝑘  

Ciphertext 3 

Initialization 
Vector 

Ciphertext 1 

Plaintext 2 Plaintext 1 

⨁ 𝐸𝑘  ⨁ 

Ciphertext 2 

𝐸𝑘  ⨁ 

Plaintext 3 

𝐸𝑘  

Ciphertext 3 

Initialization 
Vector 

Ciphertext 1 

Plaintext 2 Plaintext 1 

⨁ 𝐸𝑘  ⨁ 

Ciphertext 2 

𝐸𝑘  ⨁ 

Plaintext 3 

𝐸𝑘  

Ciphertext 3 

Counter 

Ciphertext 1 

Plaintext 1 

⨁ 𝐸𝑘  

Counter 

Ciphertext 2 

Plaintext 2 

⨁ 𝐸𝑘  

Counter 

Ciphertext 3 

Plaintext 3 

⨁ 𝐸𝑘  
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6+7. Asymmetric Cryptography  

Problem of 
Symmetric Crypto 

Key must be kept secret! 
Each pair of user's needs another secret key -> number of keys grows → 𝑛2 

 

Asymmetric 
Cryptosystem 

Private key: For every 𝑑 ∈ 𝒦, it is feasible to compute 𝑒 ∈ 𝒦. d must be kept secret 
Public key: For (almost) every 𝑒 ∈ 𝒦, it is computationally infeasible to compute 𝑑 ∈
𝒦, such that 𝐷𝑑  ist the inverse of 𝐸𝑒. 'e' can be made public. 

𝐷𝑑(𝐸𝑒(𝑝)) = 𝑝 

One-Way Function Easy to compute on every input in polynomial time. 
Hard to invert, given the image of a random input. 
Existence of one-way functions is still a conjecture (Vermutung). 

 

Trapdoor function One-way function that can be inverted if a secret is known.  

Candidates of one-
way functions 

Multiplication and factoring Easy: given two primes p and q compute 𝑛 = 𝑞 ∗ 𝑝 
Difficult: given 𝑛 = 𝑝 ∗ 𝑞, find the two primes 𝑝 and 𝑞 

7 ∗ 17 = 119 

Discrete Logarithm Function Easy: given g, x and p, compute 𝑔𝑥  𝑚𝑜𝑑 𝑝 
Difficult: given 𝑔𝑥 𝑚𝑜𝑑 𝑝, 𝑔 and 𝑝, find 𝑥 

28 𝑚𝑜𝑑 5 ≡ 1 

Elliptic Curves Easy: given the point 𝑃 and 𝑛, compute 𝑛 ∗ 𝑃 
Difficult: given 𝑛 ∗ 𝑃 and 𝑃, compute 𝑛 

 

 

DHKE 
Diffie-Hellman 
Key Exchange 

based on discrete logarithm 
 
Not secure against man-in-
the-middle attack 
 
Works for any cyclic group 
 
𝑝 has to be prime and big 
-> avoid brute force 
𝑔 has to be generator for ℤ𝑝

∗  
 

 
public: 

𝑝 = 5, 𝑔 = 2 
secret: 

𝑎 = 3, 𝑏 = 6 
public: 

𝐴 = 3, 𝐵 = 4 
 
secret: 

𝐾 = 4 

ElGamal 
Encryption 
 
p at least 1024bits 
𝑏 ∈ {2, … , 𝑝 − 2} 

 
 
𝑎 ∈ {2, … , 𝑝 − 2} 

 
 

based on discrete logarithm 
as difficult to break as DH 
 
Works for any cyclic group 
 
 
 
 
𝐴: ephemeral/temporary key 
c: shared key 

 

 
𝑝 = 11, 

𝑔 = 2, 𝑏 = 6 
𝐵 = 26 𝑚𝑜𝑑 11 

𝐵 = 9 
𝑘𝑝𝑢𝑏 = (11,2,9) 

 
𝑎 = 4,𝑚 = 7 

𝐴 = 24 𝑚𝑜𝑑 11 = 5 
𝑐 = 94 ∗ 7 𝑚𝑜𝑑 11 

𝑐 = 2 
𝑠𝑒𝑛𝑑(5,2) 

 
𝑚 = 2 ∗ 511−1−6 
𝑚𝑜𝑑 11 = 7 

RSA 
(Ronald Rivest, 
Adi Shamir, 
Leonard Adleman)  

use Euler's Totient Theorem 
 
p and q need to be large, 
independent, large factors 
n=3072 bits = sym alg 128bits 

1 < 𝑒 < 𝜙(𝑛) 

#𝑒:𝜙(𝜙(𝑛)) − 1 

d=private key 
 

0 ≤ 𝑚 < 𝑛 
if we knew 𝜙(𝑛), we could 
compute d -> egcd 
factoring 𝑛 is as hard as 
computing 𝜙(𝑛) and the only 
way to find d (probably). 
if we now m/4 of first or last 
digits we can effic. factor n 
if e is small we use Chinese 
remainder to compute c  

 
𝑝 = 53, 𝑞 = 59 
𝑛 = 53 ∗ 59 
𝑛 = 3127 

𝜙(𝑛) = 52 ∗ 58 
𝜙(𝑛) = 3016 

𝑒 = 3 
𝑑 = −1005 = 2011 
 
 

𝑀 = "ℎ𝑖" 
𝑚 = 89 

𝑐 = 893 𝑚𝑜𝑑 3127 
𝑐 = 1394 

 
 
𝑚 = 13942011 
𝑚𝑜𝑑 3127 
𝑚 = 89 

Unsecure Channel Alice Bob 

choose a 
𝐴 = 𝑔𝑎  𝑚𝑜𝑑 𝑝 

choose b 

𝐵 = 𝑔𝑏 𝑚𝑜𝑑 𝑝 

Exchange A and B 

𝐾 = 𝐵𝑎  𝑚𝑜𝑑 𝑝 𝐾 = 𝐴𝑏 𝑚𝑜𝑑 𝑝 

Agree on Prime p and Generator g 

Unsecure Channel Alice Bob 

2: Encryption (by the sender) 
choose 𝑎 randomly 

𝐴 = 𝑔𝑎  𝑚𝑜𝑑 𝑝 
𝑐 = 𝐵𝑎 ∗ 𝑚 𝑚𝑜𝑑 𝑝 

1: Set-up (by the receiver, only once) 
choose prime 𝑝, generator 𝑔 and 𝑏 

𝐵 = 𝑔𝑏  𝑚𝑜𝑑 𝑝 

send (𝐴, 𝑐) 

3: Decryption (by the receiver) 

𝑚 = 𝑐 ∗ 𝐴𝑝−1−𝑏 𝑚𝑜𝑑 𝑝 

send 𝑘𝑝𝑢𝑏 = (𝑝, 𝑔, 𝐵) 

Unsecure Channel Alice Bob 

2: Encryption 
everybody can do that, 𝑒 and 𝑛 is needed 
map plain message M to integers 

𝑐 = 𝑚𝑒  𝑚𝑜𝑑 𝑛 

1: Key generation 
choose primes 𝑝 and 𝑞 randomly 

𝑛 = 𝑝 ∗ 𝑞 (𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 2000 𝑏𝑖𝑡𝑠) 
𝜙(𝑛) = (𝑝 − 1) ∗ (𝑞 − 1) 

choose 𝑒, such that gcd(𝑒, 𝜙(𝑛)) = 1 

compute 𝑑 with 𝑒 ∗ 𝑑 ≡ 1 𝑚𝑜𝑑 𝜙(𝑛) 

send (𝑐) 

publish (𝑒, 𝑛) 

3: Decryption 
only Alice can do that, 𝑑 is needed 

𝑚 = 𝑐𝑑  𝑚𝑜𝑑 𝑛 
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Euler’s Totient 
Theorem 

𝑎𝜙(𝑛) ≡ 1 (𝑚𝑜𝑑 𝑛) 

𝑤𝑖𝑡ℎ 1𝑘 = 1: 𝑎𝑘∗𝜙(𝑛) ≡ 1 (𝑚𝑜𝑑 𝑛) 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑎: 𝑎𝑘∗𝜙(𝑛)+1 ≡ 𝑎 (𝑚𝑜𝑑 𝑛) 
𝑒 ∗ 𝑑 = 𝑘 ∗ 𝜙(𝑛) + 1 

3𝜙(4) = 32 = 9 ≡ 1 (𝑚𝑜𝑑 4) 
33∗2 = 729 ≡ 1 (𝑚𝑜𝑑 4) 

square and 
multiply 

/sam(a,c,m) 

/sam2(a,c) 

𝑎𝑐  𝑚𝑜𝑑 𝑚 
 

/samstep 

/sam2step 

compute 𝑎𝑐  𝑚𝑜𝑑 𝑚 for large numbers 
c can be written as binary number 𝑐 = 𝑏0 ∗ 2

0 + 𝑏1 ∗ 2
1 +⋯+ 𝑏𝑛 ∗ 2

𝑛 
re = 1 
for i = n..0 
 res = res^2 mod m 
 if b_i = 1 
  res = (res*a) mod m 
 end_if 
end_for 

12345678 𝑚𝑜𝑑 438 = 316 

Miller-Rabin 
Primality Test 

/isProbPrime(n) 
/isProbPrimeBase(n,a) 

 
composite 
= not prime 

Question: Is n prime or composite? Not the same as factoring! 
Let n be an integer 
Suppose there exist integer x and y with 𝑥2 ≡ 𝑦2(𝑚𝑜𝑑 𝑛), 

𝑏𝑢𝑡 𝑥 ≠ ±𝑦 (𝑚𝑜𝑑 𝑛) 
Then n is composite and gcd(𝑥 − 𝑦, 𝑛) gives a nontrivial factor of n. 

 

1. Assume that n is odd and write 𝑛 − 1 = 2𝑘 ∗ 𝑚 𝑛 = 53 
52

21
= 26,

52

22
= 𝟏𝟑,

52

23
= 6.5 

 
𝑘 = 2,𝑚 = 13 

2. Randomly choose a base 𝑎 with 1 < 𝑎 < 𝑛 − 1 𝑎 = 2 

3. Compute the starting value 𝑏0 = 𝑎
𝑚 𝑚𝑜𝑑 𝑛 

 
𝑏0 = 2

13 𝑚𝑜𝑑 53 = 30 

4. Compute the sequence 𝑏0, 𝑏1, … , 𝑏𝑘 with recursion 𝑏𝑖 = (𝑏𝑖−1)
2 𝑚𝑜𝑑 𝑛 𝑏1 = 30

2 𝑚𝑜𝑑 53 = −1 

5. If n is prime then 

𝑏𝑘 ≡ 𝑎
2𝑘∗𝑚 ≡ 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) → Fermat 

𝑏𝑖 = 1 (𝑚𝑜𝑑 𝑛) and 𝑏𝑖−1 ≡ ±1 (𝑚𝑜𝑑 𝑛) 
otherwise (𝑏𝑖)

2 ≡ (𝑏𝑖−1)
2(𝑚𝑜𝑑 𝑛), 𝑏𝑢𝑡 𝑏𝑖 ≠ 𝑛𝑖−1 

-> sequence (𝑏0, 𝑏1, … , 𝑏𝑘) must either start with a 1 or it must 
somewhere contain a −1 

𝑏0 = {
+1 → 𝑃𝑟𝑖𝑚𝑒
−1 → 𝑃𝑟𝑖𝑚𝑒

𝑒𝑙𝑠𝑒 → 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
 

𝑏1..𝑘 = {
+1 → 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒
−1 → 𝑃𝑟𝑖𝑚𝑒

𝑒𝑙𝑠𝑒 → 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
 

if n is prime, it will pass the test for any a 
a composite number passes the test for at most 1/4 or the possible bases 
a -> it is then called a strong pseudoprime for the base a 
repeating the test M times with randomly chosen values of a, the 

probability that a composite n passes all the tests is at most (
1

4
)
𝑀

 

𝑀 = 50 

(
1

4
)
50

< 10−30 

Attacks on RSA In general, if gcd(𝑒𝐴, 𝑒𝐵) = 1, we can use egcd to find x and y such that: 
𝑥 ∗ 𝑒𝐴 + 𝑦 ∗ 𝑒𝐵 = 1 

and thus: 
𝑐𝐴
𝑥 ∗ 𝑐𝐵

𝑥 = 𝑚𝑥∗𝑒𝐴 ∗ 𝑚𝑦∗𝑒𝐵 = 𝑚𝑥∗𝑒𝐴 +𝑚𝑦∗𝑒𝐵 = 𝑚 

 

If 𝑒 = 3,𝑚 = 128𝑏𝑖𝑡, 𝑛 = 1024 

𝑚 = √𝑐
𝑒

= √𝑐
3
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8. Digital Signatures  

Definition The result of a cryptographic transformation of data that, when properly implemented, provides a 
mechanism for verifying origin authentication, data integrity and signatory non-repudiation. 

origin 
authentication 

Signature can be matched to an entity without a doubt. Nobody can forge (fälschen) the signature. 

data integrity The signature will no longer be valid if the content of the message is changed after the message has been 
signed. The signature and the content of the message are unambiguously linked to each other. 
The signature of a document cannot be used for another document. 

non-repudiation The signer cannot repudiate (leugnen) his signature. 

Signature 
generation 

The process of using a digital signature algorithm and a private key to 
generate a digital signature on data. Only one person can do that. 

private key (𝑑, 𝑛) 

Signature 
verification 

The process of using a digital signature algorithm and a public key to verify 
a digital signature on data. Everybody can do that. 

public key (𝑒, 𝑛) 

RSA-Signature 

 

 
 

𝑝 = 11, 𝑞 = 23, 𝑒 = 3 
𝑛 = 11 ∗ 23 = 253 

→ 𝑑 = 147 
 

𝑚 = 111 
𝑠 = 11147 𝑚𝑜𝑑 253 = 89 

 
 
 
𝑚∗ = 893 𝑚𝑜𝑑 253 = 111 

→ 𝑣𝑎𝑙𝑖𝑑 

Remarks No encryption, message m can/must be readable and understandable. 
A long message leads to a long verification. 

 

Attacks Authenticity of the public key must be secured (Certificates)  

No-Message-Attack 
1. choose arbitrary number s 
2. produce message 𝑚 = 𝑠𝑒  𝑚𝑜𝑑 𝑛 
3. message m will be accepted as a signed by Alice 
-> message should contain redundancy. Enforce with redundancy function. 

 
𝑠 = 10 

𝑚 = 103 𝑚𝑜𝑑 253 = 241 
𝑚 = 𝑚∗ 

𝑚 = 123, 𝑅(𝑚) = 123′123 

Multiplicative property of RSA 

𝑠1 = 𝑚1
𝑑  𝑚𝑜𝑑 𝑛

𝑠2 = 𝑚2
𝑑  𝑚𝑜𝑑 𝑛

→ 𝑠 = (𝑚1 ∗ 𝑚2)
𝑑 𝑚𝑜𝑑 𝑛 

𝑚2 = 𝑚 ∗ 𝑚1
−1 

Alice signs 𝑚1 and 𝑚2, but never 𝑚. Attacher can calc 𝑠 = 𝑠1 ∗ 𝑠2 
-> message should contain redundancy. 

 

Hash-Function A hash function is a computationally efficient function mapping binary 
strings of arbitrary length to binary strings of some fixed length. 

ℎ: {0,1}∗ → {0,1}𝑛 
Result = Image 
Input = Preimage 

 

properties never injective -> set of input value is larger than set of output values 
collision -> two different input values yield the same output -> very seldom 

 
000 → 100; 101 → 100 

properties preimage resistance -> difficult to find an input string from the output 
second preimage resistance -> find a second input which results the same 
collision resistance -> difficult to find two input which results the same 

 
-> weak collision resistance 
-> strong collision resistance 

Examples SHA (Secure Hash Algorithm) 

• SHA-1 (160bit) -> no longer considered secure 

• SHA-2 (224, 256, 384, 512bit) -> secure 
MD-5 (Message Digest algorithm 5) 

• MD-5 (128bit) -> no longer considered secure 
RIPEMD (RACE Integrity Primitives Evaluation Message Digest) 

• RIPEMD -> no longer considered secure 

• RIPEMD-160, 320 -> considered secure 
-> only data integrity 

 

Unsecure Channel Alice Bob 

2: Sign (only Alice can do that) 

𝑠 = 𝑚𝑑  𝑚𝑜𝑑 𝑛 

1: key generation (only Alice can do that) 
choose prime 𝑝, generator 𝑔 and 𝑒 

𝑛 = 𝑝 ∗ 𝑞 
𝑒 ∗ 𝑑 = 1 𝑚𝑜𝑑 𝜙(𝑛) 

send (𝑠,𝑚) 

3: Verification (everybody can do that) 
𝑚∗ = 𝑠𝑒  𝑚𝑜𝑑 𝑛 

𝑚∗ = 𝑚 

public key (𝑛, 𝑒) 
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SHA-1 uses a family of 80 logical functions: 𝑓0…𝑓79(𝑥, 𝑦, 𝑧) using ∧, ∨, ⊕, ¬ 
total of 80 32-bit constants 𝐾𝑡  (𝑡 = 0. .79) are defined 
1. Fill the message with bits so that the total length is a multiple of 512 

2. Split the message into blocks 𝑀(𝑖)(𝑖 = 1. . 𝑁) of length 512 

3. Use the initial has value 𝐻(0) as described in the standard 
4. For each message block do the following 

• Compute 𝑊𝑡 

• Initialize the five variables 𝑎 = 𝐻0
(𝑖−1), 𝑏 = 𝐻1

(𝑖−1), 𝑐 = 𝐻2
(𝑖−1), 𝑑, 𝑒 

• For 𝑡 = 0 𝑡𝑜 79: Compute 𝑇, 𝑒, 𝑑, 𝑐, 𝑏, 𝑎 

• Compute 𝐻0
(𝑖), 𝐻1

(𝑖), 𝐻2
(𝑖), 𝐻3

(𝑖), 𝐻4
(𝑖) 

 

Security Finding collisions is easier than the theoretical limit -> use SHA-2  

Message 
Authentication 
Codes 
"parameterized 
hash function" 

Family of functions with secret parameter k 
Can be computed efficiently 
Maps an input x of arbitrary length to a MAC-value ℎ𝑘(𝑥) of fixed length 
Authenticity and data integrity 
 

 

Digital Signature 
with Hash function 

Signature of an arbitrary long message m. 

Generation of the signature: 𝑠 = ℎ(𝑚)𝑑  𝑚𝑜𝑑 𝑛 

 

 

properties Sign only a short hash value instead of a long message m 
No-message-attack and multiplicative property attack do not work -> because the attacker must generate 
a message x that gives hash ℎ(𝑚) 
Exploiting the multiplicative property (𝑚 = 𝑚1 ∗ 𝑚2 𝑚𝑜𝑑 𝑛) is not possible 
The signed message m cannot be replaced by another text 𝑚∗ -> pair 𝑚 and 𝑚∗ must be a collision -> rare 

DSA (Digital 
Signature 
Algorithm) 
 

Variation of El-Gamal digital signature algorithm 

 

 

Unsecure Channel Alice Bob 

2: Sign (only Alice can do that) 
1. select a random integer k: 0 < 𝑘 < 𝑞 -> multiple signs differ 

2. compute 𝑟 = (𝑔𝑘  𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑞 

3. compute 𝑠 = (𝑘−1 ∗ (ℎ(𝑚) + 𝑥 ∗ 𝑟)) 𝑚𝑜𝑑 𝑞 

1: key generation (only Alice can do that) 
1. select a prime 𝑞 2159 < 𝑞 < 2160 
2. choose 𝑡: 0 ≤ 𝑡 ≤ 8 
3. select a prime 𝑝: 2511+64𝑡 < 𝑝 < 2512+64𝑡 and 𝑞|(𝑝 − 1) 
4. choose ℎ: 0 < ℎ < 𝑝 

5. compute 𝑔 = ℎ
𝑝−1

𝑞  𝑚𝑜𝑑 𝑝, repeat if 𝑞 = 1 
6. select a random integer 𝑥: 1 ≤ 𝑥 ≤ 𝑞 − 1 -> secret key 
7. compute 𝑦 = 𝑔𝑥  𝑚𝑜𝑑 𝑝 

Signature (𝑟, 𝑠) 

3: Verification (everybody can do that) 
1. Verify that 0 < 𝑟 < 𝑞 𝑎𝑛𝑑 0 < 𝑠 < 𝑞 
2. Compute 𝑤 = (𝑠−1) 𝑚𝑜𝑑 𝑞 

3. Compute 𝑢1 = (𝑤 ∗ ℎ(𝑚)) 𝑚𝑜𝑑 𝑞 

4. Compute 𝑢2 = (𝑤 ∗ 𝑟) 𝑚𝑜𝑑 𝑞 

5. Compute 𝑣 = ((𝑔𝑢1 ∗ 𝑦𝑢2) 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑞 

6. Accept signature if and only if 𝑣 = 𝑟 

public key (𝑝, 𝑞, 𝑔, 𝑦) 



ZHAW/HSR print date: 08.02.19 FTP_CryptCod 

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 14 of 26 

Public Key 
Infrastructure (PKI) 

Problem of any asymmetric scheme: 
Authenticity and validity of the public key must be secured 

 

CA = Certification Authority 
RA = Registration Authority 
VA = Validation Authority 

Digital Certificate A set of data that uniquely identifies a key pair and an owner that is 
authorized to use the key pair. The certificate contains the owner’s public 
key and possibly other information and is digitally signed by a Certification 
Authority (i.e., a trusted party), thereby binding the public key to the 
owner. Like a passport. 

 

Certification 
Authority 

The entity in a Public Key Infrastructure (PKI) that is responsible for issuing 
certificates and exacting compliance with a PKI policy. 

 

Digital Signature The result of a cryptographic transformation of data that, when properly 
implemented, provides a mechanism for verifying origin authentication, 
data integrity and signatory non-repudiation. 

 

Trust Models • Direct trust (one to another) 

• Hierarchical trust (root CA -> CA -> people) 

• Web of trust (Each user can sign a key and define the level of 
trust that the key's owner can serve as certifier of other keys) 

 

Example 
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9. Elliptic Curve 

Why smaller key size -> less space and better performance 
128bit AES = 3072bit RSA/DH = 256 ECC 

 

Definition 
 
 

solve(x^3-

ax+b=0,x) 

Weierstrass equation combined with a field that has characteristic 2 or 3. 
𝑦2 = 𝑥3 + 𝑎 ∗ 𝑥 + 𝑏 

The points of the elliptic curve, together with an extra point 𝒪, called the 
point at infinity, can be used to define an additive group. 
This equation has 3 real or 1 real and 2 complex roots (Nullstellen). 

 

valid if 
4𝑎3 + 27𝑏2 ≠ 0 

= no multiple roots 
/validate(ec) 

/validate(x^3+8x

-9) 

 

/validmod(ec,p) 

/validmod(x^3,5) 

valid 
𝑎 = −1, 𝑏 = 3 

 

valid 
𝑎 = −4, 𝑏 = 2 

 

valid 
𝑎 = 1, 𝑏 = −1 

 

invalid 
𝑎 = 0, 𝑏 = 0 

 

invalid 
𝑎 = −3, 𝑏 = 2 

 
Addition 

/add(ec,p,q) 

/add(x^3-8x+9, 

{0,3},{2,1}) 

={-1,-4} 

 

/stepadd(ec,p,q) 

 

addmod(ec,p,q,f) 

stepaddmod() 

 

Given:  𝑃, 𝑄 ∈ 𝐸 
𝑃 ≠ 𝑄, 𝑃 ≠ −𝑄 

 
Construction of 𝑃 + 𝑄 = 𝑅: 
Draw a line through P and Q. 
Invert intersection −𝑅 to yield 𝑅 
 
Special Rules 
point in infinity 𝒪 in Y is the neutral elem. 

𝒪 + 𝒪 = 𝒪 
𝑃 + (−𝑃) = 𝒪 

𝑃 + 𝒪 = 𝒪 + 𝑃 = 𝑃 

Algebraic 
1. Slope 

𝑚 =

{
 
 

 
 
𝑦𝑃 − 𝑦𝑄
𝑥𝑃 − 𝑥𝑄

𝑃 ≠ ±𝑄

3 ∗ 𝑥𝑃
2 + 𝑎

2 ∗ 𝑦𝑃
𝑃 = 𝑄

∞ → 𝒪 𝑃 = −𝑄

 

 
2. Interference point 

𝑥𝑅 = 𝑚
2 − 𝑥𝑃 − 𝑥𝑄 

𝑦𝑅 = 𝑚(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃 

Multiplication 
/mult(ec,p,n) 

/mult(x^3-8x+9, 

{2,1},3) 

={-1,4} 

 

/stepmult(ec,p,n 

/multmod(ec,p,n,

f) 

/stepmultmod(ec,

p,n,f) 
 

Given:  𝑃 ∈ 𝐸 
 
Construction of 𝟐 ∗ 𝑷: 
Draw the tangent line through P 
Invert intersection −𝑅 to yield 𝑅 = 2𝑃 

Algebraic 
see above 𝑃 = 𝑄 
 
btw: 

𝑦2(𝑥) = 𝑥3 + 𝑎𝑥 + 𝑏   
𝛿

𝛿𝑥
 

2 ∗ 𝑦(𝑥) ∗ 𝑦′(𝑥) = 3𝑥2 + 𝑎 
 

Finite Group 
...mod() 

because we only used the 4 basic operations, these equations are valid in each field. 
egcd for division! 

Order of a point 
/order(ec,p,f) 

Smallest non-negative integer, for which 𝑛 ∗ 𝐺 = 𝒪 
Should be as high as possible for cryptography 

cofactor: ℎ =
#𝐸(𝔽𝑝)

𝑛
∈ ℕ 

-> Order of points always divides total number of points 

𝑜𝑟𝑑𝑒𝑟(𝑥3 + 𝑥 + 1, {0,1}, 7) = 5 

Number of Points 
/numofpoints(p) 

→ see Theorem of Hasse 

𝑝 + 1 − 2 ∗ √𝑝 ≤ #𝐸(𝔽𝑝) ≤ 𝑝 + 1 + 2 ∗ √𝑝 

for large p #𝐸(𝔽𝑝) ≈ 𝑝 

#𝑝(7) = 3. .13 

8 − 2√7 ≤ 𝐸(𝔽𝑝) ≤ 8 + 2 + √7 

5.17 ≤ 𝐸(𝔽𝑝) ≤ 10.82 

6 ≤ 𝐸(𝔽𝑝) ≤ 10 
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EC-DHKE 
(Elliptic curve 
Diffie-Hellman) 
𝑝 ∈ ℙ → 𝑓𝑖𝑒𝑙𝑑 

𝑎, 𝑏 ∈ 𝔽𝑝 → 𝑐𝑢𝑟𝑣𝑒 

𝐺 ∈ 𝐸(𝔽𝑝) → 𝑏𝑎𝑠𝑒 

𝑛 ∈ ℙ → 𝑜𝑟𝑑𝑒𝑟 

 
If 𝑃 ≠ 𝒪 then Alice and Bob take the x-coordinate 𝑥𝑝 as the shared key. 

𝑝 = 

ECDLP (Elliptic 
Curve Discrete 
Logarithm 
Problem) 

Given an elliptic curve 𝐸(𝔽𝑝) over a finite field 𝔽𝑝, a point G on that curve 

and another point Q you know to be an integer multiple of G. The problem 
is to find the integer n such that 𝑛 ∗ 𝐺 = 𝑄. 
-> is believed to be hard to solve, even with today's computational power. 
-> log, because the question is how many times the operation is applied 

 

Attacks Attacker knows 𝑃, 𝑎, 𝑏, 𝐺, 𝑄𝐴, 𝑄𝐵  
Attacker does not know 𝑑𝐴, 𝑑𝐵  
from 𝑛, 𝐺 calculating 𝑛 ∗ 𝐺 is easy 
from 𝑛 ∗ 𝐺 and 𝐺 determining 𝑛 is hard → 𝐸𝐶𝐷𝐿𝑃 

 

ECDSA 
(Elliptic curve 
Digital Signature 
Algorithm) 

similar as El-Gamal Algorithm, but in a different field. 
 

 

 

 
  

Unsecure Channel Alice Bob 

choose 𝑑𝐴 ≤ 𝑛 − 1 
calc 𝑄𝐴 = 𝑑𝐴 ∗ 𝐺  

𝑄𝐴, 𝑄𝐵  

choose 𝑑𝐵 ≤ 𝑛 − 1 
calc 𝑄𝐵 = 𝑑𝐵 ∗ 𝐺 

Agree on 𝑝, 𝑎, 𝑏, 𝐺, 𝑛 

calc 𝑃 = 𝑑𝐴 ∗ 𝑄𝐵  
= 𝑑𝐴 ∗ 𝑑𝐵 ∗ 𝐺 

calc 𝑃 = 𝑑𝐵 ∗ 𝑄𝐴 
= 𝑑𝐵 ∗ 𝑑𝐴 ∗ 𝐺 

Unsecure Channel Alice Bob 

2: Sign (each message) 
1. select a random integer k 1 < 𝑘 < 𝑛 − 1 
2. compute 𝑘 ∗ 𝐺 ≡ (𝑥1, 𝑦1) 
3. compute 𝑟 = 𝑥1 𝑚𝑜𝑑 𝑛, if 𝑟 = 0 goto step 1 
4. compute 𝑘−1 𝑚𝑜𝑑 𝑛 
5. compute 𝑒 = 𝐻𝑎𝑠ℎ(𝑚) 
6. compute 𝑠 = 𝑘−1 ∗ (𝑒 + 𝑛𝐴 ∗ 𝑟) 𝑚𝑜𝑑 𝑛, if 𝑠 = 0 goto step 1 

1: Generation (only once) 
Choose valid field, curve, base point and order 

Signature (𝑟, 𝑠) 

3: Verification (everybody can do that) 
1. Verify that r and s are integer and in [0, 𝑛 − 1] 
2. Compute 𝑒 = 𝐻𝑎𝑠ℎ(𝑚) 
3. Compute 𝑤 = 𝑠−1 𝑚𝑜𝑑 𝑛 
4. Compute 𝑢1 = 𝑒 ∗ 𝑤 𝑚𝑜𝑑 𝑛 and 𝑢2 = 𝑟 ∗ 𝑤 𝑚𝑜𝑑 𝑛 
5. Compute 𝑋 = 𝑢1 ∗ 𝐺 + 𝑢2 ∗ 𝑄𝐴 ≡ (𝑥1, 𝑦1) 
6. If 𝑋 = 𝒪 then reject otherwise 𝑣 = 𝑥1 𝑚𝑜𝑑 𝑛 
7. Accept the signature if and only if 𝑣 = 𝑟. 

public key (𝑝, 𝑎, 𝑏, 𝐺, 𝑛) 
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10. Quantum Cryptography 

Two-hole wall 
Experiment 

Electrons are particles. The probability of arrival behind a two-hole-wall is 
distributed like the intensity of a wave. We observe interference. 
-> It is not true that a single electron flies either though hole 1 or 2. 

 

Observation If we observe the electron it passes hole 1 or 2.  

Notation Probability for the transition from a start state Ψ1 to an end state Ψ2 
⟨Ψ2|Ψ1⟩ 

 

Photon Can be polarized vertical (↕) or horizontal (↔) or with an arbitrary angle 𝜙 
with respect to x-axis. 

cos(𝜙) ∗ |↔⟩ + sin(𝜙) ∗ |↕⟩ 

 

 
SKIP  
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11+12. Linear Block Codes 

Error Control 
Coding 

Sizes: capacity C, entropy per second H 

Claude Shannon: Error induces by a noisy channel can be reduced to any desired level (if 𝐻 ≤ 𝐶) 

Channel Coding Data transformations that are used for improving a system's error performance. 
Encoder: add redundant information to the transmitted data (code word) - no memory 
Decoder: check whether the received data is still exhibit the prearranged structure/regularity 
-> Error Detection and Error Correction 

(n, k)-Block Code 

 

 
̂ = 𝑎𝑝𝑝𝑟𝑜𝑥. 

 

Message block 
𝒎 = (𝑚1, … ,𝑚𝑘) 

k information symbols 
of a finite field 𝐺𝐹(2𝑥) 
Code word 

𝒖 = (𝑢1, … , 𝑢𝑛) 
𝒖 = (𝑚1, … ,𝑚𝑘, 𝑝) 

n code symbols 
Demodulator 
observe the signal 𝑟(𝑡) and 
produces received vector 
𝒓 = (𝑟1, … , 𝑟𝑛) = 𝒖⊕ 𝒆 

Hard decision: 0 / 1 
Soft decision: might be 0 / 1 
Error pattern 

𝑒 = (𝑒1, … , 𝑒𝑛) 
n(t) = Rauschen 

Parity codes Even parity code 𝑝 = 𝑚1⊕…⊕𝑚𝑘  𝑚 = 1101 → 𝑝 = 1 

Two-dimensional parity code 𝑝1 = 𝑚1⊕𝑚2⊕𝑚3⊕𝑚4 
𝑝2 = 𝑚5⊕𝑚6⊕𝑚7⊕𝑚8 
𝑝3 = 𝑚1⊕𝑚5, 𝑝4 = 𝑚2⊕𝑚6 
𝑝5 = 𝑚3⊕𝑚7, 𝑝6 = 𝑚4⊕𝑚8 

𝑚 = 11010001 
𝑝1 = 1, 𝑝2 = 1 
𝑝3 = 1, 𝑝4 = 1 
𝑝5 = 0, 𝑝6 = 0 

Binary Linear 
Block Codes 

A binary block code with 2𝑘  code words of length n is called linear (n, k) 

code, if and only if its 2𝑘  code words form a k-dimensional subspace of the 
vector space of the n-tuples over the field 𝐺𝐹(2). 
 
=> the sum of any two code words is a code word. Linear combination! 
=> the zero-code word is always a codeword in a linear block, 𝑣 + 𝑣 = 0 
 

message: 𝑚𝑖 ∈ 𝐺𝐹(2) → 2𝑘  code words 

code word: 𝑢𝑖 ∈ 𝐺𝐹(2) → 2𝑘  binary vectors of length n 

(6,3) block code -> {0,1}6 

Message 23 Codeword 

000 000000 

100 110100 

010 011010 

110 101110 

001 101001 

101 011101 

011 110011 

111 000111 
 

Vector Space 𝔽: field of Scalars 
𝕍: vector space 
Two operations: 
- Vector addition: 𝒖, 𝒗 ∈ 𝕍 ⇒ 𝒖 + 𝒗 ∈ 𝕍 
- Scalar multiplication 𝒖 ∈ 𝕍, 𝑘 ∈ 𝔽 ⇒ 𝑘 ∗ 𝒖 ∈ 𝕍 
- 10 Axioms 

𝔽 = 𝐺𝐹(2) 
𝑉 = {(𝑣1…𝑣𝑛): 𝑣𝑖 ∈ 𝐺𝐹(2)} 
 

Subspace 𝕎 ⊆ 𝕍: Subset. If 𝕎 is a vector space itself, it is called a subspace of 𝕍.  

Linear combination 𝑎1 ∗ 𝒗𝟏 +⋯+ 𝑎𝑘 ∗ 𝒗𝒌  

Linear 
independent 

𝑎1 ∗ 𝒗𝟏 +⋯+ 𝑎𝑘 ∗ 𝒗𝒌 = 𝟎  

Generator Matrix It is possible to find k linearly independent code words 𝒈𝟏…𝒈𝒌 such that 
every code word 𝒖 is a linear combination of these k code words. 

𝒖 ∈ 𝐶 ↔ 𝒖 = 𝑚1𝒈𝟏 +𝑚2𝒈𝟐 +⋯+𝑚𝑘𝒈𝒌 = 𝒎 ∗ 𝑮 
𝒖 = 𝒎 ∗ 𝑮 

 

𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑔1, 𝑔2, … , 𝑔𝑘 ∈ 𝐶, 𝑎𝑟𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 
𝑚1, 𝑚2, … ,𝑚3: 𝑆𝑘𝑎𝑙𝑎𝑟𝑒 ({0,1}) 

 

A generation matrix is systematic, if it contains the identity matrix. 
Where it is, doesn't matter. 𝐺 = [𝑃|𝐼] 𝑜𝑟[𝐼|𝑃] 

𝐺 = [

𝑔1
𝑔2
𝑔3
] 

𝐺 = [

1 1 0
0 1 1
1 0 1⏟    

𝑃

1 0 0
0 1 0
0 0 1⏟    

𝐼𝑘

] 
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Hamming weight 𝑤(𝒖) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝒖 𝒖 = (110100) → 𝑤(𝒖) = 3 

Hamming distance 𝑑(𝒖, 𝒗) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝒖 𝑎𝑛𝑑 𝒗 𝑑𝑖𝑓𝑓𝑒𝑟 𝒗 = (101001) 
→ 𝑑(𝒖, 𝒗) = 4 

properties 𝑑(𝒖, 𝒗) = 𝑤(𝒖 + 𝒗) 
𝑑(𝒖, 𝟎) = 𝑤(𝒖) 

𝑑(𝒖, 𝒗) ≤ 𝑑(𝒖,𝒘) + 𝑑(𝒘, 𝒗) 

4 = 𝑤(011101) = 4 
3 = 3 

4 ≤ 4 + 4 
min properties Minimum Hamming weight of a code C 

𝑤min  (𝐶) = min{𝑤(𝒖): 𝒖 ∈ 𝐶, 𝒖 ≠ 𝟎} 
Minimum Hamming distance of a code C 

𝑑min  (𝐶) = min{𝑑(𝒖, 𝒗): 𝒖, 𝒗 ∈ 𝐶, 𝒖 ≠ 𝒗} 

 

Theorem The minimum distance of a linear code block code is equal to the 
minimum weight of its nonzero code words. 

 

Decoding We assume that no bits got lost. 𝑟 = (𝑟1…𝑟𝑛) = 𝑐 + 𝑒 
Find the code word that differs the least from the received vector. 

Error detection 𝜖 = 𝑑min  − 1 Error correction 𝑡 = ⌊
𝑑min  − 1

2
⌋ 

 

 

Parity Check 
Matrix H 

A linear (n, k) block code is defined by n − k parity check equations. 

These equations can be written in matrix form: 𝐮 ∗ 𝐇T = 𝟎 
Dimensions of H: (𝑛 − 𝑘) × 𝑛 
Any vector u that satisfies this equation is a valid code word. 

𝒖 ∈ 𝐶 ⇔ 𝐮 ∗ 𝐇T = 𝟎 
𝑢 ∗ ℎ1

𝑇 = 0, 𝑢 ∗ ℎ2
𝑇 = 0,… (= 𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

𝑯 = [

1 0 0
0 1 0
0 0 1⏟    

𝐼𝑘

1 0 1
1 1 0
0 1 1⏟    

𝑃𝑇

] 

𝑢1 + 𝑢4 + 𝑢6 = 0 
𝑢2 + 𝑢4 + 𝑢5 = 0 
𝑢3 + 𝑢5 + 𝑢6 = 0 

G and H The rows of G are orthogonal to the rows of H. 𝑮 ∗ 𝑯𝑇 = 𝟎 

𝑮 = [𝑷|𝑰𝒌×𝒌] ⇒ 𝑯 = [𝑰(𝒏−𝒌)×(𝒏−𝒌)|𝑷
𝑇] 

 

Syndrome Testing Is the received vector r a valid code word? 𝒔 = 𝒓 ∗ 𝑯𝑇  
1. case: 𝒔 = 0 ⇒ 𝒓 ∈ 𝐶 (𝑟 𝑖𝑠𝑡 𝑎 𝑣𝑎𝑙𝑖𝑑 𝑐𝑜𝑑𝑒 𝑤𝑜𝑟𝑑), 𝑏𝑢𝑡 𝑖𝑠 𝑖𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡? 
 a) 𝒓 = 𝑢, error free 
 b) 𝒓 ≠ 𝑢, not the sent one, not recognizable error -> 𝑒 ∈ 𝐶 \ {0} 
2. case: 𝒔 ≠ 0 ⇒ 𝐹𝑒ℎ𝑙𝑒𝑟! 
 The syndrome only depends on the error pattern e 
 𝒔 = 𝒓 ∗ 𝐻𝑇 = (𝒖 + 𝒆) ∗ 𝑯𝑇 = 𝑐 ∗ 𝐻𝑇⏟  

=0

+ 𝑒 ∗ 𝐻𝑇  

𝒔⏟
𝑛−𝑘 𝑐ℎ𝑒𝑐𝑘 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠

2𝑛−𝑘 syndrome vectors

= 𝒆 ∗ 𝑯𝑇⏟
𝑛 𝑐𝑜𝑑𝑒 𝑏𝑖𝑡𝑠

2𝑛 error patterns

 

For any value of the syndrome vector, there is more than one possible 
error pattern -> We just pick the most likely. 

 

Compute 
Syndrome 
 
 
 
 
 
 
Determine most 
likely error pattern 
 
 
 
 
Correct received 
vector 

 

𝒔 = 𝒓 ∗ 𝑯𝑻 

 

 

 

 

 

 

 

search s in H 
-> results in error e 
 
 
calc all s of each error 

• if unique -> correctable 

• if not -> not correctable 
 

𝒖 = 𝒓 + 𝒆 
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Cyclic Codes Linear block code. Every cyclic shift of a code word is a code word. 
Using polynomials to represent a binary vector. 

𝒖 = 𝑢0, 𝑢1, … , 𝑢𝑛−1 
𝒖(𝑥) = 𝑢0 + 𝑢1 ∗ 𝑥 + ⋯+ 𝑢𝑛−1 ∗ 𝑥

𝑛−1 

𝑔(𝑥) = 𝑥3 + 𝑥 + 1, 𝑛 = 7 
𝑛 − 𝑘 = 3, 𝑘 = 4 
𝑚 = (1010) 

𝑚(𝑥) = 1 + 0𝑥 + 1𝑥2 + 0𝑥3

= 1 + 𝑥2 
𝑢(𝑥) = (1 + 𝑥2)⏟    

𝐺𝑟𝑎𝑑<𝑘

∗ (𝑥3 + 𝑥 + 1)⏟        
𝐺𝑟𝑎𝑑=𝑛−𝑘

 

= 𝑥3 + 𝑥 + 1 + 𝑥5 + 𝑥3 + 𝑥2⏟                
𝐺𝑟𝑎𝑑<𝑛

 

= 1 + 𝑥 + 𝑥2 + 𝑥5 
𝑢 = (1110010) 

-> not systematic 

generator 
polynomial 

In a (𝑛, 𝑘)-cyclic code exists exactly one code polynomial 
of degree 𝑛 − 𝑘: 

𝒈(𝑥) = 1 + 𝑔1 ∗ 𝑥 + ⋯+ 𝑔𝑛−𝑘−1 ∗ 𝑘
𝑛−𝑘−1 + 𝑥𝑛−𝑘 

𝒖 ∈ 𝐶 ⇔ 𝒖(𝑥) = 𝒎(𝑥) ∗ 𝒈(𝑥) 
must be 

systematic 
𝒖 = (𝑝0, … , 𝑝𝑛−𝑘−1, 𝑚0, … ,𝑚𝑘−1) 
𝒖(𝑥) = 𝒑(𝑥) + 𝑥𝑛−𝑘 ∗ 𝑚(𝑥) 

must be a 
code word 

𝒖(𝑥) = 𝒑(𝑥) + 𝑥𝑛−𝑘 ∗ 𝑚(𝑥) = 𝒒(𝑥)𝒈(𝑥) 
→ 𝒑(𝑥) = 𝑥𝑛−𝑘 ∗ 𝑚(𝑥) 𝑚𝑜𝑑 𝒈(𝑥) 

Encoding with 
linear shift register 

→ division 

 
Cycle 0 to k-1 switch 2 is down -> message directly fed to the output 

at the end, cells contain 𝒑(𝑥) = 𝑥𝑛−𝑘 ∗ 𝒎(𝑥) 𝑚𝑜𝑑 𝒈(𝑥) 

Cycle k to n-1 switch 2 is up 
the content of the cells will be shifted to the output 

 

𝑔(𝑥) = 1 + 𝑥 + 𝑥3 
𝑚(𝑥) = (1011) 

cycle cell back in out 

0 000 0 1 1 

1 110 1 1 1 

2 101 1 0 0 

3 100 1 1 1 

4 100 - - 0 

5 010 - - 0 

6 001 - - 1 

7     

 
 

Error correction We compute the syndrom polynomial 𝒔(𝑥) = 𝒓(𝑥) 𝑚𝑜𝑑 𝒈(𝑥) 
𝒔(𝑥) = 0 → 𝑣𝑎𝑙𝑖𝑑 
𝒔(𝑥) ≠ 0 → 𝑒𝑟𝑟𝑜𝑟 

𝒔(𝑥) = 𝒆(𝑥) 𝑚𝑜𝑑 𝒈(𝑥) 
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13. Hamming, BCH and RS Codes 

Hamming Code A Hamming Code is a linear block code 
there elements are binary vectors of b without the zero-vector. 
all single bit errors are correctable, nothing else. 𝑞 = 1 

 

𝑝(𝑥):primitive {0, 𝛼0, 𝛼1, … , 𝑎2
𝑚−2}, not factorizable polynomial in 𝐺𝐹(2) 

𝛼: primitive element 𝑝(𝑥) → 𝑝(𝛼) = 0 -> checksum condition of hamming code -> to generate elements 
𝑢: Codeword = (𝑢0, … , 𝑢𝑛−1), 𝑢𝑖 ∈ 𝐺𝐹(2) 

Every code word consists of 𝑛 = 2𝑚 − 1 binary digits 

Checksum∑ 𝑢𝑗 ∗ 𝑎𝑗
𝑛−1
𝑗=0 = (𝑢0 … 𝑢𝑛−1) [

𝛼0

…
𝑎𝑛−1

] = 𝒖 ∗ 𝑯𝑇 = 0 

In H are all elements of 𝐺𝐹(2𝑚) except 0. 𝑯 = [𝑎0 𝑎1…𝑎𝑛−1] 

𝑚 = 2 → 𝑛 = 3 
𝑚(𝑥) = 𝑥2 + 𝑥 + 1 

𝐺𝐹(2) = {0,1, 𝛼, 𝛼 + 1} 
𝑢0(0 1) + 𝑢1(1 0) + 𝑢2(1 1) = (0 0) 

(𝑢0 𝑢1 𝑢2) [
0 1 1
1 0 1

]
𝑇

= [
0
0
] 

Cyclic Hamming 
Code 

The primitive polynomial 𝑚(𝑥) of degree m is the generator polynomial 
𝑔(𝑥) of the cyclic (2𝑚 − 1,2𝑚 −𝑚 − 1)-Hamming code 

𝑢(𝑎2) = 0 for every code polynomial since in 𝐺𝐹(2): ∑ 𝑎𝑖
2

𝑖 = (∑ 𝑎𝑖𝑖 )2 

 

BCH Codes 
Bose-Chaudhuri-
Hocquenghem 

Choose a field 𝐺𝐹(2𝑚) for some positive integer m. 
Let 𝛼 be a primitive element of this field. 
A code word consists of 𝑛 = 2𝑚 − 1 binary digits 

𝑢 = (𝑢0…𝑢𝑛−1), 𝑢𝑖 ∈ {0,1} → 𝑏𝑖𝑛𝑎𝑟𝑦 
This code can correct t errors if 𝑟 ≥ 2𝑡 − 1 

Checksum 

∑𝑢𝑖 ∗ 𝑎
𝑖∗𝑞

𝑛−1

𝑖=0

= 0 

𝑢0𝑎
0 + 𝑢1𝑎

1 +⋯+ 𝑢𝑛−1 ∗ 𝑎
𝑛−1 = 0 

𝑢0𝑎
2∗0 + 𝑢1𝑎

2∗1 +⋯+ 𝑢𝑛−1 ∗ 𝑎
2∗(𝑛−1) = 0 

𝑢0𝑎
3∗0 + 𝑢1𝑎

3∗1 +⋯+ 𝑢𝑛−1 ∗ 𝑎
3∗(𝑛−1) = 0 

… 
Each binary vector which fulfils the check equation for 𝑞 = 1,3,5,7 is valid. 
2,4,6, … are redundant. 

𝐻 =

[
 
 
 
 
 
1 𝑎1 𝑎2 ⋯ 𝑎(𝑛−1)

1 𝑎3 𝑎3
2
⋯ 𝑎3

(𝑛−1)

1 𝑎5 𝑎5
2
⋯ 𝑎5

(𝑛−1)

⋮ ⋮

1 𝑎𝑟 𝑎𝑟
2
⋯ 𝑎𝑟

(𝑛−1)]
 
 
 
 
 

 

#𝑟𝑜𝑤𝑠 = 2 ∗ 𝑚 

𝑚 = 4 
𝑎15 = 1 

𝑛 = 2𝑚 − 1 = 15 
 

𝑟 = 3 → 2 𝑒𝑟𝑟𝑜𝑟𝑠 
𝑚(𝑥) = 𝑥4 + 𝑥 + 1
→ 𝑓𝑟𝑜𝑚 𝑡𝑎𝑏𝑙𝑒 

→ 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑜𝑣𝑒𝑟 𝐺𝐹(2) 
𝑎6 = 𝑎3 + 𝑎2 

𝐻 =

[
 
 
 
 
 
 
 
1
0
0
0

0
1
0
0

0
0
1
0

…

1
0
0
1

1
0
0
0

0
0
1
0

0
0
1
1

…

1
1
1
1]
 
 
 
 
 
 
 

 

#𝑟𝑜𝑤𝑠 = 2 ∗ 4 = 8 
→ (15,7) 𝑐𝑜𝑑𝑒 

property 𝑢(𝑎𝑞) = 𝑢0 + 𝑢1 ∗ 𝛼
𝑞 +⋯+ 𝑢𝑛−1𝑎

𝑞∗(𝑛−1) = 0, 𝑞 = 1,2, … ,2𝑡 
A binary n-tuple 𝑢 = (𝑢0, 𝑢1, … , 𝑢𝑛−1) is a code word of a t-error-
correcting BCH code of length 𝑛 = 2𝑚 − 1 iff the polynomial 𝑢(𝑥) = 𝑢0 +
𝑢1 ∗ 𝑥 + ⋯+ 𝑢𝑛−1 ∗ 𝑥

𝑛−1 has 𝑎, 𝑎2, … , 𝑎2𝑡  as roots 

 

Generator 
Polynomial 

 
 
 

lcm = least 
common divisor 

Naive approach 𝑔(𝑥) = (𝑥 − 𝑎)(𝑥 − 𝑎2) … (𝑥 − 𝑎2𝑡) 
-> does not work because will not be binary 
We need minimal polynomials -> binary coefficients that have 𝑎, 𝑎2, 𝑎2𝑡 as 
roots 

Let Φ𝑖(𝑥) be the minimal polynomial of 𝑎𝑖. Then 𝑔(𝑥) must be the least 
comon multiple of Φ1(𝑥), Φ2(𝑥), … ,Φ2𝑡(𝑥) 

𝑔(𝑥) = 𝑙𝑐𝑚(Φ1(𝑥), Φ2(𝑥), … ,Φ2𝑡(𝑥)) 
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RS-Codes 
Reed-Solomon 
used for CD/DVD/ 
Satellite/ADSL/ 
xDSL/DVB 

Non-binary BCH codes -> 𝐺𝐹(𝑞) → 𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝑞 = 2𝑚 
A code word consists of 𝑛 = 𝑞 − 1 code symbols 
Attention! The code symbols 𝑢𝑖  are not binary digits but elements of 
𝐺𝐹(𝑞). However, if 𝑞 = 2𝑚, then every code symbol can be represented 
by a binary vector of length m. 

 

DFT Discrete Fourier Transformation of a real vector 𝒗 ∈ ℝ𝑛 

𝑣𝑘 =∑𝑣𝑖 ∗ 𝑒
−𝑗∗

2𝜋
𝑛
∗𝑖∗𝑘

𝑛−1

𝑖=0

=∑𝑣𝑖 ∗ 𝑎
−𝑖∗𝑘

𝑛−1

𝑖=0

, 𝑎 = 𝑒𝑗∗
2𝜋
𝑛  

𝑎𝑖 ≠ 1, 0 < 𝑖 < 𝑛 
𝑎𝑛 = 1 

 

matrix 
representation 

DFT Inverse Transformation 

𝑉 = 𝑣 ∗ 𝐴 

𝑉 = 𝑣 ∗ [

𝑎−0∗0 𝑎−0∗1 ⋯ 𝑎−0∗(𝑛−1)

𝑎−1∗0 𝑎−1∗1 ⋯ 𝑎−1∗(𝑛−1)

⋮ ⋮ ⋱ ⋮
𝑎−(𝑛−1)∗0 𝑎−(𝑛−1)∗1 ⋯ 𝑎−(𝑛−1)(𝑛−1)

] 

𝑣 = 𝑉 ∗ 𝐴−1 

𝑣 =
1

𝑛
∗ [

𝑎0∗0 𝑎0∗1 ⋯ 𝑎0∗(𝑛−1)

𝑎1∗0 𝑎1∗1 ⋯ 𝑎1∗(𝑛−1)

⋮ ⋮ ⋱ ⋮
𝑎(𝑛−1)∗0 𝑎(𝑛−1)∗1 ⋯ 𝑎(𝑛−1)(𝑛−1)

] 

vector 𝒗 = (𝑣0, 𝑣1, … , 𝑣(𝑛−1)) can be represented by polynomial 𝒗(𝑥) = 𝑣0𝑥
0 + 𝑣1𝑥

1 +⋯+ 𝑣𝑛−1𝑥
𝑛−1 

the DFT of 𝑣 can be computed by evaluating the 

polynomial 𝒗(𝑥) at 𝑥 = 𝑎−𝑘 

𝑣𝑘 =∑𝑣𝑖 ∗ 𝑎
−𝑖∗𝑘

𝑛−1

𝑖=0

= 𝒗(𝑎−𝑘) 

the inverse DFT of 𝑣 can be evaluated with: 

𝑣𝑖 =
1

𝑛
∑𝑣𝑘 ∗ 𝑎

𝑖∗𝑘

𝑛−1

𝑘=0

=
1

𝑛
𝒗(𝑎𝑖) 

 

in 𝐺𝐹(2𝑚) Let 𝑎 be a primitive element of 𝐺𝐹(2𝑚) 

𝑎𝑗 ≠ 1, 𝑗 = 1…2𝑚 − 2 
𝑎𝑗 = 1, 𝑗 = 2𝑚 − 1 

Validation A vector u is a code word iff its Fourier transform U contains 2 ∗ 𝑡 zeros. 

𝑢 = (𝑢0. . 𝑢𝑛−1) ∈ 𝐶 ⇔ 𝑈 = (𝑈0…𝑈𝑛−2𝑡−1 0…0⏟  
2𝑡

) 
𝑈𝑛−1 = 𝑢(𝛼

−(𝑛−1)) = 𝑢(𝛼1) = 0 

𝑈𝑛−2 = 𝑢(𝛼
−(𝑛−2)) = 𝑢(𝛼2) = 0 

… 
𝑈𝑛−2𝑡 = 𝑢(𝛼

𝑛−2𝑡) = 𝑢(𝛼2𝑡) = 0 
The polynomial representation 𝑢(𝑥) of a code word has 𝑎1, 𝑎2, … 𝑎2𝑡 as roots 
⇒ 𝑖𝑓 𝑢(𝑥) = 𝑚(𝑥) ∗ 𝑔(𝑥) ⇒ 𝑢(𝛼) = 𝑢(𝛼2) = 𝑢(𝛼2𝑡) = 0 ⇒ 𝑢 ∈ 𝐶 
⇒ 𝑢(𝑥) must be a multiple of 𝑔(𝑥) = (𝑥 − 𝛼) ∗ (𝑥 − 𝛼2) ∗ … ∗ (𝑥 − 𝛼2𝑡) 
⇒ any multiple of 𝑔(𝑥) is a valid code polynomial 

Decoding received vector 𝑟 = 𝑢 + 𝑒 
discrete Fourier transform 𝑅 = 𝑈 + 𝐸 

𝑈𝑖 = 0, 𝑖 = 𝑛 − 2𝑡, … , 𝑛 − 1 
𝐸𝑖 = 𝑅𝑖 = 𝒓(𝑎

−𝑖), 𝑖 = 𝑛 − 2𝑡, … , 𝑛 − 1 
If the error pattern e contains t or less errors, we can generate the whole vector E from 2*t known values. 
-> Berlekamp-Massey Algorithm: Finds the shortest linear feedback shift register (LFSR) that generates 
the given values of E. 
If the number of symbol errors is t or less, the LFSR will generate the whole vector E. 
Inverse DFT of E will give the error pattern e. 
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14. Convolutional Coding (Faltungscodes) & Turbo Codes 

Convolutional 
Coding 

Encoder contains memory 
n encoder outputs at any given time depend on the k inputs and on m 
previous input blocks 
important special case: 𝑘 = 1 
encoder is a state machine 
 
Rate des codes = k/n (Eingangsbit durch Ausgangsbit) 
häufig ist k=1 
 

 
Encoder example 

 
Every input bit 𝑢𝑘 yields two output bits 𝑣𝑘

(1) and 𝑣𝑘
(2) 

The output bits depend on the actual input bit 𝑢𝑘 and two stored bits 𝑢𝑘−1 
and 𝑢𝑘−2 

Number of states = 2𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠ℎ𝑖𝑓𝑡 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 = 4 

Generator Sequence to 
describe a state machine. 
visible in grafic. 
 

𝑔(1) = (𝑔0 𝑔1 𝑔2) = (1 1 1) 
→ 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 

 

𝑔(1)(𝐷) = 𝑔0𝐷
0 + 𝑔1𝐷

1

+ 𝑔2𝐷
2 

= 1 + 𝐷 + 𝐷2 
 

𝑔(2) = (1 0 1) 
 

polynomial 
representation 

 

Transformation in digital 
technic 
 
 
 
 
 
 
 
 
 
𝐹𝑎𝑙𝑡𝑢𝑛𝑔 𝑖𝑚 𝑍𝑒𝑖𝑡𝑏𝑒𝑟𝑒𝑖𝑐ℎ 

encoder state 
diagram 
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Trellis Diagram 

 
common assumption: encoder starts in the state (0,0) 
sometiems: a number of zeros is added at the end of the message so that 
the encoder returns to the state (0,0) 

 

Decoding Find the path through the trellis that best fits the received data. 
- Hard decoding: receiver delivers a binary symbol (hamming distance) 
- Soft decoding: receiver delivers a floating point value (confidence level) 
  square euclidean distance (𝑟𝑘 − 𝑣𝑘)

2 about 2dB better than hard 
decoding 

 

Viterbi Algorithm Finds the path through the trellis with the largest (or smallest) metric 
MLSE – maximum likelihood sequence estimation 
Principle 
- At each step, compare the metrics of all path entering each state and 
store the path with the largest metric (survivor) together with its metric. 
Eliminate all other paths. 
- At the end (or after a certain amount of time) the survivor with the best 
metric is selected and the (first few) bits on this path are chosen as the 
decoded bits 

 

 

 

 

 

 

Turbo codes 

kein Bestandteil der Prüfung. 
 
BCJR: Formel: 3 Terme: etwas aus der Vergangenheit, etwas vom hier und jetzt und von der Zukunft 
Jacobi Symbol 
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Representations in 𝑮𝑭(𝟐𝟒) 

• In 𝐺𝐹(2𝑥) → 2 = 0 

    Int Hex Bin 
𝑛3, 𝑛2, 𝑛1, 𝑛0 

Polynomic 

𝐺𝐹(24) 𝐺𝐹(23) 𝐺𝐹(22) 𝐺𝐹(21) 0 0 0000 0 

1 1 0001 1 

 2 2 0010 𝑥 

 3 3 0011 𝑥 + 1 

  4 4 0100 𝑥2 

  5 5 0101 𝑥2 + 1 

  6 6 0110 𝑥2 + 𝑥 

  7 7 0111 𝑥2 + 𝑥 + 1 

   8 8 1000 𝑥3 

   9 9 1001 𝑥3 + 1 

   10 A 1010 𝑥3 + 𝑥 

   11 B 1011 𝑥3 + 𝑥 + 1 

   12 C 1100 𝑥3 + 𝑥2 

   13 D 1101 𝑥3 + 𝑥2 + 1 

   14 E 1110 𝑥3 + 𝑥2 + 𝑥 

   15 F 1111 𝑥3 + 𝑥2 + 𝑥 + 1 

 
Roots of a polynomial 

 degree 𝑖𝑛 ℚ 𝐺𝐹(2) = [0,1]  

𝑥 1 [0]   

𝑥 + 1 1 [−1]   

𝑥2 2 [0,0]   

𝑥2 + 1 2 irreducible (𝑥 + 1)(𝑥 + 1) → [−1,−1]  

𝑥2 + 𝑥 2 [0, −1]   

𝑥2 + 𝑥 + 1 2 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 & 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒  

𝑥3 3 [0,0,0]   

𝑥3 + 1 3 [−1]   

𝑥3 + 𝑥 3 [0]   

𝑥3 + 𝑥 + 1 3 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 & 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒  

𝑥3 + 𝑥2 3 [0,0, −1]   

𝑥3 + 𝑥2 + 1 3 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 & 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒  

𝑥3 + 𝑥2 + 𝑥 3 [0]   

𝑥3 + 𝑥2 + 𝑥 + 1 3 [−1]   
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Functions 
q=intDiv(a,b) 
r=mod(a,b) 

int: a,b integer division a/b 
modulo (a mod b) 

 𝑖𝑛𝑡𝐷𝑖𝑣(9,4) = 2 
𝑚𝑜𝑑(9,4) = 1 

gcd(a,b) 
\gcdstep(a,b) 

int: a,b greatest common divisor  gcd(10,16) = 2 

\egcd(a,b) 
\egcdstep(a,b) 

int: a,b extended gcd  𝑔𝑐𝑑𝑒(10,16) = 2 
10 ∗ (−3) + 16 ∗ 2 = 2 

\phi(n) int: n Eulers phi function 𝑝ℎ𝑖(𝑛) 𝑝ℎ𝑖(10) = 4 

e=\multord(g,n) int: g,n multiplicative order 𝑔𝑒 ≡ 1 (𝑚𝑜𝑑 𝑛) 𝑚𝑢𝑙𝑡𝑜𝑟𝑑(8,5) = 4 

\gen(g,p) int: g 
prim: p 

generator / primitive element 
multiplicative order 

 𝑔𝑒𝑛(2,7) → 𝑛𝑜, 𝑜𝑟𝑑 = 3 

\chin(m) matrix: m 
(𝑛 × 2) 

Chinese remainder theorem 𝑥 ≡ 𝑎𝑖  𝑚𝑜𝑑 𝑚𝑖  
𝑐ℎ𝑖𝑛 (

5 7
3 11
10 13

) 

= 𝑀𝑖 (
143
91
77
) , 𝑒𝑖 (

715
364
924

) 

𝑥 = 894 
\invmod(m,n) 
\invmodstep(m,n) 

matrix: m 
int: n 

inverse of a matrix  𝑖𝑛𝑣𝑚𝑜𝑑𝑠𝑡𝑒𝑝 ([
3 2
1 1

] , 4) = [
1 2
3 3

] 

\prifiadd(p) prim: p addition of prime field  𝑝𝑟𝑖𝑓𝑖𝑎𝑑𝑑(7) 

\prifimul(p) prim: p multiplication of prime field  𝑝𝑟𝑖𝑓𝑖𝑚𝑢𝑙(7) 

\extfiadd(q,m) int: q 
poly: m 

addition of 
extended field 

𝐺𝐹(𝑞) 
𝑚(𝑥) = ⋯ 

𝑒𝑥𝑡𝑓𝑖𝑎𝑑𝑑(2, 𝑥2 + 𝑥 + 1) 

\extfimul(q,m) int: q 
poly: m 

multiplication of  
extended field 

𝐺𝐹(𝑞) 
𝑚(𝑥) = ⋯ 

𝑒𝑥𝑡𝑓𝑖𝑚𝑢𝑙(2, 𝑥2 + 𝑥 + 1) 

polyQuotient(f,m) poly: f,m quationt of a 
polynom division 

f/m 𝑝𝑜𝑙𝑦𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡(𝑥3 + 1, 𝑥2 + 1) 
= 𝑥 

polyRemainder(f,m) poly: f,m remainder of a 
polynom division 

f/m 𝑝𝑜𝑙𝑦𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟(𝑥3 + 1, 𝑥2 + 1) 
= 1 − 𝑥 

\polgen(p,n,m) int: p,m 
poly: m 

generate primitive 
polynoms modulo m 

𝐺𝐹(𝑝𝑛) 
𝑚(𝑥) = ⋯ 

𝑝𝑜𝑙𝑔𝑒𝑛(2,3, 𝑥3 + 𝑥 + 1) 

\sam(a,c,m) 
\samstep(a,c,m) 

int: a,c,m square an multiply 
with modulo 

𝑎𝑐  𝑚𝑜𝑑 𝑚 𝑠𝑎𝑚(1234,5678,438) = 316 

\sam2(a,c) 
\sam2step(a,c) 

int: a,c square an multiply 𝑎𝑐  𝑠𝑎𝑚(3,4) = 81 

\isprobprime(n) int n miller-rabin primality test 𝑖𝑠𝑃𝑟𝑖𝑚𝑒(𝑛) 𝑖𝑠𝑝𝑟𝑜𝑏𝑝𝑟𝑖𝑚𝑒(317) = 𝑡𝑟𝑢𝑒 
\isprobprimebase 
(n,a) 

int n,a with a given base  𝑖𝑠𝑝𝑟𝑜𝑏𝑝𝑟𝑖𝑚𝑒𝑏𝑎𝑠𝑒(317,2) = 𝑡𝑟𝑢𝑒 

     
\multmod(ec,p,n,f) 
\multmodstep 

poly: ec 
point: p 
int n,f 

multiplication on an eliptic 
curve with modulo 

𝑛 ∗ 𝑝 (𝑚𝑜𝑑 𝑓)  

\addmod(ec,p,q,f) 
\addmodstep 

poly: ec 
point: p,q 
int f 

addition on an eliptic 
curve with modulo 

𝑝 + 𝑞 (𝑚𝑜𝑑 𝑓)  

\add(ec,p,q) poly: ec 
point: p,q 

 𝑝 + 𝑞  

\mult(ec,p,n) poly: ec 
point: p 
int: n 

 𝑛 ∗ 𝑝  

\validate(ec) poly: ec    
\validatemod(ec,p) poly: ec    
\numberofpoints(p) p    
\order(ec,p,f) 
\orderstep 

poly: ec 
point: p 
int: f 

   

\negmod(p,f) point: p 
int: f 

   

\listpoints(ec,f)     

 


