
ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 1 of 26

CRYPTOGRAPHY AND CODING THEORY

1+2. Algebraic basics

Integer ℤ = {0, ±1,±2,±3,… } 15 ∈ ℤ

Divisibility Let a and n be integers with 𝑎 ≠ 0, a divides n if and only if there is an integer
b such that 𝑛 = 𝑎 ∗ 𝑏: 𝑎|𝑛 ⇔ ∃𝑏 ∈ ℤ: 𝑛 = 𝑎 ∗ 𝑏

5|15

properties 𝑎|0, 𝑎|𝑎, 1|𝑛 5|0, 5|5, 1|5
If 𝑎|𝑏 and 𝑏|𝑐 𝑡ℎ𝑒𝑛 𝑎|𝑐 5|15 𝑎𝑛𝑑 15|60 → 5|60

If 𝑎|𝑏 𝑎𝑛𝑑 𝑎|𝑐 ⇒ 𝑎|(𝑠 ∗ 𝑏 + 𝑡 ∗ 𝑐) for all integers 𝑠 and 𝑡 3|6 𝑎𝑛𝑑 3|15
⇒ 3|(2 ∗ 6 + 4 ∗ 15)

Division theorem If 𝑎 and 𝑏 are integers with 𝑏 > 0 then there are unique integers 𝑞 (quotient)
and 𝑟 (rest) such that 𝑎 = 𝑞 ∗ 𝑏 + 𝑟 𝑎𝑛𝑑 0 ≤ 𝑟 < 𝑏

9 = 2 ∗ 4 + 1
0 ≤ 1 ≤ 4

notation
q=intDiv(a,b)

r=mod(a,b)

𝑞 = ⌊
𝑎

𝑏
⌋ (𝑓𝑙𝑜𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑏𝑟𝑢𝑛𝑑𝑒𝑛)

𝑟 = 𝑎 − 𝑏 ∗ 𝑞 = 𝑎 𝑚𝑜𝑑 𝑏

𝑞 = ⌊
9

4
⌋ = 2

𝑟 = 9 − 4 ∗ 2 = 1

Greatest Common
Divisor (gcd)

largest non-negative integer 𝑑 that divides both a and b: gcd(𝑎, 𝑏)
Special case: gcd(0,0) = 0 → 𝑝𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛

gcd(18, 30) = 6
gcd(−10, 20) = 10

properties

gcd(a,b)

gcd(𝑎, 0) = |𝑎| note: also valid for 𝑎 = 0 gcd(−10, 0) = 10

gcd(𝑎, 𝑏) ≥ 0 gcd(−20,−14) = 2
For any integer q: 𝑔𝑐𝑑(𝑎 + 𝑞 ∗ 𝑏, 𝑏) = gcd(𝑎, 𝑏)
"adding a multiple of one integer to the other does not change their gcd"

gcd(3 + 8,4) = gcd(3,4)
gcd(3 + 6,2) = gcd (3,2)

𝑖𝑓 𝑏 ≠ 0,𝑤𝑒 𝑚𝑎𝑦 𝑐ℎ𝑜𝑜𝑠𝑒 𝑞 = − ⌊
𝑎

𝑏
⌋ → 𝑎 + 𝑞 ∗ 𝑏 = 𝑎 − ⌊

𝑎

𝑏
⌋ ∗ 𝑏 = 𝑎 𝑚𝑜𝑑 𝑏

𝑔𝑐𝑑(𝑎 𝑚𝑜𝑑 𝑏, 𝑏) = 𝑔𝑐𝑑(𝑎, 𝑏)

gcd(14 𝑚𝑜𝑑 6,6)
= gcd(14,6)

Euclidean
algorithm

/gcdstep(a,b)

Based on gcd(𝑎, 𝑏) = gcd(𝑏 𝑚𝑜𝑑 𝑎, 𝑎) 𝑎𝑛𝑑 gcd(𝑎, 0) = |𝑎|
gcd(a,b):
 while (a!=0):
 r=b mod a; b = a; a = r
 return b

 a b r

gcd(15,25)
= 𝟓

15 25 10

10 15 5

5 10 0

0 5

Extended
Euclidean
Algorithm

The set of all integer linear combinations of two integers 𝑎 and 𝑏 coincides
with the set of all integer multiples of gcd(𝑎, 𝑏)

𝑎 ∗ ℤ + 𝑏 ∗ ℤ = gcd(𝑎, 𝑏) ∗ ℤ

4 ∗ 2 + 6 ∗ 1
= gcd(4,6) ∗ 7

in other words: For any given integers 𝑎, 𝑏, 𝑛 the equation 𝑎𝑥 + 𝑏𝑦 = 𝑛 can be solved by
integers 𝑥 and 𝑦 if and only if gcd(𝑎, 𝑏) | 𝑛 𝑎 ∗ 𝑥 + 𝑏 ∗ 𝑦 = gcd (𝑎, 𝑏)

𝟒 ∗ (−1) + 𝟔 ∗ 1 = 2
𝟒 ∗?+𝟔 ∗?≠ 3

egcd(a, b):

/egcd(a,b)

/egcdstep(a,b)

x=0, y=1, u=1, v=0
while(a!=0):

 q=⌊
𝑏

𝑎
⌋, r=b mod a, m=x-u*q, n=y-v*q

 b=a, a=r, x=u, y=v, u=m, v=n
return b, x, y

𝒂 𝒃 𝒙 𝒚 𝒖 𝒗 𝒒 𝒓 𝒎 𝒏
𝟒 𝟓 0 1 1 0 − − − −
1 4 1 0 −1 1 1 1 −1 1
0 𝟏 −𝟏 𝟏 5 −4 4 0 5 −4

4 ∗ (−𝟏) + 5 ∗ 𝟏 = 𝟏

modular
arithmetic

19: 00 + 8: 00 = 27: 00 → 03: 00 … represent the same time
We say that 3,27,51, … are congruent module 24

Congruences

mod(a,n)

Let 𝑎, 𝑏, 𝑛 be integers with 𝑛 ≠ 0. We say that
𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) "𝑎 𝑖𝑠 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 𝑡𝑜 𝑏 𝑚𝑜𝑑𝑢𝑙𝑜 𝑛"

If (𝑎 − 𝑏) is a multiple (positive or negative) of n.
𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) ⇔ 𝑎 = 𝑏 + 𝑛 ∗ 𝑘, 𝑘 ∈ ℤ

3 ≡ 27(𝑚𝑜𝑑 24)

3 = 27 + (−1) ∗ 24

addition,
subtraction and

multiplication

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) 𝑎𝑛𝑑 𝑐 ≡ 𝑑(𝑚𝑜𝑑 𝑛) 𝑇ℎ𝑒𝑛
𝑎 + 𝑐 ≡ 𝑏 + 𝑑(𝑚𝑜𝑑 𝑛)
𝑎 − 𝑐 ≡ 𝑏 − 𝑑(𝑚𝑜𝑑 𝑛)
𝑎 ∗ 𝑐 ≡ 𝑏 ∗ 𝑑(𝑚𝑜𝑑 𝑛)

𝑎 = 3, 𝑐 = 2, 𝑛 = 7
3 + 2 ≡ 10 + 9(𝑚𝑜𝑑 7)
3 − 2 ≡ 10 − 9(𝑚𝑜𝑑 7)
3 ∗ 2 ≡ 10 ∗ 9(𝑚𝑜𝑑 7)

Modular Inverses

Be careful
with division!

/ecgd(a,b)

Let a, n be integers with 𝑛 ≠ 0
If the congruence 𝑎 ∗ 𝑥 ≡ 1 (𝑚𝑜𝑑 𝑛) has a solution 𝑥 ∈ ℤ,
we say 𝑎 is invertible modulo 𝑛
and 𝑥 is the multiplicative inverse for 𝑎 (𝑚𝑜𝑑 𝑛)

3 ∗ ?≡ 1(𝑚𝑜𝑑 5)
3 ∗ 0 (𝑚𝑜𝑑 5) ≡ 0
3 ∗ 1 (𝑚𝑜𝑑 5) ≡ 3
3 ∗ 𝟐 (𝑚𝑜𝑑 5) ≡ 𝟏

mod inv of 3 mod 5 is 2

The integer 𝑎 is invertible module 𝑛 if and only if gcd(𝑎, 𝑛) = 1
Since gcd(𝑎, 𝑛) = 1 ther exist integer x and y such that 𝑎 ∗ 𝑥 + 𝑛 ∗ 𝑦 = 1

gcd(3,5) = 1
3 ∗ 2 + 5 ∗ (−1) = 1

solving 𝑎 ∗ 𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑛)
gcd(𝑎, 𝑛) = 1 → use extended Euclidean algorithm to find 𝑠 and 𝑡

gcd(𝑎, 𝑛) = 𝑐 > 1 → (
𝑎

𝑐
) ∗ 𝑥 ≡

𝑏

𝑐
(𝑚𝑜𝑑

𝑛

𝑐
) →solutions: 𝑥0, 𝑥0 +

𝑛

𝑐
, 𝑥0 +

2𝑛

𝑐

5 ∗ 4 ≡ 6 (𝑚𝑜𝑑 7)
5 ∗ 3 + 7 ∗ (−2) = 1

 𝑎 must be coprime (teilerfremd) with n.
Therefore, we use prime numbers, because they are coprime except 0.

mod inv of 2 mod 6 not exist
2 ∗ 1 + 6 ∗ 0 = 2

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 2 of 26

Fermat’s Little
Theorem

If 𝑝 is a prime, then for every integer 𝑎
𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝)

If 𝑝 is a prime and 𝑝 does not divide 𝑎 (coprime), then
𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝)

 Attention: There may be exponents 𝑒 < 𝑝 − 1 such that 𝑎𝑒 ≡ 1 (𝑚𝑜𝑑 𝑝)

25 ≡ 32 ≡ 2 (𝑚𝑜𝑑 5)

25−1 ≡ 16 ≡ 1 (𝑚𝑜𝑑 5)

usage What is the remainder of 210203 𝑚𝑜𝑑 101? → 2100 ≡ 1 (𝑚𝑜𝑑 101)
210203 ≡ (2100)102 ∗ 23 ≡ (1)102 ∗ 23 ≡ 23 ≡ 8 (𝑚𝑜𝑑 101)

coprime (or
relatively prime)

Two integers 𝑎 and 𝑏 are coprime (teilerfremd) if gcd(𝑎, 𝑏) = 1 gcd (4,9) = 1

Euler’s Phi-funct. 𝜙(𝑛) = number of integers 1 ≤ 𝑎 ≤ 𝑛, such that 𝑔𝑐𝑑(𝑎, 𝑛) = 1 𝜙(6) = 2 → {1,2,3,4,5,6}

properties

/phi(n)

/phi(7)

𝜙(𝑝) = 𝑝 − 1, 𝑝 ∈ ℙ 𝜙(7) = 6 → {1,2,3,4,5,6,7}
𝜙(𝑝 ∗ 𝑞) = 𝑝 ∗ 𝑞 −𝑞⏟

𝑚𝑖𝑡 𝑝 𝑡𝑒𝑖𝑙𝑏𝑎𝑟,

−𝑝⏟
𝑚𝑖𝑡 𝑞 𝑡𝑒𝑖𝑙𝑏𝑎𝑟,

+1⏟
𝑑𝑎 𝑝∗𝑞 2𝑚𝑎𝑙 𝑔𝑒𝑧äℎ𝑙𝑡

, 𝑝, 𝑞 ∈ ℙ, 𝑝 ≠ 𝑞 𝜙(2 ∗ 3) = 6 − 2 − 3 + 1
= 2

𝜙(𝑝𝑛) = 𝑝𝑛 − 𝑝𝑛−1 = 𝑝𝑛−1 ∗ (𝑝 − 1) 𝜙(23) = 8 − 4 = 4 ∗ 1
{1,2,3,4,5,6,7,8}

𝜙(𝑚 ∗ 𝑛) = 𝜙(𝑚) ∗ 𝜙(𝑛), gcd(𝑚, 𝑛) = 1 𝜙(2 ∗ 3) = 𝜙(2) ∗ 𝜙(3) = 2

𝑛 = 𝑝1
𝑒1 ∗ 𝑝2

𝑒2 ∗ …∗ 𝑝𝑘
𝑒𝑘 , 𝑝𝑖 ∈ ℙ, 𝑝𝑖 ≠ 𝑝𝑗 𝑓ü𝑟 𝑖 ≠ 𝑗

𝜙(𝑛) = 𝜙(𝑝1
𝑒1) ∗ 𝜙(𝑝2

𝑒2) ∗ …∗ 𝜙(𝑝𝑘
𝑒𝑘)

𝜙(𝑛) =∏𝑝𝑖
𝑒𝑖−1 ∗ (𝑝𝑖 − 1)

𝑘

𝑖=1

= 𝑛 ∗∏(1 −
1

𝑝𝑖
)

𝑘

𝑖=1

225 = 32 ∗ 52
𝜙(225) = 𝜙(32) ∗ 𝜙(52)

I must know the prime
factors.

Euler’s Totient
Theorem

if 𝑎 und 𝑛 are positive integers and relatively prime:

𝑎𝜙(𝑛) ≡ 1 (𝑚𝑜𝑑 𝑛)

gcd(3,4) = 1

3𝜙(4) ≡ 32 ≡ 9 ≡ 1 (𝑚𝑜𝑑 4)

properties if 𝑛 is prime: 𝑎𝜙(𝑝) ≡ 𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝) →Fermats little theorem 34 ≡ 81 ≡ 1 (𝑚𝑜𝑑 5)

usage What are the "last two digits" of 123562 → 𝑚𝑜𝑑 100 which is not prime

𝐸𝑢𝑙𝑒𝑟′𝑠 𝑡ℎ𝑒𝑜𝑟𝑒𝑚:𝑚𝜙(100) ≡ 1 (𝑚𝑜𝑑 100) and gcd(123,100) = 1

123𝜙(100) ≡ 12340 ≡ 1(𝑚𝑜𝑑 100)
123562 ≡ (12340)14 ∗ 1232 ≡ 1 ∗ 1232 = 232 = 29 (𝑚𝑜𝑑 100)

Multiplicative
Order

The multiplicative order of 𝑔 𝑚𝑜𝑑 𝑛 is the smallest positive integer 𝑒 that:
𝑔𝑒 ≡ 1 (𝑚𝑜𝑑 𝑛), 𝑔 ∈ ℤ

𝑔 = 2, 𝑛 = 5
21 ≡ 2 (𝑚𝑜𝑑 5)
22 ≡ 4 (𝑚𝑜𝑑 5)

23 ≡ 8 ≡ 3 (𝑚𝑜𝑑 5)
2𝟒 ≡ 16 ≡ 1 (𝑚𝑜𝑑 5)
𝑜𝑟𝑑(2) = 4 (𝑚𝑜𝑑 5)

properties

/multord(g,n)

/multord(8,5)

𝑔𝑓 ≡ 1 (𝑚𝑜𝑑 𝑛), 𝑓 ∈ ℕ, if and only if 𝑓 is divisible by the order 𝑒 of 𝑔 28 ≡ 1 (𝑚𝑜𝑑 5)

𝑔𝑘 ≡ 𝑔𝑙 (𝑚𝑜𝑑 𝑛), if and only if 𝑘 ≡ 𝑙 (𝑚𝑜𝑑 𝑒) 2101 ≡ 2301 (𝑚𝑜𝑑 5)
da 101 ≡ 301 (𝑚𝑜𝑑 4)

𝑔𝑘 =
𝑒

gcd(𝑒, 𝑘)
, 𝑘 ∈ ℕ

𝑜𝑟𝑑(26) ≡ 𝑜𝑟𝑑(4), 𝑑𝑎 26 ≡ 64 ≡ 4 (𝑚𝑜𝑑 5)

𝑜𝑟𝑑(22) =
4

gcd(4,2)
= 2

𝑜𝑟𝑑(23) =
4

gcd(4,3)
= 4

Generators
module p
generator /
primitive element

/gen(g,p)

/gen(2,7)

𝑝 ∈ ℙ, 𝑔 ∈ {1,2, … , 𝑝 − 1}
𝑔 is a generator 𝑚𝑜𝑑 𝑝 if: 𝑔𝑖 𝑚𝑜𝑑 𝑝 with 1 ≤ 𝑖 ≤ 𝑝 − 1
generates 1,2, … , 𝑝 − 1
→ 𝑔 is a generator if the order of 𝑔 𝑚𝑜𝑑 𝑝 is 𝑝 − 1
There are generators for any prime p.
The number of generators 𝑚𝑜𝑑 𝑝 is given by 𝜙(𝑝 − 1)

𝑔 = 2, 𝑝 = 7
21 ≡ 𝟐
22 ≡ 4
23 ≡ 1
24 ≡ 𝟐
→ 𝑛𝑜

𝑜𝑟𝑑(2) = 3

𝑔 = 3, 𝑝 = 5
31 ≡ 3
32 ≡ 4
33 ≡ 2
34 ≡ 1
→ 𝑦𝑒𝑠

𝑜𝑟𝑑(3) = 4

Chinese
Remainder
Theorem
(Chinesischer
Restwertsatz)

crypt/

chin(

𝑎1 𝑚1
… …
𝑎𝑛 𝑚𝑛

)

𝑥 ≡ 𝑎1 (𝑚𝑜𝑑 𝑚1)
𝑥 ≡ 𝑎2 (𝑚𝑜𝑑 𝑚2)
𝑥 ≡ 𝑎𝑛 (𝑚𝑜𝑑 𝑚𝑛)

gcd(𝑚𝑖 , 𝑚𝑗) = 1, 𝑖 ≠ 𝑗

𝑀 =∏𝑚𝑖

𝑛

𝑖=1

= 𝑚1 ∗ 𝑚2 ∗ … ∗ 𝑚𝑛

𝑀𝑖 =
𝑀

𝑚𝑖

= 𝑚1 ∗ 𝑚2 ∗ … ∗ 𝑚𝑖−1 ∗ 𝑚𝑖+1 ∗ … ∗ 𝑚𝑛 → gcd(𝑚𝑖, 𝑀𝑖) = 1

→ 𝑟𝑖 ∗ 𝑚𝑖 + 𝑠𝑖 ∗ 𝑀𝑖 = gcd(𝑚𝑖, 𝑀𝑖) = 1, 𝑒𝑖 = 𝑠𝑖 ∗ 𝑀𝑖 (𝑚𝑜𝑑 𝑀)

𝑥 = 5 (𝑚𝑜𝑑 7)
𝑥 = 3 (𝑚𝑜𝑑 11)
𝑥 = 10 (𝑚𝑜𝑑 13)

𝑀 = 7 ∗ 11 ∗ 13 = 1001
𝑀1 = 143 → 𝑒1 = 715
𝑀2 = 91 → 𝑒2 = 364
𝑀3 = 77 → 𝑒3 = 924

𝑥 = (∑𝑎𝑖 ∗ 𝑒𝑖

𝑛

𝑖=1

)𝑚𝑜𝑑 𝑀
𝑥 = 894

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 3 of 26

3a. Symmetric Cryptography

Terms Cryptos = hidden (from Greek)
Desire of confidentiality -> protection from disallowed reading.

Tasks Integrity (Integrität) = Ensure that nobody has changed the received document.
Authenticity (Authentifizierung) = Ensure who has sent this document.
Indisputable (unbestreitbar) = Ensure that, this person has done that.

Cryptography

Symmetric The key 𝑑 to decrypt can easily be computed from the key 𝑒 to encrypt.

Attacks The Attacker knows the algorithm.

Kerckhoffs's
principle

The security of an encryption system rests solely on the secrecy of the key.
And not on the missing knowledge of the algorithm.

Scenarios Ciphertext-only: attacker knows only the ciphertext (most difficult)
Known Plaintext: he also knows some part of the plaintext (realistic)
Chosen Plaintext: try by myself, with chosen input
Brute force: Try all combinations -> key space needs to be large

h,a,e,g,s,d,f
weather forecast
a,a,a,a,a -> x,x,x,x,x

a,b,c,d, ... ->

Goal Determine the key 𝑧 in use.

Block Ciphers
(Verschlüsselung)

We have an alphabet 𝒜 of plain text and cipher text symbols
n: fixed block length
𝒳 = 𝒜𝑛: set of plaintexts
𝒴 = 𝒜𝑛: set of ciphertexts
does not say how long the key is

e.g. 𝒜 = {0,1} 𝑜𝑟 {𝑎 … 𝑧}
e.g. 64-bit code

requirements Encryption = Permutation = change bit order
Injective (one-by-one): 𝑓(𝑥) = 𝑓(𝑦) → 𝑥 = 𝑦,
otherwise, two equally plaintext would result in the same ciphertext.
Surjective (onto): 𝑦 ∈ 𝒴 → ∃𝑥 ∈ 𝒳: 𝑓(𝑥) = 𝑦,
otherwise, there would be valid ciphertexts without valid plaintexts.
→ Bijective Self-Mapping (Injective and Surjective)

e.g. shuffle cards

each 𝒫 has one unique 𝒞

each 𝒞 has at least one 𝒫

𝒞 ↔ 𝒫

Linear functions 𝒜 = ℤ𝑚 = {0,1, … ,𝑚 − 1}
all computations are modulo m, to ensure that result is between 0 and 𝑚 − 1

e.g. 𝒜 = {0. .25},𝑚 = 26

linear Scalars: 𝛼, 𝛽 ∈ ℤ𝑚
Vectors: 𝑣⃗, 𝑤⃗⃗⃗ ∈ (ℤ𝑚)

𝑛

Function 𝑓: (ℤ𝑚)
𝑛 → (ℤ𝑚)

𝑘
𝑓(𝛼𝑣⃗ + 𝛽𝑤⃗⃗⃗) = 𝛼 ∗ 𝑓(𝑣⃗) + 𝛽 ∗ 𝑓(𝑤⃗⃗⃗)

affine
= linear + bijective

/invmod(m,n)

/invmodstep

Map 𝑀: (𝑘 × 𝑛)-matrix with entries ℤ𝑚

𝑏: vector in (ℤ𝑚)
𝑘, 𝑏 = 0 → 𝑓 𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟

𝑓(𝑣⃗) = (𝑀𝑣⃗ + 𝑏⃗⃗) 𝑚𝑜𝑑 𝑚

an affine map is bijective if:
1. 𝑘 = 𝑛
2. gcd(det(𝑀) ,𝑚) = 1 → (det(𝑀))−1(𝑚𝑜𝑑 𝑚) 𝑒𝑥𝑖𝑠𝑡𝑠

determinant of M must be coprime with m

determinant
det()

The factor of area changes when multiplying with a position vector.
If negative we flip the area (antisymmetric)
2 × 2 → calculate 𝑎𝑥 ∗ 𝑏𝑦 − 𝑏𝑥 ∗ 𝑎𝑦

3 × 3 → Hand rule of Sarrus

 Unity matrix does not change a vector when multiplying. -> 𝑑𝑒𝑡 = 1

Confusion

(Verwirrung)
𝑦𝑖 = 𝐹𝑖(𝑥⃗, 𝑧), 𝑖 ∈ {1…𝑛}

𝐹𝑖 should be mathematically complex -> linear functions are not enough
For a given x and y, it is not feasible to solve for z.
-> do this with different rounds (enough big): 𝐸 = 𝐸𝑅 ∘ 𝐸𝑅−1 ∘ … ∘ 𝐸1

Diffusion

(Streuung)
Every ciphertext bit should depend on every plaintext and every key bit.
-> Changing a single bit in the plaintext (or the key), on the average 50% of
the ciphertext bits should change

𝒳,𝒫: set of plaintexts
readable,

understandable

𝒴, 𝒞: set of ciphertexts
readable,

not understandable

𝒵,𝒦: set of keys

Encryption (Verschlüsselung)
𝐸𝑍 = 𝒳 → 𝒴 𝑤𝑖𝑡ℎ 𝑧 ∈ 𝒵

ℰ, 𝐸𝑘 = 𝒫 → 𝒞 𝑤𝑖𝑡ℎ 𝑘 ∈ 𝒦

Decryption (Entschlüsseln)
𝐷𝑍 = 𝒴 → 𝑋 𝑤𝑖𝑡ℎ 𝑧 ∈ 𝒵
𝒟,𝐷𝑘 = 𝒞 → 𝒫 𝑤𝑖𝑡ℎ 𝑘 ∈ 𝒦

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 4 of 26

Alg: Vigenère
Cipher
von Julius Caesar

affine encryption

Encryption: 𝐸𝑍: (ℤ𝑚)
𝑛 → (ℤ𝑚)

𝑛, 𝑣⃗ → 𝑣⃗ + 𝑧 (𝑚𝑜𝑑 𝑚)
Decryption: 𝐷𝑍: (ℤ𝑚)

𝑛 → (ℤ𝑚)
𝑛 , 𝑣⃗ → 𝑣⃗ − 𝑧 (𝑚𝑜𝑑 𝑚)

 Variation 1 Variation 2 Variation 3 One-Time-Pad

Plaintext 𝑎, 𝑏, 𝑐, … , 𝑥, 𝑦, 𝑧 𝑎, 𝑏, 𝑐, … , 𝑥, 𝑦, 𝑧 𝑎, 𝑏, 𝑐, … , 𝑥, 𝑦, 𝑧 010001101110

Ciphertext 𝑑, 𝑒, 𝑓, … 𝑎, 𝑏, 𝑐 𝑒, 𝑖, 𝑥, … , 𝑎, 𝑏, 𝑘 e.g. Apfel 101101010110

Number of key 26 26! = 4 ∗ 1026 long as plaintext

Encryption Shift to right Randomly permutate

a b c ... x y z

e f x ... h u k

a b c . x y z
a b c . x y z
p q r . m n o
f g h . c d e
e f g . b c d
l m n . i j k

add a random key
e.g.
111100111000

Brute force attack easy, only #26
too little keys

difficult, but possible
word structure

ciphertext too short
word structure

secure proven
key to long

Example (+3) haus -> kdxv zac -> kex zac -> zph

Alg: Hill Cipher 𝒵: set of all invertible 𝑛 × 𝑛 matrices with components from ℤ𝑚
matrix must be invertible: gcd(det(𝑀) ,𝑚) = 1
Key: 𝑀 ∈ (ℤ𝑚)

𝑛×𝑛
𝐸𝑀: (ℤ𝑚)

𝑛 → (ℤ𝑚)
𝑛 , 𝑣⃗ → 𝑀 ∗ 𝑣⃗ (𝑚𝑜𝑑 𝑚)

Linear permutations of vector of length n

Alg: General Affine
Cipher

Key: (𝑀, 𝑏)
M: invertible Matrix in (ℤ𝑚)

𝑛×𝑛
b: vector in (ℤ𝑚)

𝑛
Encryption: 𝐸(𝑀,𝑏): (ℤ𝑚)

𝑛 → (ℤ𝑚)
𝑛, 𝑣 → 𝑀𝑣 + 𝑏 (𝑚𝑜𝑑 𝑚)

Special Cases:
𝑀 = 1: Vignère
𝑏 = 0: Hill
Every affine encryption is solvable.

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 5 of 26

4. Algebraic basics 2

Algebraic Group A group is a set 𝐺 together with a binary operation ∘,
which combines two elements of G.

𝐺 = Set of Integer ℤ
∘ = addition ′+′

properties Closure (Abgeschlossenheit): 𝑎, 𝑏 ∈ 𝐺 ⇒ 𝑎 ∘ 𝑏 ∈ 𝐺
Associativity: (𝑎 ∘ 𝑏) ∘ 𝑐 = 𝑎 ∘ (𝑏 ∘ 𝑐)
Identity Element e (Einheitselement): 𝑒 ∘ 𝑎 = 𝑎 ∘ 𝑒 = 𝑎
Inverse Element 𝑎−1: 𝑎−1 ∘ 𝑎 = 𝑎 ∘ 𝑎−1 = 𝑒

𝑎 + 𝑏 ∈ ℤ
(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)

0 + 𝑎 = 𝑎 + 0 = 𝑎
(−𝑎) + 𝑎 = 𝑎 + (−𝑎) = 0

Abelian Group Commutative Group 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎 𝑎 + 𝑏 = 𝑏 + 𝑎

Algebraic Field
(Körper)

A field is a set F together with two binary operations ⊕ and ⊗,
satisfying the properties

𝐹 = 𝑅𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 ℚ
⊕=′ +′,⊗=′∗′

properties (𝐹,⊕) is an Abelian Group.
The identity element with respect to ⊕ is denoted by 0.

(ℚ,+)
𝑒 = 0

(𝐹 − {0},⊗) is an Abelian Group.
The identity element with respect to ⊗ is denoted by 1.

(ℚ − {0},⊗)
𝑒 = 1

Distributive Law holds: 𝑎 ⊗ (𝑏 ⊕ 𝑐) = 𝑎 ⊗ 𝑏⊕ 𝑎⊗ 𝑐 𝑎 ∗ (𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐

Remarks ⊕ is commonly called "addition", ⊗ is commonly called
"multiplication"

We can solve linear equality systems in an algebraic field, because of
the 4 basic operations (addition, subtraction, multiplication, division).

Modulo is not an algebraic field.

properties ∀𝑎 ∈ 𝐹, 𝑎 ⊗ 0 = 0⊗ 𝑎 = 0
∀𝑎, 𝑏 ∈ 𝐹 𝑎𝑛𝑑 𝑎, 𝑏 ≠ 0 ⇒ 𝑎 ⊗ 𝑏 ≠ 0
𝑎 ⊗ 𝑏 = 0 𝑎𝑛𝑑 𝑏 ≠ 0 ⇒ 𝑎 = 0

𝑎 ≠ 0 𝑎𝑛𝑑 𝑎 ⊗ 𝑏 = 𝑎 ⊗ 𝑐 ⇒ 𝑏 = 𝑐

𝑎 ∗ 0 = 0 ∗ 𝑎 = 0
1 ∗ 2 ≠ 0

𝑎 ∗ 5 = 0 → 𝑎 = 0
3 ∗ 𝑎 = 3 ∗ 𝑏 → 𝑏 = 𝑐

Finite Fields /
Galois Fields

𝐺𝐹(𝑞): Field with a finite number 𝑞 of elements 𝐺𝐹(2) = {0,1} → 𝑞 = 2

Smallest number 𝜆 such that ∑ 1𝜆
𝑖=1 = 0

𝜆 is always a prime

1 + 1 = 0 (𝑚𝑜𝑑 2)
𝜆 = 2

Finite Fields exist only if 𝑞 = 𝜆𝑛 with 𝑛 ∈ ℕ and 𝜆 ∈ ℙ
𝑛 = 1 → Prime Field
𝑛 > 1 → Extended Field

2 = 21 →Prime
4 = 22 →Extended

Prime Field
(Restklassenkörper)

𝐺𝐹(𝑝) or ℤ𝑝

Number of elements p is prime
𝐹 = {0,1,2, … , 𝑝 − 1}

𝐺𝐹(2)
𝑝 = 2

𝐹 = {0,1}

𝐺𝐹(3)
𝑝 = 3

𝐹 = {0,1,2}

Addition

/prifiadd(p)

𝑎 ⊕ 𝑏 = 𝑎 + 𝑏 𝑚𝑜𝑑 𝑝 ⊕ 0 1 2 additive inv

0 0 1 2 −0 = 0
−1 = 2
−2 = 1

1 1 2 0
2 2 0 1

Multiplication

/prifimul(p)

𝑎 ⊗ 𝑏 = 𝑎 ∗ 𝑏 𝑚𝑜𝑑 𝑝
since 𝑝 is prime gcd(𝑎, 𝑝) = 1 for all 𝑎 ∈ 𝐹 − {0} and thus 𝑎−1 exists

⊗ 0 1 2 multipl inv

0 0 0 0 0−1 not exist
1−1 = 1
2−1 = 2

1 0 1 2
2 0 2 1

Polynomials 𝑝(𝑥) = 𝑎𝑚 ∗ 𝑥
𝑚 + 𝑎𝑚−1 ∗ 𝑥

𝑚−1 +⋯+ 𝑎1 ∗ 𝑥 + 𝑎0, 𝑎𝑖 ∈ 𝐹 𝑝(𝑥) = 3𝑥2 + 𝑥 − 1

properties if 𝑎𝑚 ≠ 0 then 𝑎𝑚 is called the leading coefficient
and m is the degree of 𝑝(𝑥)

leading coefficient: 𝑎𝑚 = 3
degree: 𝑚 = 2

if 𝑎𝑚 = 1 then 𝑝(𝑥) is called monic (monisch) 𝑝(𝑥) = 𝑥2 + 𝑥 − 1

The set of polynomials over the field F is denoted by 𝐹[𝑥]

example 𝑝(𝑥) = 1.0 ∗ 𝑥2 + 1.0 𝑜𝑣𝑒𝑟 ℝ → start in the real numbers
𝑝(𝑥) = 0 →no solution in ℝ
We define 𝛼 such that 𝑝(𝛼) = 𝛼2 + 1 = 0

1. 𝛼 ∈ ℝ → the solution of 𝑝(𝑥)
2. 𝛼2 + 1 = 0 ⇒ 𝛼2 − 1

E = {a + b ∗ α|a, b, ∈ ℝ} →define extended field
𝑝(𝑥) = 𝑥2 + 1 over 𝐺𝐹(2) = {0,1}
𝑝(𝑥) = (𝑥 + 1)(𝑥 + 1) → Behauptung
𝑝(𝑥) = 𝑥2 + 𝑥 + 𝑥 + 1 = 𝑥2 + 𝑥 (1 + 1)⏟

0

+ 1 = 𝑥2 +

1 →Beweis

Irreducible
polynomials

factor()

A polynomial with coefficients in a field 𝐹 is said to be irreducible over
𝐹 if it is non-constant and cannot be factored into the product of two
or more non-constant polynomials with coefficients in 𝐹.

𝑥2 + 1 is irreducible over ℚ,
but reducible over 𝐺𝐹(2):
𝑥 + 1 = (𝑥 + 1)(𝑥 + 1)

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 6 of 26

Extended Fields
(Erweiterungs-körper)

Start with a polynomial 𝑚(𝑥) of degree 𝑛 > 1
that is irreducible over a given field F.
The elements of the extended field E are all polynomials in 𝐹[𝑥] with
degree less than n. 𝐸 = {𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0, 𝑎𝑖 ∈ 𝐹}

𝑚(𝑥) = 𝑥2 + 𝑥 + 1
𝐹 = 𝐺𝐹(2) = {0,1}

Addition Coefficients of the polynomials are added in F

Multiplication 1. Multiply the polynomials (keep in mind that coefficients are in F)
2. Divide my 𝑚(𝑥)
3. Take the remainder (degree is always less than n)

1. irreducible
polynomial of degree
𝑛 = 2

a. 𝑚(𝑥) = 𝑥2 = 𝑥 ∗ 𝑥 → 𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒
b. 𝑚(𝑥) = 𝑥2 + 1 = (𝑥 + 1)(𝑥 + 1) → 𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒
c. 𝑚(𝑥) = 𝑥2 + 𝑥 = 𝑥(𝑥 + 1) → 𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒
d. 𝑚(𝑥) = 𝑥2 + 𝑥 + 1 → 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 (𝑡ℎ𝑒𝑟𝑒 ℎ𝑎𝑠 𝑡𝑜 𝑏𝑒 𝑜𝑛𝑒)

2. extended field 𝐸 = {0 ∗ 𝑥 + 0, 0 ∗ 𝑥 + 1, 1 ∗ 𝑥 + 0, 1 ∗ 𝑥 + 1}
𝐸 = {0,1, 𝑥, 𝑥 + 1}

3. addition table

/extfiadd(q,m)

/extfiadd(2,x^2+x+1)

⊕ 0 1 𝑥 𝑥 + 1
0 0 1 𝑥 𝑥 + 1
1 1 0 𝑥 + 1 𝑥 + 1 + 1 = 𝑥
𝑥 𝑥 𝑥 + 1 2𝑥 = 0𝑥 = 0 2𝑥 + 1 = 1

𝑥 + 1 𝑥 + 1 𝑥 + 1 + 1 = 𝑥 2𝑥 + 1 = 1 2𝑥 + 2 = 0

4. multiply table
/extfimul(q,m)

/extfimul(2,x^2+x+1)

polyRemainder(f,m)

⊗ 0 1 𝑥 𝑥 + 1
0 0 0 0 0
1 0 1 𝑥 𝑥 + 1
𝑥 0 𝑥 𝑥 + 1 1

𝑥 + 1 0 𝑥 + 1 1 𝑥

𝑥2 ≡ −𝑥 − 1 ≡ 𝑥 + 1
𝑥(𝑥 + 1) = 𝑥2 + 𝑥
= 𝑥 + 1 + 𝑥 = 1
(𝑥 + 1)(𝑥 + 1)

= 𝑥2 + 2𝑥 + 1 = 𝑥2 + 1
= 𝑥 + 1 + 1 = 𝑥

remarks we calculate with module irreducible polynom. 𝑚(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑚(𝑥))

no signs in 𝐺𝐹(2)

Primitive element The powers of (e.g. 𝑥) generate all non-zero elements of 𝐸 𝑥0 = 1, 𝑥1 = 𝑥
𝑥2 = 𝑥 + 1

Primitive polynomial A polynomial 𝑝(𝑥) of degree 𝑛 over 𝐺𝐹(𝑞) is primitive if:
𝑝(𝑥) is irreducible
𝑝(𝑥)|𝑥𝑞−1 − 1, 𝑞 = 𝑝𝑛
𝑝(𝑥) ∤ 𝑥𝑘 − 1, 0 < 𝑘 < 𝑝𝑛 − 1

𝐺𝐹(22) → 𝑞 = 4
𝑝 = 2

𝑥2 + 𝑥 + 1|𝑥3 − 1
𝑥2 + 𝑥 + 1 ∤ 𝑥2 − 1

The root 𝛼 of a primitive polynomial 𝑝(𝑥) of degree 𝑛 over 𝐺𝐹(𝑝) is a
primitive element of the field 𝐺𝐹(𝑝𝑛)

𝑝(𝑥)|𝑥𝑞−1 − 1 ⇔ 𝑥𝑞−1 − 1 = 𝑝(𝑥) ∗ 𝑘(𝑥), 𝑞 = 𝑝𝑛

Let 𝛼 be a root of 𝑝(𝑥): 𝑝(𝛼) = 0

We conclude: 𝛼 is a 𝑞 − 1-root of unity

However, 𝛼𝑘 ≠ 1 for 0 < 𝑘 < 𝑞 − 1

Otherwise 𝑝(𝑥) would divide 𝑥𝑘 − 1 for 0 < 𝑘 < 𝑞 − 1

Example

/polgen(p,n,m)

polgen(2,3,x^3+x+1)

𝑝𝑛(𝑚𝑜𝑑 𝑛)

𝑝(𝑥) = 𝑥3 + 𝑥 + 1 (𝑚𝑜𝑑 𝑥3 + 𝑥 + 1) = 0, 𝑛 = 3, 𝐺𝐹(2)
𝑥3 = −𝑥 − 1 = 𝑥 + 1

Power Polynomial in 𝛼 binary int

0 0 (0 0 0) 0

𝑥0 1 (0 0 1) 1

𝑥1 𝑥 (0 1 0) 2

𝑥2 𝑥2 (1 0 0) 4

𝑥3 𝑥 + 1 (0 1 1) 3

𝑥4 𝑥 ∗ 𝑥3 = 𝑥 ∗ (𝑥 + 1) = 𝑥2 + 𝑥 (1 1 0) 6

𝑥5 𝑥 ∗ 𝑥4 = 𝑥3 ∗ 𝑥2 = 𝑥3 + 𝑥2 = 𝑥2 + 𝑥 + 1 (1 1 1) 7

𝑥6 𝑥 ∗ 𝑥5 = 𝑥3 + 𝑥2 + 𝑥 = 𝑥2 + 2𝑥 + 1
= 𝑥2 + 1

(1 0 1) 5

𝑥7 𝑥 ∗ 𝑥6 = 𝑥3 + 𝑥 = 2𝑥 + 1 = 1

𝑥2(𝑥2 + 𝑥 + 1) = 𝑥2 ∗ 𝑥5

𝑞 = 2𝑛 = 8
𝛼 = 𝑥

Use the table for multiplying

We use primitive
polynomials because x is a
generator element.

multorder = first element with value 1 except 𝑥0 = 1

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 7 of 26

5. Symmetric Encryption Algorithms

DES - Data Encryption Standard AES - Advanced Encryption Standard IDEA - International Data Encryption Algorithm

Algorithm based on 'Lucifer'
Published in 1975 -> IBM und NSA
Block cypher, Feistel network

 PES - not secure -> Differential Crypto
Improved Proposed Encryption Standard
1991

Block size: 64 bits
Key size: 56 (+8 parity bits / prüf bits)
unsecure, too small -> Brute Force Attack
#rounds: 16 (to get a good diffusion)

Block size: 128 bits
Key size: 128/192/256 bits
secure
#rounds = 10/12/14 (key size dependent)

128bit key
Key size: 16 bits
As much provable security as possible
#rounds = 6

Permutation -> no crypto significance

Scalable: Mini-versions with 2/4/8 bit
Transparency: no "random-looking"
tables or "mysterious" S-Boxes
Easy to substitute for DES
Fast in Software and Hardware

final round

One Round

Store input bits into state matrix
16*8=128bit input -> insert in state
matrix (4x4 with 8bit values)

Add round key (XOR)
early to avoid reversion by the attacker

each 8-bit value are interpreted as
elements of 𝐺𝐹(28)
with polynomial

𝑚(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1

Key Expansion = Generate a round key
from the key

Add Round Key at the end
operations can be inverted -> encryption

3 incompatible operations -> Confusion
⨁ Bit-by-bit modulo-two addition (xor)
⊞ Addition modulo 216
⨀ Multiplication modulo 216 + 1 of non-
zero numbers
- 216 + 1 is prime
- 216 is represented by the all-zero string

Multiply-Add (M-A) Box -> Diffusion

each output depends on every input

1. Expansion Permutation
see Expansion Permutation table;
1 -> 2&48; 2 -> 3; 4 -> 5 & 7
Expansion, because several bits of the
input will be used twice.
XOR (step 1. and key K)
S-Boxes (S=Substitution) -> Confusion
8 Boxes = each 6 input bits, 4 output bits
Take first & last bits -> 0 ≤ 𝑖 ≤ 3 -> row
Take middle 4 bits 0 ≤ 𝑗 ≤ 15 -> column
see S-Boxes table (non-linear)
protect against differential analysis
Permutation (see permutation table)

1 ← 16, 2 ← 7, 3 ← 20

SubBytes = Non-linear byte substitution
-> Confusion

i) take the multiplicative inverse of
𝐺𝐹(28), map {00} 𝑡𝑜 {00}

ii) Affine transformation over 𝐺𝐹(28)
Shift rows = copy first row,
shift 2nd by 1, 3rd by 2 and last by 3

Mix Columns = matrix multiplication of a
column (polynomial) with const matrix
-> modulo 𝑚(𝑥) = 𝑥4 + 1 𝑖𝑛 𝐺𝐹(28),

03 −> 𝑥2 + 1
Add round key = XOR each column of the
state matrix with the corresponding
word from the round key

Encryption/Decryption Similarity
final round causes that the same
structure can be used to encrypt and to
decrypt. -> Mult-Add-Add-Mult

Store input bits into state matrix

AddRoundKey

For each round (except last one)

ShiftRows

SubBytes

AddRoundKey

MixColumns

ShiftRows

SubBytes

AddRoundKey

Return state matrix

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 8 of 26

Structure:
Feistel Network

-> Regardless of 𝐹𝐾(𝑅), the same structure can be used to decrypt, by
changing left and right at the beginning.

𝑇(𝐿, 𝑅) = (𝐿 ⊕ 𝐹𝐾(𝑅), 𝑅)
𝑀(𝐿, 𝑅) = (𝑅, 𝐿)

2-DES 2 DES after each other -> with meet-in-the-middle attackable
attack from left and right and compare the result

256 + 256 = 257
I know what goes in and what comes out

Triple DES

Key 1,2 and 3 should be independent
If all three keys are identic -> single DES

Left half plaintext Right half plaintext

= round key

XOR

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 9 of 26

3b. Block (Cipher) Modes

 What should we do, when we have more than 64/128-bit data to encrypt?

Electronic Code
Book (ECB)

Each plaintext block (of length n) is encrypted individually (with same key)
-> not appropriate, except input blocks are random

drawbacks Repetitions of plaintext blocks will be perceivable
Same plaintext block will always be mapped to same ciphertext block
Attacker can change order of ciphertext blocks (or can introduce new blocks)

Cipher Block
Chaining (CBC)

incremental blocks
initialization vector (not secret, unpredictable)

drawbacks not parallelizable in encryption, parallelizable in decryption
Bit errors in a ciphertext block will affect decryption of the actual (50%) and the
subsequent block (1bit)

encryption

Cipher Feedback
(CFB)

Feedback of ciphertext blocks into the input of the encryption algorithm
Encryption cannot be performed in parallel
Bit errors in a ciphertext block will affect decryption of actual and subsequent block

Output Feedback
(OFB)

Encryption algorithm is used as a pseudo random generator → additive stream cipher
IV must be unique for each execution of the mode (but not unpredictable)
Needs synchronization between transmitter and receiver
No error propagation (1-bit error -> 1-bit in cyphertext)

CFB and OFB are
similar

Counter (CTR) Encryption/Decryption can be performed in parallel

Each counter value should only be used once with the same key → Nonce (Number used only once)
No error propagation

CFB + OFB + CTR use encryption algorithm for encryption and decryption, but invert order of 𝐸𝑘

Initialization
Vector

Ciphertext 1

Plaintext 2 Plaintext 1

⨁ 𝐸𝑘 ⨁

Ciphertext 2

𝐸𝑘 ⨁

Plaintext 3

𝐸𝑘

Ciphertext 3

Initialization
Vector

Ciphertext 1

Plaintext 2 Plaintext 1

⨁ 𝐸𝑘 ⨁

Ciphertext 2

𝐸𝑘 ⨁

Plaintext 3

𝐸𝑘

Ciphertext 3

Initialization
Vector

Ciphertext 1

Plaintext 2 Plaintext 1

⨁ 𝐸𝑘 ⨁

Ciphertext 2

𝐸𝑘 ⨁

Plaintext 3

𝐸𝑘

Ciphertext 3

Counter

Ciphertext 1

Plaintext 1

⨁ 𝐸𝑘

Counter

Ciphertext 2

Plaintext 2

⨁ 𝐸𝑘

Counter

Ciphertext 3

Plaintext 3

⨁ 𝐸𝑘

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 10 of 26

6+7. Asymmetric Cryptography

Problem of
Symmetric Crypto

Key must be kept secret!
Each pair of user's needs another secret key -> number of keys grows → 𝑛2

Asymmetric
Cryptosystem

Private key: For every 𝑑 ∈ 𝒦, it is feasible to compute 𝑒 ∈ 𝒦. d must be kept secret
Public key: For (almost) every 𝑒 ∈ 𝒦, it is computationally infeasible to compute 𝑑 ∈
𝒦, such that 𝐷𝑑 ist the inverse of 𝐸𝑒. 'e' can be made public.

𝐷𝑑(𝐸𝑒(𝑝)) = 𝑝

One-Way Function Easy to compute on every input in polynomial time.
Hard to invert, given the image of a random input.
Existence of one-way functions is still a conjecture (Vermutung).

Trapdoor function One-way function that can be inverted if a secret is known.

Candidates of one-
way functions

Multiplication and factoring Easy: given two primes p and q compute 𝑛 = 𝑞 ∗ 𝑝
Difficult: given 𝑛 = 𝑝 ∗ 𝑞, find the two primes 𝑝 and 𝑞

7 ∗ 17 = 119

Discrete Logarithm Function Easy: given g, x and p, compute 𝑔𝑥 𝑚𝑜𝑑 𝑝
Difficult: given 𝑔𝑥 𝑚𝑜𝑑 𝑝, 𝑔 and 𝑝, find 𝑥

28 𝑚𝑜𝑑 5 ≡ 1

Elliptic Curves Easy: given the point 𝑃 and 𝑛, compute 𝑛 ∗ 𝑃
Difficult: given 𝑛 ∗ 𝑃 and 𝑃, compute 𝑛

DHKE
Diffie-Hellman
Key Exchange

based on discrete logarithm

Not secure against man-in-
the-middle attack

Works for any cyclic group

𝑝 has to be prime and big
-> avoid brute force
𝑔 has to be generator for ℤ𝑝

∗

public:

𝑝 = 5, 𝑔 = 2
secret:

𝑎 = 3, 𝑏 = 6
public:

𝐴 = 3, 𝐵 = 4

secret:

𝐾 = 4

ElGamal
Encryption

p at least 1024bits
𝑏 ∈ {2, … , 𝑝 − 2}

𝑎 ∈ {2, … , 𝑝 − 2}

based on discrete logarithm
as difficult to break as DH

Works for any cyclic group

𝐴: ephemeral/temporary key
c: shared key

𝑝 = 11,

𝑔 = 2, 𝑏 = 6
𝐵 = 26 𝑚𝑜𝑑 11

𝐵 = 9
𝑘𝑝𝑢𝑏 = (11,2,9)

𝑎 = 4,𝑚 = 7

𝐴 = 24 𝑚𝑜𝑑 11 = 5
𝑐 = 94 ∗ 7 𝑚𝑜𝑑 11

𝑐 = 2
𝑠𝑒𝑛𝑑(5,2)

𝑚 = 2 ∗ 511−1−6
𝑚𝑜𝑑 11 = 7

RSA
(Ronald Rivest,
Adi Shamir,
Leonard Adleman)

use Euler's Totient Theorem

p and q need to be large,
independent, large factors
n=3072 bits = sym alg 128bits

1 < 𝑒 < 𝜙(𝑛)

#𝑒:𝜙(𝜙(𝑛)) − 1

d=private key

0 ≤ 𝑚 < 𝑛
if we knew 𝜙(𝑛), we could
compute d -> egcd
factoring 𝑛 is as hard as
computing 𝜙(𝑛) and the only
way to find d (probably).
if we now m/4 of first or last
digits we can effic. factor n
if e is small we use Chinese
remainder to compute c

𝑝 = 53, 𝑞 = 59
𝑛 = 53 ∗ 59
𝑛 = 3127

𝜙(𝑛) = 52 ∗ 58
𝜙(𝑛) = 3016

𝑒 = 3
𝑑 = −1005 = 2011

𝑀 = "ℎ𝑖"
𝑚 = 89

𝑐 = 893 𝑚𝑜𝑑 3127
𝑐 = 1394

𝑚 = 13942011
𝑚𝑜𝑑 3127
𝑚 = 89

Unsecure Channel Alice Bob

choose a
𝐴 = 𝑔𝑎 𝑚𝑜𝑑 𝑝

choose b

𝐵 = 𝑔𝑏 𝑚𝑜𝑑 𝑝

Exchange A and B

𝐾 = 𝐵𝑎 𝑚𝑜𝑑 𝑝 𝐾 = 𝐴𝑏 𝑚𝑜𝑑 𝑝

Agree on Prime p and Generator g

Unsecure Channel Alice Bob

2: Encryption (by the sender)
choose 𝑎 randomly

𝐴 = 𝑔𝑎 𝑚𝑜𝑑 𝑝
𝑐 = 𝐵𝑎 ∗ 𝑚 𝑚𝑜𝑑 𝑝

1: Set-up (by the receiver, only once)
choose prime 𝑝, generator 𝑔 and 𝑏

𝐵 = 𝑔𝑏 𝑚𝑜𝑑 𝑝

send (𝐴, 𝑐)

3: Decryption (by the receiver)

𝑚 = 𝑐 ∗ 𝐴𝑝−1−𝑏 𝑚𝑜𝑑 𝑝

send 𝑘𝑝𝑢𝑏 = (𝑝, 𝑔, 𝐵)

Unsecure Channel Alice Bob

2: Encryption
everybody can do that, 𝑒 and 𝑛 is needed
map plain message M to integers

𝑐 = 𝑚𝑒 𝑚𝑜𝑑 𝑛

1: Key generation
choose primes 𝑝 and 𝑞 randomly

𝑛 = 𝑝 ∗ 𝑞 (𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 2000 𝑏𝑖𝑡𝑠)
𝜙(𝑛) = (𝑝 − 1) ∗ (𝑞 − 1)

choose 𝑒, such that gcd(𝑒, 𝜙(𝑛)) = 1

compute 𝑑 with 𝑒 ∗ 𝑑 ≡ 1 𝑚𝑜𝑑 𝜙(𝑛)

send (𝑐)

publish (𝑒, 𝑛)

3: Decryption
only Alice can do that, 𝑑 is needed

𝑚 = 𝑐𝑑 𝑚𝑜𝑑 𝑛

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 11 of 26

Euler’s Totient
Theorem

𝑎𝜙(𝑛) ≡ 1 (𝑚𝑜𝑑 𝑛)

𝑤𝑖𝑡ℎ 1𝑘 = 1: 𝑎𝑘∗𝜙(𝑛) ≡ 1 (𝑚𝑜𝑑 𝑛)

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑎: 𝑎𝑘∗𝜙(𝑛)+1 ≡ 𝑎 (𝑚𝑜𝑑 𝑛)
𝑒 ∗ 𝑑 = 𝑘 ∗ 𝜙(𝑛) + 1

3𝜙(4) = 32 = 9 ≡ 1 (𝑚𝑜𝑑 4)
33∗2 = 729 ≡ 1 (𝑚𝑜𝑑 4)

square and
multiply

/sam(a,c,m)

/sam2(a,c)

𝑎𝑐 𝑚𝑜𝑑 𝑚

/samstep

/sam2step

compute 𝑎𝑐 𝑚𝑜𝑑 𝑚 for large numbers
c can be written as binary number 𝑐 = 𝑏0 ∗ 2

0 + 𝑏1 ∗ 2
1 +⋯+ 𝑏𝑛 ∗ 2

𝑛
re = 1
for i = n..0
 res = res^2 mod m
 if b_i = 1
 res = (res*a) mod m
 end_if
end_for

12345678 𝑚𝑜𝑑 438 = 316

Miller-Rabin
Primality Test

/isProbPrime(n)
/isProbPrimeBase(n,a)

composite
= not prime

Question: Is n prime or composite? Not the same as factoring!
Let n be an integer
Suppose there exist integer x and y with 𝑥2 ≡ 𝑦2(𝑚𝑜𝑑 𝑛),

𝑏𝑢𝑡 𝑥 ≠ ±𝑦 (𝑚𝑜𝑑 𝑛)
Then n is composite and gcd(𝑥 − 𝑦, 𝑛) gives a nontrivial factor of n.

1. Assume that n is odd and write 𝑛 − 1 = 2𝑘 ∗ 𝑚 𝑛 = 53
52

21
= 26,

52

22
= 𝟏𝟑,

52

23
= 6.5

𝑘 = 2,𝑚 = 13

2. Randomly choose a base 𝑎 with 1 < 𝑎 < 𝑛 − 1 𝑎 = 2

3. Compute the starting value 𝑏0 = 𝑎
𝑚 𝑚𝑜𝑑 𝑛

𝑏0 = 2

13 𝑚𝑜𝑑 53 = 30

4. Compute the sequence 𝑏0, 𝑏1, … , 𝑏𝑘 with recursion 𝑏𝑖 = (𝑏𝑖−1)
2 𝑚𝑜𝑑 𝑛 𝑏1 = 30

2 𝑚𝑜𝑑 53 = −1

5. If n is prime then

𝑏𝑘 ≡ 𝑎
2𝑘∗𝑚 ≡ 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) → Fermat

𝑏𝑖 = 1 (𝑚𝑜𝑑 𝑛) and 𝑏𝑖−1 ≡ ±1 (𝑚𝑜𝑑 𝑛)
otherwise (𝑏𝑖)

2 ≡ (𝑏𝑖−1)
2(𝑚𝑜𝑑 𝑛), 𝑏𝑢𝑡 𝑏𝑖 ≠ 𝑛𝑖−1

-> sequence (𝑏0, 𝑏1, … , 𝑏𝑘) must either start with a 1 or it must
somewhere contain a −1

𝑏0 = {
+1 → 𝑃𝑟𝑖𝑚𝑒
−1 → 𝑃𝑟𝑖𝑚𝑒

𝑒𝑙𝑠𝑒 → 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

𝑏1..𝑘 = {
+1 → 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒
−1 → 𝑃𝑟𝑖𝑚𝑒

𝑒𝑙𝑠𝑒 → 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

if n is prime, it will pass the test for any a
a composite number passes the test for at most 1/4 or the possible bases
a -> it is then called a strong pseudoprime for the base a
repeating the test M times with randomly chosen values of a, the

probability that a composite n passes all the tests is at most (
1

4
)
𝑀

𝑀 = 50

(
1

4
)
50

< 10−30

Attacks on RSA In general, if gcd(𝑒𝐴, 𝑒𝐵) = 1, we can use egcd to find x and y such that:
𝑥 ∗ 𝑒𝐴 + 𝑦 ∗ 𝑒𝐵 = 1

and thus:
𝑐𝐴
𝑥 ∗ 𝑐𝐵

𝑥 = 𝑚𝑥∗𝑒𝐴 ∗ 𝑚𝑦∗𝑒𝐵 = 𝑚𝑥∗𝑒𝐴 +𝑚𝑦∗𝑒𝐵 = 𝑚

If 𝑒 = 3,𝑚 = 128𝑏𝑖𝑡, 𝑛 = 1024

𝑚 = √𝑐
𝑒

= √𝑐
3

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 12 of 26

8. Digital Signatures

Definition The result of a cryptographic transformation of data that, when properly implemented, provides a
mechanism for verifying origin authentication, data integrity and signatory non-repudiation.

origin
authentication

Signature can be matched to an entity without a doubt. Nobody can forge (fälschen) the signature.

data integrity The signature will no longer be valid if the content of the message is changed after the message has been
signed. The signature and the content of the message are unambiguously linked to each other.
The signature of a document cannot be used for another document.

non-repudiation The signer cannot repudiate (leugnen) his signature.

Signature
generation

The process of using a digital signature algorithm and a private key to
generate a digital signature on data. Only one person can do that.

private key (𝑑, 𝑛)

Signature
verification

The process of using a digital signature algorithm and a public key to verify
a digital signature on data. Everybody can do that.

public key (𝑒, 𝑛)

RSA-Signature

𝑝 = 11, 𝑞 = 23, 𝑒 = 3
𝑛 = 11 ∗ 23 = 253

→ 𝑑 = 147

𝑚 = 111
𝑠 = 11147 𝑚𝑜𝑑 253 = 89

𝑚∗ = 893 𝑚𝑜𝑑 253 = 111

→ 𝑣𝑎𝑙𝑖𝑑

Remarks No encryption, message m can/must be readable and understandable.
A long message leads to a long verification.

Attacks Authenticity of the public key must be secured (Certificates)

No-Message-Attack
1. choose arbitrary number s
2. produce message 𝑚 = 𝑠𝑒 𝑚𝑜𝑑 𝑛
3. message m will be accepted as a signed by Alice
-> message should contain redundancy. Enforce with redundancy function.

𝑠 = 10

𝑚 = 103 𝑚𝑜𝑑 253 = 241
𝑚 = 𝑚∗

𝑚 = 123, 𝑅(𝑚) = 123′123

Multiplicative property of RSA

𝑠1 = 𝑚1
𝑑 𝑚𝑜𝑑 𝑛

𝑠2 = 𝑚2
𝑑 𝑚𝑜𝑑 𝑛

→ 𝑠 = (𝑚1 ∗ 𝑚2)
𝑑 𝑚𝑜𝑑 𝑛

𝑚2 = 𝑚 ∗ 𝑚1
−1

Alice signs 𝑚1 and 𝑚2, but never 𝑚. Attacher can calc 𝑠 = 𝑠1 ∗ 𝑠2
-> message should contain redundancy.

Hash-Function A hash function is a computationally efficient function mapping binary
strings of arbitrary length to binary strings of some fixed length.

ℎ: {0,1}∗ → {0,1}𝑛
Result = Image
Input = Preimage

properties never injective -> set of input value is larger than set of output values
collision -> two different input values yield the same output -> very seldom

000 → 100; 101 → 100

properties preimage resistance -> difficult to find an input string from the output
second preimage resistance -> find a second input which results the same
collision resistance -> difficult to find two input which results the same

-> weak collision resistance
-> strong collision resistance

Examples SHA (Secure Hash Algorithm)

• SHA-1 (160bit) -> no longer considered secure

• SHA-2 (224, 256, 384, 512bit) -> secure
MD-5 (Message Digest algorithm 5)

• MD-5 (128bit) -> no longer considered secure
RIPEMD (RACE Integrity Primitives Evaluation Message Digest)

• RIPEMD -> no longer considered secure

• RIPEMD-160, 320 -> considered secure
-> only data integrity

Unsecure Channel Alice Bob

2: Sign (only Alice can do that)

𝑠 = 𝑚𝑑 𝑚𝑜𝑑 𝑛

1: key generation (only Alice can do that)
choose prime 𝑝, generator 𝑔 and 𝑒

𝑛 = 𝑝 ∗ 𝑞
𝑒 ∗ 𝑑 = 1 𝑚𝑜𝑑 𝜙(𝑛)

send (𝑠,𝑚)

3: Verification (everybody can do that)
𝑚∗ = 𝑠𝑒 𝑚𝑜𝑑 𝑛

𝑚∗ = 𝑚

public key (𝑛, 𝑒)

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 13 of 26

SHA-1 uses a family of 80 logical functions: 𝑓0…𝑓79(𝑥, 𝑦, 𝑧) using ∧, ∨, ⊕, ¬
total of 80 32-bit constants 𝐾𝑡 (𝑡 = 0. .79) are defined
1. Fill the message with bits so that the total length is a multiple of 512

2. Split the message into blocks 𝑀(𝑖)(𝑖 = 1. . 𝑁) of length 512

3. Use the initial has value 𝐻(0) as described in the standard
4. For each message block do the following

• Compute 𝑊𝑡

• Initialize the five variables 𝑎 = 𝐻0
(𝑖−1), 𝑏 = 𝐻1

(𝑖−1), 𝑐 = 𝐻2
(𝑖−1), 𝑑, 𝑒

• For 𝑡 = 0 𝑡𝑜 79: Compute 𝑇, 𝑒, 𝑑, 𝑐, 𝑏, 𝑎

• Compute 𝐻0
(𝑖), 𝐻1

(𝑖), 𝐻2
(𝑖), 𝐻3

(𝑖), 𝐻4
(𝑖)

Security Finding collisions is easier than the theoretical limit -> use SHA-2

Message
Authentication
Codes
"parameterized
hash function"

Family of functions with secret parameter k
Can be computed efficiently
Maps an input x of arbitrary length to a MAC-value ℎ𝑘(𝑥) of fixed length
Authenticity and data integrity

Digital Signature
with Hash function

Signature of an arbitrary long message m.

Generation of the signature: 𝑠 = ℎ(𝑚)𝑑 𝑚𝑜𝑑 𝑛

properties Sign only a short hash value instead of a long message m
No-message-attack and multiplicative property attack do not work -> because the attacker must generate
a message x that gives hash ℎ(𝑚)
Exploiting the multiplicative property (𝑚 = 𝑚1 ∗ 𝑚2 𝑚𝑜𝑑 𝑛) is not possible
The signed message m cannot be replaced by another text 𝑚∗ -> pair 𝑚 and 𝑚∗ must be a collision -> rare

DSA (Digital
Signature
Algorithm)

Variation of El-Gamal digital signature algorithm

Unsecure Channel Alice Bob

2: Sign (only Alice can do that)
1. select a random integer k: 0 < 𝑘 < 𝑞 -> multiple signs differ

2. compute 𝑟 = (𝑔𝑘 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑞

3. compute 𝑠 = (𝑘−1 ∗ (ℎ(𝑚) + 𝑥 ∗ 𝑟)) 𝑚𝑜𝑑 𝑞

1: key generation (only Alice can do that)
1. select a prime 𝑞 2159 < 𝑞 < 2160
2. choose 𝑡: 0 ≤ 𝑡 ≤ 8
3. select a prime 𝑝: 2511+64𝑡 < 𝑝 < 2512+64𝑡 and 𝑞|(𝑝 − 1)
4. choose ℎ: 0 < ℎ < 𝑝

5. compute 𝑔 = ℎ
𝑝−1

𝑞 𝑚𝑜𝑑 𝑝, repeat if 𝑞 = 1
6. select a random integer 𝑥: 1 ≤ 𝑥 ≤ 𝑞 − 1 -> secret key
7. compute 𝑦 = 𝑔𝑥 𝑚𝑜𝑑 𝑝

Signature (𝑟, 𝑠)

3: Verification (everybody can do that)
1. Verify that 0 < 𝑟 < 𝑞 𝑎𝑛𝑑 0 < 𝑠 < 𝑞
2. Compute 𝑤 = (𝑠−1) 𝑚𝑜𝑑 𝑞

3. Compute 𝑢1 = (𝑤 ∗ ℎ(𝑚)) 𝑚𝑜𝑑 𝑞

4. Compute 𝑢2 = (𝑤 ∗ 𝑟) 𝑚𝑜𝑑 𝑞

5. Compute 𝑣 = ((𝑔𝑢1 ∗ 𝑦𝑢2) 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑞

6. Accept signature if and only if 𝑣 = 𝑟

public key (𝑝, 𝑞, 𝑔, 𝑦)

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 14 of 26

Public Key
Infrastructure (PKI)

Problem of any asymmetric scheme:
Authenticity and validity of the public key must be secured

CA = Certification Authority
RA = Registration Authority
VA = Validation Authority

Digital Certificate A set of data that uniquely identifies a key pair and an owner that is
authorized to use the key pair. The certificate contains the owner’s public
key and possibly other information and is digitally signed by a Certification
Authority (i.e., a trusted party), thereby binding the public key to the
owner. Like a passport.

Certification
Authority

The entity in a Public Key Infrastructure (PKI) that is responsible for issuing
certificates and exacting compliance with a PKI policy.

Digital Signature The result of a cryptographic transformation of data that, when properly
implemented, provides a mechanism for verifying origin authentication,
data integrity and signatory non-repudiation.

Trust Models • Direct trust (one to another)

• Hierarchical trust (root CA -> CA -> people)

• Web of trust (Each user can sign a key and define the level of
trust that the key's owner can serve as certifier of other keys)

Example

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 15 of 26

9. Elliptic Curve

Why smaller key size -> less space and better performance
128bit AES = 3072bit RSA/DH = 256 ECC

Definition

solve(x^3-

ax+b=0,x)

Weierstrass equation combined with a field that has characteristic 2 or 3.
𝑦2 = 𝑥3 + 𝑎 ∗ 𝑥 + 𝑏

The points of the elliptic curve, together with an extra point 𝒪, called the
point at infinity, can be used to define an additive group.
This equation has 3 real or 1 real and 2 complex roots (Nullstellen).

valid if
4𝑎3 + 27𝑏2 ≠ 0

= no multiple roots
/validate(ec)

/validate(x^3+8x

-9)

/validmod(ec,p)

/validmod(x^3,5)

valid
𝑎 = −1, 𝑏 = 3

valid
𝑎 = −4, 𝑏 = 2

valid
𝑎 = 1, 𝑏 = −1

invalid
𝑎 = 0, 𝑏 = 0

invalid
𝑎 = −3, 𝑏 = 2

Addition

/add(ec,p,q)

/add(x^3-8x+9,

{0,3},{2,1})

={-1,-4}

/stepadd(ec,p,q)

addmod(ec,p,q,f)

stepaddmod()

Given: 𝑃, 𝑄 ∈ 𝐸
𝑃 ≠ 𝑄, 𝑃 ≠ −𝑄

Construction of 𝑃 + 𝑄 = 𝑅:
Draw a line through P and Q.
Invert intersection −𝑅 to yield 𝑅

Special Rules
point in infinity 𝒪 in Y is the neutral elem.

𝒪 + 𝒪 = 𝒪
𝑃 + (−𝑃) = 𝒪

𝑃 + 𝒪 = 𝒪 + 𝑃 = 𝑃

Algebraic
1. Slope

𝑚 =

{

𝑦𝑃 − 𝑦𝑄
𝑥𝑃 − 𝑥𝑄

𝑃 ≠ ±𝑄

3 ∗ 𝑥𝑃
2 + 𝑎

2 ∗ 𝑦𝑃
𝑃 = 𝑄

∞ → 𝒪 𝑃 = −𝑄

2. Interference point

𝑥𝑅 = 𝑚
2 − 𝑥𝑃 − 𝑥𝑄

𝑦𝑅 = 𝑚(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃

Multiplication
/mult(ec,p,n)

/mult(x^3-8x+9,

{2,1},3)

={-1,4}

/stepmult(ec,p,n

/multmod(ec,p,n,

f)

/stepmultmod(ec,

p,n,f)

Given: 𝑃 ∈ 𝐸

Construction of 𝟐 ∗ 𝑷:
Draw the tangent line through P
Invert intersection −𝑅 to yield 𝑅 = 2𝑃

Algebraic
see above 𝑃 = 𝑄

btw:

𝑦2(𝑥) = 𝑥3 + 𝑎𝑥 + 𝑏
𝛿

𝛿𝑥

2 ∗ 𝑦(𝑥) ∗ 𝑦′(𝑥) = 3𝑥2 + 𝑎

Finite Group
...mod()

because we only used the 4 basic operations, these equations are valid in each field.
egcd for division!

Order of a point
/order(ec,p,f)

Smallest non-negative integer, for which 𝑛 ∗ 𝐺 = 𝒪
Should be as high as possible for cryptography

cofactor: ℎ =
#𝐸(𝔽𝑝)

𝑛
∈ ℕ

-> Order of points always divides total number of points

𝑜𝑟𝑑𝑒𝑟(𝑥3 + 𝑥 + 1, {0,1}, 7) = 5

Number of Points
/numofpoints(p)

→ see Theorem of Hasse

𝑝 + 1 − 2 ∗ √𝑝 ≤ #𝐸(𝔽𝑝) ≤ 𝑝 + 1 + 2 ∗ √𝑝

for large p #𝐸(𝔽𝑝) ≈ 𝑝

#𝑝(7) = 3. .13

8 − 2√7 ≤ 𝐸(𝔽𝑝) ≤ 8 + 2 + √7

5.17 ≤ 𝐸(𝔽𝑝) ≤ 10.82

6 ≤ 𝐸(𝔽𝑝) ≤ 10

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 16 of 26

EC-DHKE
(Elliptic curve
Diffie-Hellman)
𝑝 ∈ ℙ → 𝑓𝑖𝑒𝑙𝑑

𝑎, 𝑏 ∈ 𝔽𝑝 → 𝑐𝑢𝑟𝑣𝑒

𝐺 ∈ 𝐸(𝔽𝑝) → 𝑏𝑎𝑠𝑒

𝑛 ∈ ℙ → 𝑜𝑟𝑑𝑒𝑟

If 𝑃 ≠ 𝒪 then Alice and Bob take the x-coordinate 𝑥𝑝 as the shared key.

𝑝 =

ECDLP (Elliptic
Curve Discrete
Logarithm
Problem)

Given an elliptic curve 𝐸(𝔽𝑝) over a finite field 𝔽𝑝, a point G on that curve

and another point Q you know to be an integer multiple of G. The problem
is to find the integer n such that 𝑛 ∗ 𝐺 = 𝑄.
-> is believed to be hard to solve, even with today's computational power.
-> log, because the question is how many times the operation is applied

Attacks Attacker knows 𝑃, 𝑎, 𝑏, 𝐺, 𝑄𝐴, 𝑄𝐵
Attacker does not know 𝑑𝐴, 𝑑𝐵
from 𝑛, 𝐺 calculating 𝑛 ∗ 𝐺 is easy
from 𝑛 ∗ 𝐺 and 𝐺 determining 𝑛 is hard → 𝐸𝐶𝐷𝐿𝑃

ECDSA
(Elliptic curve
Digital Signature
Algorithm)

similar as El-Gamal Algorithm, but in a different field.

Unsecure Channel Alice Bob

choose 𝑑𝐴 ≤ 𝑛 − 1
calc 𝑄𝐴 = 𝑑𝐴 ∗ 𝐺

𝑄𝐴, 𝑄𝐵

choose 𝑑𝐵 ≤ 𝑛 − 1
calc 𝑄𝐵 = 𝑑𝐵 ∗ 𝐺

Agree on 𝑝, 𝑎, 𝑏, 𝐺, 𝑛

calc 𝑃 = 𝑑𝐴 ∗ 𝑄𝐵
= 𝑑𝐴 ∗ 𝑑𝐵 ∗ 𝐺

calc 𝑃 = 𝑑𝐵 ∗ 𝑄𝐴
= 𝑑𝐵 ∗ 𝑑𝐴 ∗ 𝐺

Unsecure Channel Alice Bob

2: Sign (each message)
1. select a random integer k 1 < 𝑘 < 𝑛 − 1
2. compute 𝑘 ∗ 𝐺 ≡ (𝑥1, 𝑦1)
3. compute 𝑟 = 𝑥1 𝑚𝑜𝑑 𝑛, if 𝑟 = 0 goto step 1
4. compute 𝑘−1 𝑚𝑜𝑑 𝑛
5. compute 𝑒 = 𝐻𝑎𝑠ℎ(𝑚)
6. compute 𝑠 = 𝑘−1 ∗ (𝑒 + 𝑛𝐴 ∗ 𝑟) 𝑚𝑜𝑑 𝑛, if 𝑠 = 0 goto step 1

1: Generation (only once)
Choose valid field, curve, base point and order

Signature (𝑟, 𝑠)

3: Verification (everybody can do that)
1. Verify that r and s are integer and in [0, 𝑛 − 1]
2. Compute 𝑒 = 𝐻𝑎𝑠ℎ(𝑚)
3. Compute 𝑤 = 𝑠−1 𝑚𝑜𝑑 𝑛
4. Compute 𝑢1 = 𝑒 ∗ 𝑤 𝑚𝑜𝑑 𝑛 and 𝑢2 = 𝑟 ∗ 𝑤 𝑚𝑜𝑑 𝑛
5. Compute 𝑋 = 𝑢1 ∗ 𝐺 + 𝑢2 ∗ 𝑄𝐴 ≡ (𝑥1, 𝑦1)
6. If 𝑋 = 𝒪 then reject otherwise 𝑣 = 𝑥1 𝑚𝑜𝑑 𝑛
7. Accept the signature if and only if 𝑣 = 𝑟.

public key (𝑝, 𝑎, 𝑏, 𝐺, 𝑛)

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 17 of 26

10. Quantum Cryptography

Two-hole wall
Experiment

Electrons are particles. The probability of arrival behind a two-hole-wall is
distributed like the intensity of a wave. We observe interference.
-> It is not true that a single electron flies either though hole 1 or 2.

Observation If we observe the electron it passes hole 1 or 2.

Notation Probability for the transition from a start state Ψ1 to an end state Ψ2
⟨Ψ2|Ψ1⟩

Photon Can be polarized vertical (↕) or horizontal (↔) or with an arbitrary angle 𝜙
with respect to x-axis.

cos(𝜙) ∗ |↔⟩ + sin(𝜙) ∗ |↕⟩

SKIP

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 18 of 26

11+12. Linear Block Codes

Error Control
Coding

Sizes: capacity C, entropy per second H

Claude Shannon: Error induces by a noisy channel can be reduced to any desired level (if 𝐻 ≤ 𝐶)

Channel Coding Data transformations that are used for improving a system's error performance.
Encoder: add redundant information to the transmitted data (code word) - no memory
Decoder: check whether the received data is still exhibit the prearranged structure/regularity
-> Error Detection and Error Correction

(n, k)-Block Code

̂ = 𝑎𝑝𝑝𝑟𝑜𝑥.

Message block
𝒎 = (𝑚1, … ,𝑚𝑘)

k information symbols
of a finite field 𝐺𝐹(2𝑥)
Code word

𝒖 = (𝑢1, … , 𝑢𝑛)
𝒖 = (𝑚1, … ,𝑚𝑘, 𝑝)

n code symbols
Demodulator
observe the signal 𝑟(𝑡) and
produces received vector
𝒓 = (𝑟1, … , 𝑟𝑛) = 𝒖⊕ 𝒆

Hard decision: 0 / 1
Soft decision: might be 0 / 1
Error pattern

𝑒 = (𝑒1, … , 𝑒𝑛)
n(t) = Rauschen

Parity codes Even parity code 𝑝 = 𝑚1⊕…⊕𝑚𝑘 𝑚 = 1101 → 𝑝 = 1

Two-dimensional parity code 𝑝1 = 𝑚1⊕𝑚2⊕𝑚3⊕𝑚4
𝑝2 = 𝑚5⊕𝑚6⊕𝑚7⊕𝑚8
𝑝3 = 𝑚1⊕𝑚5, 𝑝4 = 𝑚2⊕𝑚6
𝑝5 = 𝑚3⊕𝑚7, 𝑝6 = 𝑚4⊕𝑚8

𝑚 = 11010001
𝑝1 = 1, 𝑝2 = 1
𝑝3 = 1, 𝑝4 = 1
𝑝5 = 0, 𝑝6 = 0

Binary Linear
Block Codes

A binary block code with 2𝑘 code words of length n is called linear (n, k)

code, if and only if its 2𝑘 code words form a k-dimensional subspace of the
vector space of the n-tuples over the field 𝐺𝐹(2).

=> the sum of any two code words is a code word. Linear combination!
=> the zero-code word is always a codeword in a linear block, 𝑣 + 𝑣 = 0

message: 𝑚𝑖 ∈ 𝐺𝐹(2) → 2𝑘 code words

code word: 𝑢𝑖 ∈ 𝐺𝐹(2) → 2𝑘 binary vectors of length n

(6,3) block code -> {0,1}6

Message 23 Codeword

000 000000

100 110100

010 011010

110 101110

001 101001

101 011101

011 110011

111 000111

Vector Space 𝔽: field of Scalars
𝕍: vector space
Two operations:
- Vector addition: 𝒖, 𝒗 ∈ 𝕍 ⇒ 𝒖 + 𝒗 ∈ 𝕍
- Scalar multiplication 𝒖 ∈ 𝕍, 𝑘 ∈ 𝔽 ⇒ 𝑘 ∗ 𝒖 ∈ 𝕍
- 10 Axioms

𝔽 = 𝐺𝐹(2)
𝑉 = {(𝑣1…𝑣𝑛): 𝑣𝑖 ∈ 𝐺𝐹(2)}

Subspace 𝕎 ⊆ 𝕍: Subset. If 𝕎 is a vector space itself, it is called a subspace of 𝕍.

Linear combination 𝑎1 ∗ 𝒗𝟏 +⋯+ 𝑎𝑘 ∗ 𝒗𝒌

Linear
independent

𝑎1 ∗ 𝒗𝟏 +⋯+ 𝑎𝑘 ∗ 𝒗𝒌 = 𝟎

Generator Matrix It is possible to find k linearly independent code words 𝒈𝟏…𝒈𝒌 such that
every code word 𝒖 is a linear combination of these k code words.

𝒖 ∈ 𝐶 ↔ 𝒖 = 𝑚1𝒈𝟏 +𝑚2𝒈𝟐 +⋯+𝑚𝑘𝒈𝒌 = 𝒎 ∗ 𝑮
𝒖 = 𝒎 ∗ 𝑮

𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑔1, 𝑔2, … , 𝑔𝑘 ∈ 𝐶, 𝑎𝑟𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡
𝑚1, 𝑚2, … ,𝑚3: 𝑆𝑘𝑎𝑙𝑎𝑟𝑒 ({0,1})

A generation matrix is systematic, if it contains the identity matrix.
Where it is, doesn't matter. 𝐺 = [𝑃|𝐼] 𝑜𝑟[𝐼|𝑃]

𝐺 = [

𝑔1
𝑔2
𝑔3
]

𝐺 = [

1 1 0
0 1 1
1 0 1⏟

𝑃

1 0 0
0 1 0
0 0 1⏟

𝐼𝑘

]

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 19 of 26

Hamming weight 𝑤(𝒖) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝒖 𝒖 = (110100) → 𝑤(𝒖) = 3

Hamming distance 𝑑(𝒖, 𝒗) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝒖 𝑎𝑛𝑑 𝒗 𝑑𝑖𝑓𝑓𝑒𝑟 𝒗 = (101001)
→ 𝑑(𝒖, 𝒗) = 4

properties 𝑑(𝒖, 𝒗) = 𝑤(𝒖 + 𝒗)
𝑑(𝒖, 𝟎) = 𝑤(𝒖)

𝑑(𝒖, 𝒗) ≤ 𝑑(𝒖,𝒘) + 𝑑(𝒘, 𝒗)

4 = 𝑤(011101) = 4
3 = 3

4 ≤ 4 + 4
min properties Minimum Hamming weight of a code C

𝑤min (𝐶) = min{𝑤(𝒖): 𝒖 ∈ 𝐶, 𝒖 ≠ 𝟎}
Minimum Hamming distance of a code C

𝑑min (𝐶) = min{𝑑(𝒖, 𝒗): 𝒖, 𝒗 ∈ 𝐶, 𝒖 ≠ 𝒗}

Theorem The minimum distance of a linear code block code is equal to the
minimum weight of its nonzero code words.

Decoding We assume that no bits got lost. 𝑟 = (𝑟1…𝑟𝑛) = 𝑐 + 𝑒
Find the code word that differs the least from the received vector.

Error detection 𝜖 = 𝑑min − 1 Error correction 𝑡 = ⌊
𝑑min − 1

2
⌋

Parity Check
Matrix H

A linear (n, k) block code is defined by n − k parity check equations.

These equations can be written in matrix form: 𝐮 ∗ 𝐇T = 𝟎
Dimensions of H: (𝑛 − 𝑘) × 𝑛
Any vector u that satisfies this equation is a valid code word.

𝒖 ∈ 𝐶 ⇔ 𝐮 ∗ 𝐇T = 𝟎
𝑢 ∗ ℎ1

𝑇 = 0, 𝑢 ∗ ℎ2
𝑇 = 0,… (= 𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠)

𝑯 = [

1 0 0
0 1 0
0 0 1⏟

𝐼𝑘

1 0 1
1 1 0
0 1 1⏟

𝑃𝑇

]

𝑢1 + 𝑢4 + 𝑢6 = 0
𝑢2 + 𝑢4 + 𝑢5 = 0
𝑢3 + 𝑢5 + 𝑢6 = 0

G and H The rows of G are orthogonal to the rows of H. 𝑮 ∗ 𝑯𝑇 = 𝟎

𝑮 = [𝑷|𝑰𝒌×𝒌] ⇒ 𝑯 = [𝑰(𝒏−𝒌)×(𝒏−𝒌)|𝑷
𝑇]

Syndrome Testing Is the received vector r a valid code word? 𝒔 = 𝒓 ∗ 𝑯𝑇
1. case: 𝒔 = 0 ⇒ 𝒓 ∈ 𝐶 (𝑟 𝑖𝑠𝑡 𝑎 𝑣𝑎𝑙𝑖𝑑 𝑐𝑜𝑑𝑒 𝑤𝑜𝑟𝑑), 𝑏𝑢𝑡 𝑖𝑠 𝑖𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡?
 a) 𝒓 = 𝑢, error free
 b) 𝒓 ≠ 𝑢, not the sent one, not recognizable error -> 𝑒 ∈ 𝐶 \ {0}
2. case: 𝒔 ≠ 0 ⇒ 𝐹𝑒ℎ𝑙𝑒𝑟!
 The syndrome only depends on the error pattern e
 𝒔 = 𝒓 ∗ 𝐻𝑇 = (𝒖 + 𝒆) ∗ 𝑯𝑇 = 𝑐 ∗ 𝐻𝑇⏟

=0

+ 𝑒 ∗ 𝐻𝑇

𝒔⏟
𝑛−𝑘 𝑐ℎ𝑒𝑐𝑘 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠

2𝑛−𝑘 syndrome vectors

= 𝒆 ∗ 𝑯𝑇⏟
𝑛 𝑐𝑜𝑑𝑒 𝑏𝑖𝑡𝑠

2𝑛 error patterns

For any value of the syndrome vector, there is more than one possible
error pattern -> We just pick the most likely.

Compute
Syndrome

Determine most
likely error pattern

Correct received
vector

𝒔 = 𝒓 ∗ 𝑯𝑻

search s in H
-> results in error e

calc all s of each error

• if unique -> correctable

• if not -> not correctable

𝒖 = 𝒓 + 𝒆

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 20 of 26

Cyclic Codes Linear block code. Every cyclic shift of a code word is a code word.
Using polynomials to represent a binary vector.

𝒖 = 𝑢0, 𝑢1, … , 𝑢𝑛−1
𝒖(𝑥) = 𝑢0 + 𝑢1 ∗ 𝑥 + ⋯+ 𝑢𝑛−1 ∗ 𝑥

𝑛−1

𝑔(𝑥) = 𝑥3 + 𝑥 + 1, 𝑛 = 7
𝑛 − 𝑘 = 3, 𝑘 = 4
𝑚 = (1010)

𝑚(𝑥) = 1 + 0𝑥 + 1𝑥2 + 0𝑥3

= 1 + 𝑥2
𝑢(𝑥) = (1 + 𝑥2)⏟

𝐺𝑟𝑎𝑑<𝑘

∗ (𝑥3 + 𝑥 + 1)⏟
𝐺𝑟𝑎𝑑=𝑛−𝑘

= 𝑥3 + 𝑥 + 1 + 𝑥5 + 𝑥3 + 𝑥2⏟
𝐺𝑟𝑎𝑑<𝑛

= 1 + 𝑥 + 𝑥2 + 𝑥5
𝑢 = (1110010)

-> not systematic

generator
polynomial

In a (𝑛, 𝑘)-cyclic code exists exactly one code polynomial
of degree 𝑛 − 𝑘:

𝒈(𝑥) = 1 + 𝑔1 ∗ 𝑥 + ⋯+ 𝑔𝑛−𝑘−1 ∗ 𝑘
𝑛−𝑘−1 + 𝑥𝑛−𝑘

𝒖 ∈ 𝐶 ⇔ 𝒖(𝑥) = 𝒎(𝑥) ∗ 𝒈(𝑥)
must be

systematic
𝒖 = (𝑝0, … , 𝑝𝑛−𝑘−1, 𝑚0, … ,𝑚𝑘−1)
𝒖(𝑥) = 𝒑(𝑥) + 𝑥𝑛−𝑘 ∗ 𝑚(𝑥)

must be a
code word

𝒖(𝑥) = 𝒑(𝑥) + 𝑥𝑛−𝑘 ∗ 𝑚(𝑥) = 𝒒(𝑥)𝒈(𝑥)
→ 𝒑(𝑥) = 𝑥𝑛−𝑘 ∗ 𝑚(𝑥) 𝑚𝑜𝑑 𝒈(𝑥)

Encoding with
linear shift register

→ division

Cycle 0 to k-1 switch 2 is down -> message directly fed to the output

at the end, cells contain 𝒑(𝑥) = 𝑥𝑛−𝑘 ∗ 𝒎(𝑥) 𝑚𝑜𝑑 𝒈(𝑥)

Cycle k to n-1 switch 2 is up
the content of the cells will be shifted to the output

𝑔(𝑥) = 1 + 𝑥 + 𝑥3
𝑚(𝑥) = (1011)

cycle cell back in out

0 000 0 1 1

1 110 1 1 1

2 101 1 0 0

3 100 1 1 1

4 100 - - 0

5 010 - - 0

6 001 - - 1

7

Error correction We compute the syndrom polynomial 𝒔(𝑥) = 𝒓(𝑥) 𝑚𝑜𝑑 𝒈(𝑥)
𝒔(𝑥) = 0 → 𝑣𝑎𝑙𝑖𝑑
𝒔(𝑥) ≠ 0 → 𝑒𝑟𝑟𝑜𝑟

𝒔(𝑥) = 𝒆(𝑥) 𝑚𝑜𝑑 𝒈(𝑥)

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 21 of 26

13. Hamming, BCH and RS Codes

Hamming Code A Hamming Code is a linear block code
there elements are binary vectors of b without the zero-vector.
all single bit errors are correctable, nothing else. 𝑞 = 1

𝑝(𝑥):primitive {0, 𝛼0, 𝛼1, … , 𝑎2
𝑚−2}, not factorizable polynomial in 𝐺𝐹(2)

𝛼: primitive element 𝑝(𝑥) → 𝑝(𝛼) = 0 -> checksum condition of hamming code -> to generate elements
𝑢: Codeword = (𝑢0, … , 𝑢𝑛−1), 𝑢𝑖 ∈ 𝐺𝐹(2)

Every code word consists of 𝑛 = 2𝑚 − 1 binary digits

Checksum∑ 𝑢𝑗 ∗ 𝑎𝑗
𝑛−1
𝑗=0 = (𝑢0 … 𝑢𝑛−1) [

𝛼0

…
𝑎𝑛−1

] = 𝒖 ∗ 𝑯𝑇 = 0

In H are all elements of 𝐺𝐹(2𝑚) except 0. 𝑯 = [𝑎0 𝑎1…𝑎𝑛−1]

𝑚 = 2 → 𝑛 = 3
𝑚(𝑥) = 𝑥2 + 𝑥 + 1

𝐺𝐹(2) = {0,1, 𝛼, 𝛼 + 1}
𝑢0(0 1) + 𝑢1(1 0) + 𝑢2(1 1) = (0 0)

(𝑢0 𝑢1 𝑢2) [
0 1 1
1 0 1

]
𝑇

= [
0
0
]

Cyclic Hamming
Code

The primitive polynomial 𝑚(𝑥) of degree m is the generator polynomial
𝑔(𝑥) of the cyclic (2𝑚 − 1,2𝑚 −𝑚 − 1)-Hamming code

𝑢(𝑎2) = 0 for every code polynomial since in 𝐺𝐹(2): ∑ 𝑎𝑖
2

𝑖 = (∑ 𝑎𝑖𝑖)2

BCH Codes
Bose-Chaudhuri-
Hocquenghem

Choose a field 𝐺𝐹(2𝑚) for some positive integer m.
Let 𝛼 be a primitive element of this field.
A code word consists of 𝑛 = 2𝑚 − 1 binary digits

𝑢 = (𝑢0…𝑢𝑛−1), 𝑢𝑖 ∈ {0,1} → 𝑏𝑖𝑛𝑎𝑟𝑦
This code can correct t errors if 𝑟 ≥ 2𝑡 − 1

Checksum

∑𝑢𝑖 ∗ 𝑎
𝑖∗𝑞

𝑛−1

𝑖=0

= 0

𝑢0𝑎
0 + 𝑢1𝑎

1 +⋯+ 𝑢𝑛−1 ∗ 𝑎
𝑛−1 = 0

𝑢0𝑎
2∗0 + 𝑢1𝑎

2∗1 +⋯+ 𝑢𝑛−1 ∗ 𝑎
2∗(𝑛−1) = 0

𝑢0𝑎
3∗0 + 𝑢1𝑎

3∗1 +⋯+ 𝑢𝑛−1 ∗ 𝑎
3∗(𝑛−1) = 0

…
Each binary vector which fulfils the check equation for 𝑞 = 1,3,5,7 is valid.
2,4,6, … are redundant.

𝐻 =

[

1 𝑎1 𝑎2 ⋯ 𝑎(𝑛−1)

1 𝑎3 𝑎3
2
⋯ 𝑎3

(𝑛−1)

1 𝑎5 𝑎5
2
⋯ 𝑎5

(𝑛−1)

⋮ ⋮

1 𝑎𝑟 𝑎𝑟
2
⋯ 𝑎𝑟

(𝑛−1)]

#𝑟𝑜𝑤𝑠 = 2 ∗ 𝑚

𝑚 = 4
𝑎15 = 1

𝑛 = 2𝑚 − 1 = 15

𝑟 = 3 → 2 𝑒𝑟𝑟𝑜𝑟𝑠
𝑚(𝑥) = 𝑥4 + 𝑥 + 1
→ 𝑓𝑟𝑜𝑚 𝑡𝑎𝑏𝑙𝑒

→ 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑜𝑣𝑒𝑟 𝐺𝐹(2)
𝑎6 = 𝑎3 + 𝑎2

𝐻 =

[

1
0
0
0

0
1
0
0

0
0
1
0

…

1
0
0
1

1
0
0
0

0
0
1
0

0
0
1
1

…

1
1
1
1]

#𝑟𝑜𝑤𝑠 = 2 ∗ 4 = 8
→ (15,7) 𝑐𝑜𝑑𝑒

property 𝑢(𝑎𝑞) = 𝑢0 + 𝑢1 ∗ 𝛼
𝑞 +⋯+ 𝑢𝑛−1𝑎

𝑞∗(𝑛−1) = 0, 𝑞 = 1,2, … ,2𝑡
A binary n-tuple 𝑢 = (𝑢0, 𝑢1, … , 𝑢𝑛−1) is a code word of a t-error-
correcting BCH code of length 𝑛 = 2𝑚 − 1 iff the polynomial 𝑢(𝑥) = 𝑢0 +
𝑢1 ∗ 𝑥 + ⋯+ 𝑢𝑛−1 ∗ 𝑥

𝑛−1 has 𝑎, 𝑎2, … , 𝑎2𝑡 as roots

Generator
Polynomial

lcm = least
common divisor

Naive approach 𝑔(𝑥) = (𝑥 − 𝑎)(𝑥 − 𝑎2) … (𝑥 − 𝑎2𝑡)
-> does not work because will not be binary
We need minimal polynomials -> binary coefficients that have 𝑎, 𝑎2, 𝑎2𝑡 as
roots

Let Φ𝑖(𝑥) be the minimal polynomial of 𝑎𝑖. Then 𝑔(𝑥) must be the least
comon multiple of Φ1(𝑥), Φ2(𝑥), … ,Φ2𝑡(𝑥)

𝑔(𝑥) = 𝑙𝑐𝑚(Φ1(𝑥), Φ2(𝑥), … ,Φ2𝑡(𝑥))

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 22 of 26

RS-Codes
Reed-Solomon
used for CD/DVD/
Satellite/ADSL/
xDSL/DVB

Non-binary BCH codes -> 𝐺𝐹(𝑞) → 𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝑞 = 2𝑚
A code word consists of 𝑛 = 𝑞 − 1 code symbols
Attention! The code symbols 𝑢𝑖 are not binary digits but elements of
𝐺𝐹(𝑞). However, if 𝑞 = 2𝑚, then every code symbol can be represented
by a binary vector of length m.

DFT Discrete Fourier Transformation of a real vector 𝒗 ∈ ℝ𝑛

𝑣𝑘 =∑𝑣𝑖 ∗ 𝑒
−𝑗∗

2𝜋
𝑛
∗𝑖∗𝑘

𝑛−1

𝑖=0

=∑𝑣𝑖 ∗ 𝑎
−𝑖∗𝑘

𝑛−1

𝑖=0

, 𝑎 = 𝑒𝑗∗
2𝜋
𝑛

𝑎𝑖 ≠ 1, 0 < 𝑖 < 𝑛
𝑎𝑛 = 1

matrix
representation

DFT Inverse Transformation

𝑉 = 𝑣 ∗ 𝐴

𝑉 = 𝑣 ∗ [

𝑎−0∗0 𝑎−0∗1 ⋯ 𝑎−0∗(𝑛−1)

𝑎−1∗0 𝑎−1∗1 ⋯ 𝑎−1∗(𝑛−1)

⋮ ⋮ ⋱ ⋮
𝑎−(𝑛−1)∗0 𝑎−(𝑛−1)∗1 ⋯ 𝑎−(𝑛−1)(𝑛−1)

]

𝑣 = 𝑉 ∗ 𝐴−1

𝑣 =
1

𝑛
∗ [

𝑎0∗0 𝑎0∗1 ⋯ 𝑎0∗(𝑛−1)

𝑎1∗0 𝑎1∗1 ⋯ 𝑎1∗(𝑛−1)

⋮ ⋮ ⋱ ⋮
𝑎(𝑛−1)∗0 𝑎(𝑛−1)∗1 ⋯ 𝑎(𝑛−1)(𝑛−1)

]

vector 𝒗 = (𝑣0, 𝑣1, … , 𝑣(𝑛−1)) can be represented by polynomial 𝒗(𝑥) = 𝑣0𝑥
0 + 𝑣1𝑥

1 +⋯+ 𝑣𝑛−1𝑥
𝑛−1

the DFT of 𝑣 can be computed by evaluating the

polynomial 𝒗(𝑥) at 𝑥 = 𝑎−𝑘

𝑣𝑘 =∑𝑣𝑖 ∗ 𝑎
−𝑖∗𝑘

𝑛−1

𝑖=0

= 𝒗(𝑎−𝑘)

the inverse DFT of 𝑣 can be evaluated with:

𝑣𝑖 =
1

𝑛
∑𝑣𝑘 ∗ 𝑎

𝑖∗𝑘

𝑛−1

𝑘=0

=
1

𝑛
𝒗(𝑎𝑖)

in 𝐺𝐹(2𝑚) Let 𝑎 be a primitive element of 𝐺𝐹(2𝑚)

𝑎𝑗 ≠ 1, 𝑗 = 1…2𝑚 − 2
𝑎𝑗 = 1, 𝑗 = 2𝑚 − 1

Validation A vector u is a code word iff its Fourier transform U contains 2 ∗ 𝑡 zeros.

𝑢 = (𝑢0. . 𝑢𝑛−1) ∈ 𝐶 ⇔ 𝑈 = (𝑈0…𝑈𝑛−2𝑡−1 0…0⏟
2𝑡

)
𝑈𝑛−1 = 𝑢(𝛼

−(𝑛−1)) = 𝑢(𝛼1) = 0

𝑈𝑛−2 = 𝑢(𝛼
−(𝑛−2)) = 𝑢(𝛼2) = 0

…
𝑈𝑛−2𝑡 = 𝑢(𝛼

𝑛−2𝑡) = 𝑢(𝛼2𝑡) = 0
The polynomial representation 𝑢(𝑥) of a code word has 𝑎1, 𝑎2, … 𝑎2𝑡 as roots
⇒ 𝑖𝑓 𝑢(𝑥) = 𝑚(𝑥) ∗ 𝑔(𝑥) ⇒ 𝑢(𝛼) = 𝑢(𝛼2) = 𝑢(𝛼2𝑡) = 0 ⇒ 𝑢 ∈ 𝐶
⇒ 𝑢(𝑥) must be a multiple of 𝑔(𝑥) = (𝑥 − 𝛼) ∗ (𝑥 − 𝛼2) ∗ … ∗ (𝑥 − 𝛼2𝑡)
⇒ any multiple of 𝑔(𝑥) is a valid code polynomial

Decoding received vector 𝑟 = 𝑢 + 𝑒
discrete Fourier transform 𝑅 = 𝑈 + 𝐸

𝑈𝑖 = 0, 𝑖 = 𝑛 − 2𝑡, … , 𝑛 − 1
𝐸𝑖 = 𝑅𝑖 = 𝒓(𝑎

−𝑖), 𝑖 = 𝑛 − 2𝑡, … , 𝑛 − 1
If the error pattern e contains t or less errors, we can generate the whole vector E from 2*t known values.
-> Berlekamp-Massey Algorithm: Finds the shortest linear feedback shift register (LFSR) that generates
the given values of E.
If the number of symbol errors is t or less, the LFSR will generate the whole vector E.
Inverse DFT of E will give the error pattern e.

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 23 of 26

14. Convolutional Coding (Faltungscodes) & Turbo Codes

Convolutional
Coding

Encoder contains memory
n encoder outputs at any given time depend on the k inputs and on m
previous input blocks
important special case: 𝑘 = 1
encoder is a state machine

Rate des codes = k/n (Eingangsbit durch Ausgangsbit)
häufig ist k=1

Encoder example

Every input bit 𝑢𝑘 yields two output bits 𝑣𝑘

(1) and 𝑣𝑘
(2)

The output bits depend on the actual input bit 𝑢𝑘 and two stored bits 𝑢𝑘−1
and 𝑢𝑘−2

Number of states = 2𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠ℎ𝑖𝑓𝑡 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 = 4

Generator Sequence to
describe a state machine.
visible in grafic.

𝑔(1) = (𝑔0 𝑔1 𝑔2) = (1 1 1)
→ 𝐸𝑛𝑐𝑜𝑑𝑒𝑟

𝑔(1)(𝐷) = 𝑔0𝐷
0 + 𝑔1𝐷

1

+ 𝑔2𝐷
2

= 1 + 𝐷 + 𝐷2

𝑔(2) = (1 0 1)

polynomial
representation

Transformation in digital
technic

𝐹𝑎𝑙𝑡𝑢𝑛𝑔 𝑖𝑚 𝑍𝑒𝑖𝑡𝑏𝑒𝑟𝑒𝑖𝑐ℎ

encoder state
diagram

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 24 of 26

Trellis Diagram

common assumption: encoder starts in the state (0,0)
sometiems: a number of zeros is added at the end of the message so that
the encoder returns to the state (0,0)

Decoding Find the path through the trellis that best fits the received data.
- Hard decoding: receiver delivers a binary symbol (hamming distance)
- Soft decoding: receiver delivers a floating point value (confidence level)
 square euclidean distance (𝑟𝑘 − 𝑣𝑘)

2 about 2dB better than hard
decoding

Viterbi Algorithm Finds the path through the trellis with the largest (or smallest) metric
MLSE – maximum likelihood sequence estimation
Principle
- At each step, compare the metrics of all path entering each state and
store the path with the largest metric (survivor) together with its metric.
Eliminate all other paths.
- At the end (or after a certain amount of time) the survivor with the best
metric is selected and the (first few) bits on this path are chosen as the
decoded bits

Turbo codes

kein Bestandteil der Prüfung.

BCJR: Formel: 3 Terme: etwas aus der Vergangenheit, etwas vom hier und jetzt und von der Zukunft
Jacobi Symbol

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 25 of 26

Representations in 𝑮𝑭(𝟐𝟒)

• In 𝐺𝐹(2𝑥) → 2 = 0

 Int Hex Bin
𝑛3, 𝑛2, 𝑛1, 𝑛0

Polynomic

𝐺𝐹(24) 𝐺𝐹(23) 𝐺𝐹(22) 𝐺𝐹(21) 0 0 0000 0

1 1 0001 1

 2 2 0010 𝑥

 3 3 0011 𝑥 + 1

 4 4 0100 𝑥2

 5 5 0101 𝑥2 + 1

 6 6 0110 𝑥2 + 𝑥

 7 7 0111 𝑥2 + 𝑥 + 1

 8 8 1000 𝑥3

 9 9 1001 𝑥3 + 1

 10 A 1010 𝑥3 + 𝑥

 11 B 1011 𝑥3 + 𝑥 + 1

 12 C 1100 𝑥3 + 𝑥2

 13 D 1101 𝑥3 + 𝑥2 + 1

 14 E 1110 𝑥3 + 𝑥2 + 𝑥

 15 F 1111 𝑥3 + 𝑥2 + 𝑥 + 1

Roots of a polynomial

 degree 𝑖𝑛 ℚ 𝐺𝐹(2) = [0,1]

𝑥 1 [0]

𝑥 + 1 1 [−1]

𝑥2 2 [0,0]

𝑥2 + 1 2 irreducible (𝑥 + 1)(𝑥 + 1) → [−1,−1]

𝑥2 + 𝑥 2 [0, −1]

𝑥2 + 𝑥 + 1 2 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 & 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒

𝑥3 3 [0,0,0]

𝑥3 + 1 3 [−1]

𝑥3 + 𝑥 3 [0]

𝑥3 + 𝑥 + 1 3 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 & 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒

𝑥3 + 𝑥2 3 [0,0, −1]

𝑥3 + 𝑥2 + 1 3 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 & 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒

𝑥3 + 𝑥2 + 𝑥 3 [0]

𝑥3 + 𝑥2 + 𝑥 + 1 3 [−1]

ZHAW/HSR print date: 08.02.19 FTP_CryptCod

Marcel Meschenmoser Lecturer: Dr. Markus Hufschmid Page 26 of 26

Functions
q=intDiv(a,b)
r=mod(a,b)

int: a,b integer division a/b
modulo (a mod b)

 𝑖𝑛𝑡𝐷𝑖𝑣(9,4) = 2
𝑚𝑜𝑑(9,4) = 1

gcd(a,b)
\gcdstep(a,b)

int: a,b greatest common divisor gcd(10,16) = 2

\egcd(a,b)
\egcdstep(a,b)

int: a,b extended gcd 𝑔𝑐𝑑𝑒(10,16) = 2
10 ∗ (−3) + 16 ∗ 2 = 2

\phi(n) int: n Eulers phi function 𝑝ℎ𝑖(𝑛) 𝑝ℎ𝑖(10) = 4

e=\multord(g,n) int: g,n multiplicative order 𝑔𝑒 ≡ 1 (𝑚𝑜𝑑 𝑛) 𝑚𝑢𝑙𝑡𝑜𝑟𝑑(8,5) = 4

\gen(g,p) int: g
prim: p

generator / primitive element
multiplicative order

 𝑔𝑒𝑛(2,7) → 𝑛𝑜, 𝑜𝑟𝑑 = 3

\chin(m) matrix: m
(𝑛 × 2)

Chinese remainder theorem 𝑥 ≡ 𝑎𝑖 𝑚𝑜𝑑 𝑚𝑖
𝑐ℎ𝑖𝑛 (

5 7
3 11
10 13

)

= 𝑀𝑖 (
143
91
77
) , 𝑒𝑖 (

715
364
924

)

𝑥 = 894
\invmod(m,n)
\invmodstep(m,n)

matrix: m
int: n

inverse of a matrix 𝑖𝑛𝑣𝑚𝑜𝑑𝑠𝑡𝑒𝑝 ([
3 2
1 1

] , 4) = [
1 2
3 3

]

\prifiadd(p) prim: p addition of prime field 𝑝𝑟𝑖𝑓𝑖𝑎𝑑𝑑(7)

\prifimul(p) prim: p multiplication of prime field 𝑝𝑟𝑖𝑓𝑖𝑚𝑢𝑙(7)

\extfiadd(q,m) int: q
poly: m

addition of
extended field

𝐺𝐹(𝑞)
𝑚(𝑥) = ⋯

𝑒𝑥𝑡𝑓𝑖𝑎𝑑𝑑(2, 𝑥2 + 𝑥 + 1)

\extfimul(q,m) int: q
poly: m

multiplication of
extended field

𝐺𝐹(𝑞)
𝑚(𝑥) = ⋯

𝑒𝑥𝑡𝑓𝑖𝑚𝑢𝑙(2, 𝑥2 + 𝑥 + 1)

polyQuotient(f,m) poly: f,m quationt of a
polynom division

f/m 𝑝𝑜𝑙𝑦𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡(𝑥3 + 1, 𝑥2 + 1)
= 𝑥

polyRemainder(f,m) poly: f,m remainder of a
polynom division

f/m 𝑝𝑜𝑙𝑦𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟(𝑥3 + 1, 𝑥2 + 1)
= 1 − 𝑥

\polgen(p,n,m) int: p,m
poly: m

generate primitive
polynoms modulo m

𝐺𝐹(𝑝𝑛)
𝑚(𝑥) = ⋯

𝑝𝑜𝑙𝑔𝑒𝑛(2,3, 𝑥3 + 𝑥 + 1)

\sam(a,c,m)
\samstep(a,c,m)

int: a,c,m square an multiply
with modulo

𝑎𝑐 𝑚𝑜𝑑 𝑚 𝑠𝑎𝑚(1234,5678,438) = 316

\sam2(a,c)
\sam2step(a,c)

int: a,c square an multiply 𝑎𝑐 𝑠𝑎𝑚(3,4) = 81

\isprobprime(n) int n miller-rabin primality test 𝑖𝑠𝑃𝑟𝑖𝑚𝑒(𝑛) 𝑖𝑠𝑝𝑟𝑜𝑏𝑝𝑟𝑖𝑚𝑒(317) = 𝑡𝑟𝑢𝑒
\isprobprimebase
(n,a)

int n,a with a given base 𝑖𝑠𝑝𝑟𝑜𝑏𝑝𝑟𝑖𝑚𝑒𝑏𝑎𝑠𝑒(317,2) = 𝑡𝑟𝑢𝑒

\multmod(ec,p,n,f)
\multmodstep

poly: ec
point: p
int n,f

multiplication on an eliptic
curve with modulo

𝑛 ∗ 𝑝 (𝑚𝑜𝑑 𝑓)

\addmod(ec,p,q,f)
\addmodstep

poly: ec
point: p,q
int f

addition on an eliptic
curve with modulo

𝑝 + 𝑞 (𝑚𝑜𝑑 𝑓)

\add(ec,p,q) poly: ec
point: p,q

 𝑝 + 𝑞

\mult(ec,p,n) poly: ec
point: p
int: n

 𝑛 ∗ 𝑝

\validate(ec) poly: ec
\validatemod(ec,p) poly: ec
\numberofpoints(p) p
\order(ec,p,f)
\orderstep

poly: ec
point: p
int: f

\negmod(p,f) point: p
int: f

\listpoints(ec,f)

