FTP_OPTIMIZATION

1. Introduction						
Two main areas	Optimization of business process (production, logistics, services, operations, management)					
	Optimization of technical processes (engineering)					
Quantitative vs.	Quantitative analysis and optimization (numerical, measurable data, mathematical models/algorithms)					
Qualitative	ualitative analysis and optimization (informal facts, verbal description of processes and procedures)					
typically progress	Phase 1: Qualitative analysis (up to 80%, unclear problem description, mess of information)					
	Phase 2: Qualitative or quantitative -> handled in this course (need for decision support)					
Types	Continuous Optimization: infinitely solutions, represented by continuous variables					
	local optimization based on differential information (1st (gradient) & 2nd derivative),					
	very difficult if non-continuous or non-differentiable, more difficult if constraints (Nebenbedingungen)					
this course ->	Discrete Optimization (DO): finitely solutions, represented by integer variables					
	trivial algorithm (enumartion), can solve real world problems since invention of computers					
	find an "efficient" algorithm in a "reasonable" time to solve a specific problem -> Complexity Theory					
Importance of	Finite set of solutions -> Discrete optimization					
Linearity	Solution can be represented by a list of variables $vector \vec{x} = (x_1, x_2,, x_n)^T$					
	Solution is a finite set of points in n-dimensional space (e.g. convex hull)					
	Finite mesh implicite linearity!					
Decision Problems	Decision Support (Entscheidungsunterstützung)					
	a) quantitative models					
	b) qualitative approach					
	Decision maker (Entscheidungsträger)					
	Alternatives (multiple possible decisions) with associated consequences (deterministic or stochastic)					
	Evaluation (Bewertung) of alternatives with regard to their consequences					
Evaluation of	Satisfication: Consequences has to fullfil certain constraints (Ger: Restriktionen),					
Consequences	in order to have a feasible (Ger: zulässig) alternative.					
	Optimization : Consequences has to reach best possible value, most be optimal among all alternatives.					
Introduction	1. Frequency Assignment in Mobile Networks					
Examples	2. Product Mixture in an Oil Refinery					
	3. Vehicle Dispatching in a Car Rental Company					
	4. Shift Planning in a Department Store					
	5. Design of a Regional Optical Fiber Network					
	6. Sudoku					

	П		1		
General	General optimization problem Decision variables		Π : max{ $f(\vec{x})$: \bar{x}	$E \in S$	
Optimization			$\vec{x} = (x_1 \dots x_n)^T \in \mathbb{R}^n$		
Model (Feasible) solutions			$\vec{x} \in S$		
	Solution space		$S \subseteq \mathbb{R}^n$		
	Objective function		$f: S \to \mathbb{R}$		
	Optimal solution (Opt	imizer)	$\vec{x}^* \in S$ such that $f(\vec{x}^*) \ge f(\vec{x})$ for all $\vec{x} \in S$		
	Optimum (Optimal va	ılue)	f : (\vec{x}^*)		
Conditions for	Feasibility		$S \neq \emptyset$		
Existence of	Ex. Infeasibility	$\max\{x_1$	$1: 2x_1 + 4x_2 = 5, \vec{x} \in \mathbb{Z}^2 $		
Optimum	Boundedness	feasible,	$\exists \omega : f(\vec{x}) \le \omega \text{ for all } \vec{x} \in S$		
	Ex. Unboundedness	$\max\{x_1: 2x_1 + 4x_2 = 5, \vec{x} \in \mathbb{R}^2\}$			
	Closedness	feasible, bounded, optimum exists			
	Ex. Unclosedness	$\max\{x_1: x_1 < 1, \vec{x} \in \mathbb{R}\}$			
Evample	A company produces (lifforant tu	inos of food for form animali	by miving coveral	ingradiants

Example | A company produces different types of **feed** for farm animals by mixing several **ingredients**. Each ingredient contains a certain amount of protein and calcium (given in gram per kg), and each type of feed requires a minimum total amount of protein and calcium (given in gram per kg). Furthermore, the purchase price for each ingredient is given (in dollar per kg), and the sales price for each type of feed is given (in dollar per kg).

Finally, the production quantity of each feed type should not exceed a specified limit (in kg). Formulate a linear programming model which calculates an optimal production plan, i.e. a production plan that maximizes total profit.

Sets:

Ι Set of ingredients, $I = \{1, ..., m\}$

Set of feed types, $J = \{1, ..., n\}$

Parameters:

Amount of protein (gram per kg) contained in ingredient $i, i \in I$

Amount of calcium (gram per kg) contained in ingredient $i, i \in I$

 d_i^{Prot} Total amount of protein (gram per kg) required for feed type $j, j \in J$

Total amount of calcium (gram per kg) required for feed type $j, j \in J$

Purchase price (dollar per kg) for ingredient $i, i \in I$ f_i

Sales price (dollar per kg) for feed type $j, j \in J$ C_i

 b_i Maximum production quantity (kg) for feed type $j, j \in J$

Variables:

Amount (kg) of ingredient *i* mixed into feed type j, $i \in I$, $j \in J$

$$\begin{split} \max \sum_{j \in J} c_j \sum_{i \in I} x_{ij} - \sum_{i \in I} f_i \sum_j x_{ij} \\ \sum_{i \in I} a_i^{\operatorname{Prot}} x_{ij} \geq d_j^{\operatorname{Prot}} \sum_{i \in I} x_{ij}, \quad j \in J \\ \sum_{i \in I} a_i^{\operatorname{Calc}} x_{ij} \geq d_j^{\operatorname{Calc}} \sum_{i \in I} x_{ij}, \quad j \in J \\ \sum_{i \in I} x_{ij} \leq b_j, \quad j \in J \\ x_{ij} \geq 0, \quad i \in I, j \in J \end{split}$$

Basic Concepts

Problem and	Problem			$\sum_{i=1}^{n}$			
Problem			$e.g.: \max \sum_{i} c_i x_i$				
Instances				$\overline{j=1}$			
	Problem Instance	e.g.: m	$\max\{4x_1 + 7x_2\}$	$x_2: 3x_1 + 5x_1$	$\hat{x}_2 \leq 17, \vec{x} \in \mathbb{R}^2$	}	
Powerset		S	$T = \{1,2,3\}$			P	$(S) =2^{ S }$
	$P(S) = \{\emptyset,$	{1},{2},	{3}, {1,2}, {1	,3}, {2,3}, {1	,2,3}		` ' '
Neighborhood	Neighborhood				$N:S \rightarrow$	P(S)	
user defined	Neighbor solutions			$N(x) \subseteq S$			
	Per definition			I am my own neighbor.			
	Usage: Local Search search in my neight solutions, repeat ur Usage: Euclidean N	oorhood t ntil best.	orhood for better iil best.				•
Types of models	Unconstrained	VS	Constraine	ed	Convex	VS	Non-Convex
	Global	VS	Local		Linear	VS	Non-Linear
	Differentiable	VS	Non-Differ	entiable	Exact	VS	Heuristic
	Discrete	VS	Continuou	S	General	VS	Problem specific

Notations

Notations			
Interior point \vec{x}	$N_{\epsilon}(\vec{x}) \subset S$	for some $\epsilon > 0$	
Boundary point \vec{x}	$N_{\epsilon}(\vec{x}) \subset S$ $N_{\epsilon}(\vec{x}) \cap S \neq \emptyset \text{ and } N_{\epsilon}(\vec{x}) \cap (\mathbb{R}^{n} - S) \neq \emptyset$	for all $\epsilon>0$	$N_{\epsilon}(\vec{x})$ S
S closed	all boundary points of S are in S		
S open	all points of S are interior points		
S bounded	$S \subset \left\{ \vec{x} \in \mathbb{R}^n : \vec{a} \le \vec{x} \le \vec{b} \right\}$		O
Global Optima	$\vec{x}^*: f(\vec{x}) \ge f(\vec{x})$	for all $\vec{x} \in S$	∳ global local
Local Optima	$\vec{x}^*: f(\vec{x}) \ge f(\vec{x})$	for all $\vec{x} \in N(\vec{x}) \cap S$	l local
Graph	$\vec{x}^*: f(\vec{x}) \ge f(\vec{x})$ $\vec{x}^*: f(\vec{x}) \ge f(\vec{x})$ $H = \{(\vec{x}, f(\vec{x})) : \vec{x} \in S\}$		$N(\vec{x})$
Level set for level α	$L_{\alpha} = \{\vec{x} \in S: f(\vec{x}) = \alpha\}$		$f(x) = \alpha_1$ $f(x) = \alpha_2$ x_1
Convex combination	$2D: \vec{x} = \lambda \vec{x^1} + (1 - \lambda) \vec{x^2}$ $\vec{x} = \sum_{i=1}^k \lambda_i \vec{x}^i \text{ for some } \vec{\lambda} \in \mathbb{R}^k$	$0 \le \vec{\lambda} \le 1$ $\sum_{i=1}^{k} \lambda_i = 1$	x_1 x_2
Convex set $S \subset \mathbb{R}^n$	$\lambda \overrightarrow{x^1} + (1 - \lambda) \overrightarrow{x^2} \in S$ intersection of convex sets is convex	$\overrightarrow{x^1}, \overrightarrow{x^2} \in S$ $0 \le \lambda \le 1$	6
Convex function	$\left f\left(\lambda \overrightarrow{x^1} + (1 - \lambda)\overrightarrow{x^2}\right) \le \lambda f\left(\overrightarrow{x^1}\right) + (1 - \lambda)f\left(\overrightarrow{x^2}\right) \right $		$f(x) \qquad f(x^{1}) \qquad f(x^{2})$ $x^{1} \qquad x^{1} \qquad x^{2} \qquad x$
Concave function	$f\left(\lambda \overrightarrow{x^1} + (1-\lambda)\overrightarrow{x^2}\right) \ge \lambda f\left(\overrightarrow{x^1}\right) + (1-\lambda)f\left(\overrightarrow{x^2}\right)$		$f(x)$ \downarrow x
Linear function	is convex and concave		
Convex optimization problem	$\max f(x): x \in S$ -> every local optimum is on boundary	with f convex and S convex	7(4)
	$\max f(x): x \in S$ -> local optimum is the global optimum	with f concave and S convex	Tier)

4+5. Linear Programming

Problem Formulation							
	$egin{aligned} oldsymbol{a}^i \in \mathbb{R}^n = \{A_{i1} & & A_{in}\} \ oldsymbol{A}_j \in \mathbb{R}^m = egin{cases} A_{1j} \ \ A_{mj} \end{pmatrix} \end{aligned}$						
Linear function	$f:\mathbb{R}^n o \mathbb{R}$						
	$\sum_{n=1}^{\infty}$						
	$f(\mathbf{x}) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n = \sum_{j=1}^n a_j x_j = \mathbf{a}^T \mathbf{x}, \mathbf{a} \in \mathbb{R}^n$						
	$f(\alpha x + \beta y) = af(x) + \beta f(y), \alpha, \beta \in \mathbb{R}$						
Linear inequality	$\sum_{i=1}^{n} a_{i}x_{j} \leq b \qquad \mathbf{a} \in \mathbb{R}^{n} \ h \in \mathbb{R}$						
	$a^T x \leq b$						
System of linear	$\sum_{i=1}^{n} a_{i} \cdot x_{i} < b_{i}$						
inequalities	$\frac{\mathbf{a}^{T} \mathbf{x} \leq b}{\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}}$ $\mathbf{a}^{i} \mathbf{x} \leq b_{i}$ $i \in I$						
	$a^i x \leq b_i$						
$or \geq$	$Ax \leq b$						
LP (Linear	Minimize linear objective function subject to linear constraints (linear (in)-equalities)						
Program)							

Form

	LP in General Form	in Canonical Form		in Standard Form	LP in Inequality Form	
	max , $min c^T x$	$\max c^T x$	$\min c^T x$	$max/min c^T x$	$\max c^T x$	$\min c^T x$
equalities	$a^i x \leq b_i$					
$i \in I$	$\boldsymbol{a}^i \boldsymbol{x} = b_i$	$a^i x \leq b_i$	$a^i x \geq b_i$	$\boldsymbol{a}^i \boldsymbol{x} = b_i$	$a^i x \leq b_i$	$a^i x \geq b_i$
	$a^i x \ge b_i$					
variables	$x_j \ge 0$					
$j \in J$	x_i free	$x_i \ge 0$	$x_i \ge 0$	$x_i \ge 0$		
	$x_j \leq 0$,	•		

Inequalities transformations

1. replace variables (substitute in equalities, replace in variables)

2. transform equalities

equalities	Inequality to Inequality	Equality to Inequality	Slack (Stillstand) variable	Surplus (Überschuss) variable
$i \in I$	$\mathbf{a}^i \mathbf{x} \leq b_i \leftrightarrow -\mathbf{a}^i \mathbf{x} \geq -b_i$	$a^i x - b_i \leftrightarrow a^i x \leq b_i$	$a^i x \leq b_i \rightarrow a^i x + x_i^s = b_i$	$a^{i}x \geq b_{i} \rightarrow \frac{a^{i}x - x_{i}^{s} = b_{i}}{x_{i}^{s} \geq 0}$
		$a^{i}x \geq b_{i} a^{i}x \geq b_{i}$	$x_i^s \ge 0$	$x_i^s \ge 0$
variables	Nonpositive to nonnegative			
$j \in J$	$x_j \le 0 \to \frac{x_j = -\overline{x}_j}{\overline{x}_i \ge 0}$	$x_j = x_j^+ - x_j^-$		
	$x_j \leq 0 \Rightarrow \overline{x_j} \geq 0$	$x_j free \rightarrow \begin{cases} x_j = x_j^+ - x_j^- \\ x_j^+, x_j^- \ge 0 \end{cases}$		

Geometric aspects			
Halfspace	$H = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}^T \boldsymbol{x} \le b \}$	euclidean space divided by a plane linear: $b = 0$, affine $b = arbitrary$	ax = b $ax > b$
Hyperplane	$H = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}^T \boldsymbol{x} = b \}$	in 3D, the hyperplane is a 2d plane linear: $b = 0$, affine $b = arbitrary$	$ax \leq b$
Normal vector	α		
Polyhedron	$P = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{A}\boldsymbol{x} \le \boldsymbol{b} \}$ $i = 1 \dots m$	is the intersection of a finite number of halfspaces. can be unbounded. solution space of a system of linear equalities is also a polyhedron. polyhedron is a convex set.	$-x + 2y \ge 8$ $2x + y \le 14$ $-x \le 0$ $2x - y \le 10$ $-y \le 0$
Polytope	$P = \{x \in \mathbb{R}^n : Ax \le b, l \le x \le u\}$	bounded polyhedron	always use ≤
Eulerian Walk		walk through a graph and use every vertex one's	If a graph has an Eulerian walk then the number of odd degree vertices is either 0 or 2.
Theorem	A LP with solution space P always h - P has any vertices ("P is pointed") - the optimum is finite	as an optimal solution that is a vertex, a	s far as

Simplex Algorithm

1. choose basic selection B Basic selection B Basis A_B right hand side \mathbf{b}_B 2. calc the inverse inverse	
2 calc the inverse basis $\overline{4}$ (5.2)	
inverse $\overline{A} = A_B^{-1} = \begin{pmatrix} -\frac{11}{11} & \frac{11}{11} \\ -\frac{2}{11} & \frac{3}{11} \end{pmatrix}$	
3. calc vertex v basic solution v $v = \overline{A}b_{B}$ $v = \begin{pmatrix} -\frac{5}{11} & \frac{2}{11} \\ -\frac{2}{11} & \frac{3}{11} \end{pmatrix} * \begin{pmatrix} 2 \\ 16 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ 4. calc vector u^{T} u^{T} u^{T} $v = (5 8) \begin{pmatrix} -\frac{5}{11} & \frac{2}{11} \\ -\frac{2}{11} & \frac{3}{11} \end{pmatrix} = \begin{pmatrix} -\frac{41}{11} & \frac{2}{11} & \frac{3}{11} \end{pmatrix}$ 5. stop if $u^{T} \ge 0^{T}$)
4. calc vector u^T "reduced cost" u^T $u^T = c^T \overline{A}$ $u^T = (5 8) \begin{pmatrix} -\frac{5}{11} & \frac{2}{11} \\ \frac{2}{11} & \frac{3}{11} \end{pmatrix} = \begin{pmatrix} -\frac{41}{11} & \frac{1}{11} & \frac{1}{11} \end{pmatrix}$	$(\frac{34}{11})$
5. stop if $u^T \ge 0^T$ in all inequalities	
6. continue $u_j < 0$ choose j so that $u_j < 0$ first element of u_T is negative $u_j < 0$ first element of $u_j > 0$ first	$= \binom{5/11}{2/11}$
7. determine λ^* $\lambda^* = \min \begin{cases} \lambda \in \mathbb{R}^0 & \lambda \in \mathbb{R}^0 \\ \lambda^* = \min \begin{cases} \frac{b_i - a^i v}{a^i d} : \\ i \in \{1m\}, a^i d > 0 \end{cases} \end{cases} \begin{pmatrix} -3 & 2 \\ -2 & 5 \\ 6 & 5 \\ -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -3 & 2 \\ -2 & 5 \\ 6 & 5 \\ -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 5/11 \\ 2/11 \\ -1 \\ 0 \\ 0 \end{pmatrix} \rightarrow \lambda = 0$	$ \begin{vmatrix} 2 \\ 16 \\ 72 \\ 0 \\ 0 \end{vmatrix} $
8. stop if $\lambda^* = \infty$ $\rightarrow Ad \leq 0$	
9. new basic B' $B' = B - \{j\} \cup \{k\}$ $B' = \{1,2\} - \{1\} \cup \{3\} = \{2,3\}$ selection	
10. calc vertex $v' = v + \lambda^* d$ $v' = \left(\frac{2}{4}\right) + 11 \left(\frac{5}{11}\right) = \binom{7}{6}$	
visualise:	

visualise: A_B^{-1} {*B*} A_B

inverse a 2x2 matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

LP Overview

Linear Program (LP)	Mixed Integer LP (MIP)	Integer LP (ILP or IP)
$\max\{\boldsymbol{c}^T\boldsymbol{x}:\boldsymbol{x}\in P\}$	$\max\{\boldsymbol{c}^T\boldsymbol{x}:\boldsymbol{x}\in P\cap\mathbb{Z}_K^n\}$	$\max\{\boldsymbol{c}^T\boldsymbol{x}:\boldsymbol{x}\in P\cap \mathbb{Z}^n\}$
$P = \{x \in \mathbb{R}^n : Ax \le b\}$	$P = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b} \}$	$P = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b} \}$
	$K \subseteq \{1 \dots n\}$	
	$\mathbb{Z}_K^n = \left\{ x \in \mathbb{R}^n \colon x_j \in \mathbb{Z} \text{ for } j \in K \right\}$	
optimal solution on vertex	some variables are integer	all variables are integer
Simplex		Commercial: Gurobi, CPLEX
		Non-Commercial: GLPK, LPSOLVE, SCIP,
		Algebraic Model Lang: GAMS, AMPL, LPL,
		OPL, AIMMS

6+7. Integer L	inear Programming	
Naive idea not practicable	1. Solve problem with LP 2. round up/down to get integer solution problems: solution may not be a feasible solution solution may be "far away" from optimal solution	x_2 0 0 0 0 0 0 0 0 0 0
Relaxations	Enlarge solution space $S \to S'$ with $S \subseteq S'$ $\max\{f(x): x \in S'\} \ge \max\{f(x): x \in S\}$ e.g. by removing constraints	S' S
	Increase objective function $f(x) \to f'(x) \text{ with } f'(x) \ge f(x) \text{ for } x \in S \\ \max\{f'(x): x \in S'\} \ge \max\{f(x): x \in S\}$	f(x) $f'(x)$ S S'

Branch-and-Bound (B&B) Method (=Divide and Conquer)

STOP -> Current node optimal solved

If LP solution is all integer:

Given:

Branching

Item $j \in J$	Α	В	С	D
Value c_j	10	12	28	21
Volume a_j	7	4	8	9

b = 18

Prepare:

- 1. Calc benefit per volume: $^{C_j}/a_i$
- 2. Sort in decreasing order

Item $j \in J$	С	В	D	Α
new	1	2	3	4
Value c_j	28	12	21	10
Volume a_j	8	4	9	7
Benefit per Volume	$3\frac{1}{2}$	3	$2\frac{1}{3}$	$1\frac{3}{7}$

Algorithm

•			
Root Node	no fixed values in root node	$J_r^0 = \emptyset, J_r^1 = \emptyset$	
Per Node			
check	if sum of volume $J_r^1 > b$ stop	"pruning (infeasible)"	
calc upper bound	add items from left to right last item fractionally	$x^{UB} = \left(1, 1, \frac{2}{3}, 0, 0\right)^{T}$	$z^{UB} = 28 + 12 + \frac{2}{3}21 = 54$
	· · · · · · · · · · · · · · · · · · ·	\ 3 /	3
спеск	if $current_{UB} < global_{LB}$ -> stop	"pruning (dominance)"	
calc lower bound	round down fractional item	$x^{LB} = (1,1,0,0,0)^T$	$z^{LB} = 28 + 12 = 40$
check	if $current_{LB} > global_{LB} ext{ -> add}$	"global update"	$[1]: z^{LB} = 40$
check	if $current_{LB} = current_{UB} \rightarrow stop$	"pruning (optimal)"	
branch (split by	{3}	Leaf Node 1: $J_r^0 = \{3\}, J_r^1 = \emptyset$	
fractional item)		Leaf Node 2: $J_r^0 = \emptyset$, $J_r^1 = \{3\}$	

Cutting Planes

Definition	Let $S = P \cap \mathbb{Z}^n$ be the solution space for ILP Π . A polyhedron $P' \subseteq \mathbb{R}^n$ is called an (ILP-)formulation for Π if $P' \cap \mathbb{Z}^n = S$ P' is called a better formulation for Π if $P' \subseteq P$.		
Convex hull	$conv(S) = \left\{ x \in \mathbb{R}^n \colon x = \sum_{i=1}^k \lambda_i x^i \text{ with } x^i \in S, \lambda_i \ge 0, i = 1 \dots k, \sum_{i=1}^k \lambda_i = 1 \right\}$ $S \subseteq conv(S)$ is the smallest convex set containing S. $\max\{ \boldsymbol{c}^T \boldsymbol{x} \colon \boldsymbol{x} \in S \} = \max\{ \boldsymbol{c}^T \boldsymbol{x} \colon \boldsymbol{x} \in conv(S) \}$		
Integer hull	$P_{\mathbb{Z}}=conv(P\cap\mathbb{Z}^n)$ If $P\subseteq\mathbb{R}^n$ is a rational polyhedron then $P_{\mathbb{Z}}$ is a rational polyhedron and the best ILP formulation. All vertices of $P_{\mathbb{Z}}$ are interger.		
Rational polyhedron	$P = \{x \in \mathbb{R}^n : Ax \le b\}$ for some $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m$		
Theorem	Each ILP corresponds to some LP Let $P \subseteq \mathbb{R}^n$ be a rational polyhedron. Suppose ILP $\max\{c^Tx\colon x\in P\cap \mathbb{Z}^n\}$ has a finite optimum. Then $\max\{c^Tx\colon x\in P\cap \mathbb{Z}^n\}=\max\{c^Tx\colon x\in P_\mathbb{Z}\}$		
Valid inequality	Let $P \subseteq \mathbb{R}^n$ be a polyhedron. An inequality $a^Tx \le \beta$ is a valid inequality for P if $a^Tx \le \beta$ is valid for all $x \in P$. -> It does not cut any point inside P.		
Cutting plane	A cutting plane for a polyhedron P is a valid inequality for $P_{\mathbb{Z}}$. -> It does not cut any point inside $P_{\mathbb{Z}}$.		
Example	Given: 3 Inequalities $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

8+9. Nonlinear Co	ontinuous Optimizatio	on			
Minimization	Given the (continuous) fun	nction			
Problem	$f: \mathbb{R}^n \to \mathbb{R}$ $x \to f(x)$				
	Find a point x^* where f att	ains its minimum.			
Remarks	Looking for the maximum of a function f is equivalent to finding the minimum of $-f$.				
	_	one-dimensional if $n=1$ and multidimensiona	If if $n \geq 2$		
Gradient	$/\delta f(\vec{x})$ \	The gradient of a function f:	$f(x,y) = x^2 + y^2$ $\nabla f(x,y) = \begin{pmatrix} 2x \\ 2y \end{pmatrix}$		
	$\int \frac{\delta x_1}{\delta x_1}$	$\mathbb{R}^n \to \mathbb{R}$ is the vector consisting of	$\nabla f(x,y) = (2x)$		
	$\delta f(\vec{x})$	the n partial derivatives.	(x,y)=(2y)		
	$\nabla f(\vec{x}) = \frac{\delta f(\vec{x})}{\delta x}$	At each point \vec{x} , the gradient			
	$\nabla f(\vec{x}) = \begin{pmatrix} \frac{\delta f(\vec{x})}{\delta x_2} \\ \frac{\delta f(\vec{x})}{\delta x_2} \end{pmatrix}$	$\nabla f(\vec{x})$ points in the direction of			
	$\delta f(\vec{x})$	steepest ascent.			
	$\sqrt{\delta x_n}$	Its norm $ \nabla f(\vec{x}) $ gives the slope.			
stationary point	/0.	\ If the point \overrightarrow{w} is an extremal point t	the gradient must vanish (=0).		
	$\nabla f(\overrightarrow{x_0}) = \overrightarrow{0} = \begin{pmatrix} 0 \\ \dots \end{pmatrix}$	not every stationary point is an extre	emal point -> saddle point.		
	\0.	/			
Alg 1:		cal minimum of an (unconstrained multidimen:	sional) function <i>f</i>		
Gradient descent	start at random poir	it x_0			
Linear convergence	iterate $x_i \rightarrow x_{i+1}$.+	$x^{i+1} = x^i - \beta \nabla f(x^i)$		
Linear convergence -> Slow	determine gradien	int eta in opposite direction	$x^{\alpha} = x^{\alpha} - \beta V J(x^{\alpha})$		
-> 310W		nt is approximately zero			
Step size β	1: Successive halving of th				
3ιερ 3ι <u>2</u> ε ρ	- if worse -> half until bette	The state of the s	80		
	- if better -> doubling while		66 +		
		e step size with subsequent parabola fitting	74 +		
		o the minimum of the parabola).	74		
	Compute $P(t) = at^2 + bt$		β β* 2 β		
	$P(0) = f(x^i)$	= c	60		
	$P(\beta) = f\left(x^i - \beta \nabla f(x^i)\right)$	$=a\beta^2+b\beta+c$			
	$P(2\beta) = f\left(x^{i} - 2\beta\nabla f(x^{i})\right)$		B		
	P(t) attains its minimum i		26		
	$\beta = 3 * P(0) - 4 * P(0)$	$P(\beta) + P(2\beta)$ b			
	$\beta^* = \frac{\beta}{2} * \frac{3 * P(0) - 4 * P(0)}{P(0) - 2 * P(0)}$	$\beta^* = -\frac{1}{2a}$			
	choose better of β or β^*	F) - (-F)			
Alg 2:	Tangent t at $(x^i, f(x^i))$ h	as slone $f'(x^i)$			
Newton's Method		$c^{i}(x - x^{i}) + f(x^{i}) = 0$			
(finds zeros of	` ` ' ` `		tangent at $(x^0, f(x^0))$,		
a function)	\rightarrow 2	$x = x^{i} - \frac{f(x^{i})}{f'(x^{i})}$ $\begin{bmatrix} f(x^{0}) \\ f(x^{i}) \end{bmatrix}$	has slope $f'(x^0)$		
		approximates to zeros of $f'(x)$			
Quadratic converg.	-> extrem points		$x^{0}x^{1}$ x^{2} $x^{3}x^{4}$ x		
-> Fast	· ·	$a^{1} = x^{i} - \frac{f'(x^{i})}{f''(x^{i})}$	$) = \begin{pmatrix} \frac{\delta^2 f(x^i)}{\delta x_1 \delta x_1} & \dots & \frac{\delta^2 f(x^i)}{\delta x_1 \delta x_n} \\ \dots & \ddots & \dots \\ \frac{\delta^2 f(x^i)}{\delta x_n \delta x_1} & \dots & \frac{\delta^2 f(x^i)}{\delta x_n \delta x_n} \end{pmatrix}$		
		$f''(x^i)$ $H_f(x^i)$	$) = \begin{vmatrix} a_{1}a_{1} & \cdots & a_{1}a_{n} \\ \cdots & \cdots & \cdots \end{vmatrix}$		
	for multidimensional -> us	e Hessian-matrix	$\delta^2 f(x^i)$ $\delta^2 f(x^i)$		
	$x^{i+1} = x^i$				
Speed of	Linear convergence	$c \in (0,1) \ and \ i_0 \in \mathbb{N} \ \text{such that for all} \ i \geq i_0$ sequence $\{c_i\}_{i \in \mathbb{N}} \ \text{with} \ \lim_{n \to \infty} c_i = 0$	$\left x^* - x^{i+1} \right \le c \left x^* - x^i \right $		
convergence	Superlinear convergence	sequence $\{c_i\}_{i\in\mathbb{N}}$ with $\lim_{n\to\infty}c_i=0$	$\left \left x^* - x^{i+1} \right \le c_i \left x^* - x^i \right \right $		
	Quadratic convergence	$c > 0 \ and \ i_0 \in \mathbb{N} \ \text{sucht that for all} \ i \ge i_0$	$\left \left x^* - x^{i+1} \right \le c \left x^* - x^i \right ^2 \right $		
Approximating	Computing the partial deri	vates of f exactly may be impossible or compu	tationally too expensive.		
partial derivates	first partial derivatives	vates of t exactly may be impossible or compute $\frac{\delta f(x)}{\delta x_i} = \frac{f(x_1 \dots x_{i+\epsilon} \dots x_n) - f(x_1}{2\epsilon}$ $\frac{\delta^2 f(x)}{\delta x_i^2} = \frac{f(x_1 \dots x_{i+\epsilon} \dots x_n) - 2f(x_1 \dots x_n)}{\epsilon^2}$	$\dots x_{i-\epsilon} \dots x_n$		
		$\frac{\delta x_i}{\delta x_i} = \frac{2\epsilon}{2\epsilon}$			
	second partial derivates	$\delta^2 f(x) = f(x_1 \dots x_{i+\epsilon} \dots x_n) - 2f(x_1 \dots x_n)$	$+ f(x_1 \dots x_{i-\epsilon} \dots x_n)$		
		$\frac{1}{\delta x_i^2} = \frac{1}{\epsilon^2}$			
	. —				

•	= ·			
Alg 3: Broyden's Method	Idea: Computing and inverting the Hessian matrix $H_f(x_i)$ exactly in the Newton's method is computationally expensive. The idea in quasi-			
bioyueii s ivietiiou				
	Newton is to approximate the inverse of the Hessian $\left(H_f(x^i)\right)^{-1}$, by			
	some matrix $(A^i)^{-1}$ that can be computed more efficiently.			
	$A^{i}(x^{i} - x^{i-1}) = \nabla f(x^{i}) - \nabla f(x^{i-1})$			
	$\left(\overbrace{(\nabla f(u))}^{g} \underbrace{\nabla f(u-1)}_{(u,i-1)} \right) \underbrace{d^{i}}_{(u,i-1)} \underbrace{d^{i}}_{(u,i-1)}$			
	$\left(\left(V_{j}\left(x^{s}\right) - V_{j}\left(x^{s-1}\right) \right) - A \left(x^{s} - x^{s-1}\right) \right) \left(x^{s} - x^{s-1}\right)$			
	$A^{i} = A^{i-1} + \frac{\checkmark}{}$			
	$A^{i}(x^{i} - x^{i-1}) = Vf(x^{i}) - Vf(x^{i-1})$ $A^{i} = A^{i-1} + \frac{\begin{pmatrix} g^{i} & d^{i} & T \\ (\nabla f(x^{i}) - \nabla f(x^{i-1})) - A^{i-1} & (x^{i} - x^{i-1}) \end{pmatrix} \begin{pmatrix} d^{i} & T \\ (x^{i} - x^{i-1}) & (x^{i} - x^{i-1}) \end{pmatrix}}{\begin{pmatrix} x^{i} - x^{i-1} \\ d^{i} & d^{i} \end{pmatrix}^{2}}$			
	d^i			
	$A^{i} = \frac{(g^{i} - A^{i-1}d^{i})d^{i}}{ d^{i} ^{2}}$			
	$ d^i ^2$ They key insight of Broyden's method is that we do not need to invert			
	A^i explicitly in each step			
	$x^{i+1} = x^i - (A^i)^{-1} \nabla f(x^i)$			
	Instead we can compute $(A^i)^{-1}$ by updating $(A^{i-1})^{-1}$ according to the			
	so-called Sherman-Morrison formula.			
computation	1. Start with x^0 .			
	a) Compute $\nabla f(x^0)$ and set $(A^0)^{-1} \coloneqq \left(H_f(x^0)\right)^{-1}$.			
	b) Compute $x^1 = x^0 - (A^0)^{-1} \nabla f(x^0)$			
	2. Iteration step:			
	a) Compute $\nabla f(x^i)$, $g^i)\nabla f(x^i) - \nabla f(x^{i-1})$ and $d^i = x^i - x^{i-1}$			
	b) Compute $(A^i)^{-1}$ with Sherman-Morrison c) Set $x^{i+1} = x^i - (A^i)^{-1} \nabla f(x^i)$			
Sherman-Morrison	Let Λ be a regular matrix, μ and ν two vectors. We can compute $(\Lambda^i)^{-1}$ directly from $(\Lambda^{i-1})^{-1}$			
$O(n^2)$ instead $O(n^3)$	$(A^{i})^{-1} = (A^{i-1})^{-1} - \frac{((A^{i-1})^{-1}g^{i} - d^{i})(d^{i})^{T}(A^{i-1})^{-1}}{(d^{i})^{T}(A^{i-1})^{-1}g^{i}}$			
	$(A^{i})^{-1} = (A^{i-1})^{-1} - \frac{(d^{i})^{T} (A^{i-1})^{-1} g^{i}}{(d^{i})^{T} (A^{i-1})^{-1} g^{i}}$			
Alg 4:	Aitken's method is not a new method, but can be used to improve the			
Aitken's	convergence speed of other existing methods.			
acceleration method				
Example with Pi	$\pi = \sum_{k=0}^{\infty} \frac{4}{2k+1} (-1)^k = 3.14159265$ $ i = 0 i = 1 i = 2 i = 3 i = 4$			
	Aitken $(x^i - x^{i-1})^2$ - 3.1667 3.1333 3.1452			
	$ y^{i} = x^{i} - \frac{x^{i}}{x^{i} - 2x^{i-1} + x^{i-2}} $			

10+11. Graphs and Networks

see document 'Combinatorial Problems' see document 'Graph Theory'

12-14. Heuristics

see document 'Combinatorial Problems'