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FTP_OPTIMIZATION 

1. Introduction 

Two main areas Optimization of business process (production, logistics, services, operations, management) 
Optimization of technical processes (engineering) 

Quantitative vs. 
Qualitative 

Quantitative analysis and optimization (numerical, measurable data, mathematical models/algorithms) 
Qualitative analysis and optimization (informal facts, verbal description of processes and procedures) 

typically progress Phase 1: Qualitative analysis (up to 80%, unclear problem description, mess of information) 
Phase 2: Qualitative or quantitative -> handled in this course (need for decision support) 

Types 
 
 

this course -> 

Continuous Optimization: infinitely solutions, represented by continuous variables 
local optimization based on differential information (1st (gradient) & 2nd derivative), 
very difficult if non-continuous or non-differentiable, more difficult if constraints (Nebenbedingungen) 
Discrete Optimization (DO): finitely solutions, represented by integer variables 
trivial algorithm (enumartion), can solve real world problems since invention of computers 
find an "efficient" algorithm in a "reasonable" time to solve a specific problem -> Complexity Theory 

Importance of 
Linearity 

Finite set of solutions -> Discrete optimization 
Solution can be represented by a list of variables 𝑣𝑒𝑐𝑡𝑜𝑟 𝑥⃗ = (𝑥1, 𝑥2, … , 𝑥𝑛)

𝑇  
Solution is a finite set of points in n-dimensional space (e.g. convex hull) 
Finite mesh implicite linearity! 

Decision Problems Decision Support (Entscheidungsunterstützung) 
a) quantitative models 
b) qualitative approach 
Decision maker (Entscheidungsträger) 
Alternatives (multiple possible decisions) with associated consequences (deterministic or stochastic) 
Evaluation (Bewertung) of alternatives with regard to their consequences 

Evaluation of 
Consequences 

Satisfication: Consequences has to fullfil certain constraints (Ger: Restriktionen), 
in order to have a feasible (Ger: zulässig) alternative. 
Optimization: Consequences has to reach best possible value, most be optimal among all alternatives. 

Introduction 
Examples 

1. Frequency Assignment in Mobile Networks 
2. Product Mixture in an Oil Refinery 
3. Vehicle Dispatching in a Car Rental Company 
4. Shift Planning in a Department Store 
5. Design of a Regional Optical Fiber Network 
6. Sudoku 
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2+3. Mathematical Models 

Descriptive 
Models 

also called: "Evaluation Models" 
Question: "What if?" 
 
Calculates for a given alternative the 
resulting consequences. 
e.g. Problem 3: vehicle dispatching 
(see Excel spreadsheet) 
Variables: User specified 
Parameters: Given 
Consequences: Calculate 

 
5 things to notice 
 

with vehicle 
displatching 

problem 

Sets 𝐼 Set of locations 

 
𝑖 ∈ 𝐼 = {1…𝑛} 
𝑗 ∈ 𝐼 = {1…𝑛} 

Parameters 
 

𝑎𝑖  
𝑏𝑗  

𝑐𝑖𝑗  

Number of available vehicles at location 𝑖 
Number of requested vehicles at location 𝑗 
Distance (km) from location 𝑖 to location 𝑗 

Variables 
/ Alternatives 

𝑥𝑖𝑗  Number of vehicles transferred 
from location 𝑖 to location 𝑗 

Consequences 𝑘0 
𝑘𝑖
𝑂𝑢𝑡 
𝑘𝑗
𝐼𝑛 

Total distance (km) of all transfer 
Number of vehicles transferred out of location 𝑖 
Number of vehicles transferred into location 𝑗 

Model 𝑘0 =∑∑𝑐𝑖𝑗𝑥𝑖𝑗
𝑗∈𝐼𝑖∈𝐼

 𝑘𝑖
𝑂𝑢𝑡 =∑𝑥𝑖𝑗

𝑗∈𝐼

 𝑘𝑗
𝐼𝑛 =∑𝑥𝑖𝑗

𝑖∈𝐼

 

 

Optimization 
Models 

also called: "Prescriptive Models" 
Question: "What's best?" 
 
Calculates in the set of all feasible 
alternatives an optimal alternative 
Set of all feasible solutions: solution 
space 
 
Optimization algorithms needed! 
-> Operations Research 

 
5 things to notice Sets 𝐼 Set of locations {1. . 𝑛} 

Parameters 𝑎𝑖  
𝑏𝑗  

𝑐𝑖𝑗  

Number of available vehicles at location 𝑖 
Number of requested vehicles at location 𝑗 
Distance (km) from location 𝑖 to location 𝑗 

𝑖 ∈ 𝐼 
𝑗 ∈ 𝐼 

Variables 𝑥𝑖𝑗  Number of vehicles transferred from location 𝑖 to location 𝑗 

Constraints ∑𝑥𝑖𝑗 ≤ 𝑎𝑖
𝑗∈𝐼

 ∑𝑥𝑖𝑗 ≥ 𝑏𝑗
𝑖∈𝐼

 𝑥𝑖𝑗 ≥ 0 

Objective Function min∑∑𝑐𝑖𝑗𝑥𝑖𝑗
𝑗∈𝐼𝑖∈𝐼

 

 

Example 
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General 
Optimization 
Model 

General optimization problem Π:max{𝑓(𝑥⃗): 𝑥⃗ ∈ 𝑆} 

Decision variables 𝑥⃗ = (𝑥1…𝑥𝑛)
𝑇 ∈ ℝ𝑛 

(Feasible) solutions 𝑥⃗ ∈ 𝑆 

Solution space 𝑆 ⊆ ℝ𝑛 

Objective function 𝑓: 𝑆 → ℝ 

Optimal solution (Optimizer) 𝑥⃗∗ ∈ 𝑆 such that 𝑓(𝑥⃗∗) ≥ 𝑓(𝑥⃗) for all 𝑥⃗ ∈ 𝑆 

Optimum (Optimal value) 𝑓: (𝑥⃗∗) 
 

Conditions for 
Existence of 

Optimum 

Feasibility 𝑆 ≠ ∅ 

Ex. Infeasibility max{𝑥1: 2𝑥1 + 4𝑥2 = 5, 𝑥⃗ ∈ ℤ
2} 

Boundedness feasible, ∃𝜔: 𝑓(𝑥⃗) ≤ 𝜔 for all 𝑥⃗ ∈ 𝑆 

Ex. Unboundedness max{𝑥1: 2𝑥1 + 4𝑥2 = 5, 𝑥⃗ ∈ ℝ
2} 

Closedness feasible, bounded, optimum exists 

Ex. Unclosedness max{𝑥1: 𝑥1 < 1, 𝑥⃗ ∈ ℝ} 
 

Example A company produces different types of feed for farm animals by mixing several ingredients. 
Each ingredient contains a certain amount of protein and calcium (given in gram per kg), 
and each type of feed requires a minimum total amount of protein and calcium (given in 
gram per kg). Furthermore, the purchase price for each ingredient is given (in dollar per 
kg), and the sales price for each type of feed is given (in dollar per kg). 
Finally, the production quantity of each feed type should not exceed a specified limit (in kg). 
Formulate a linear programming model which calculates an optimal production plan, 
i.e. a production plan that maximizes total profit. 
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Basic Concepts 

Problem and 
Problem 
Instances 

Problem 
𝑒. 𝑔. :max∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

 

Problem Instance 𝑒. 𝑔. : max {4𝑥1 + 7𝑥2: 3𝑥1 + 5𝑥2 ≤ 17, 𝑥⃗ ∈ ℝ
2} 

 

Powerset 𝑆 = {1,2,3} 
𝑃(𝑆) = {∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} 

|𝑃(𝑆)| = 2|𝑆| 

Neighborhood 
user defined 

Neighborhood 𝑁: 𝑆 → 𝑃(𝑆) 

Neighbor solutions 𝑁(𝒙) ⊆ 𝑆 

Per definition I am my own neighbor. 

Usage: Local Search Metaheuristics - 
search in my neighborhood for better 
solutions, repeat until best. 
Usage: Euclidean Neighborhood 

 
 

Types of models Unconstrained vs Constrained 
Global vs Local 
Differentiable vs Non-Differentiable 
Discrete vs Continuous 

Convex vs Non-Convex 
Linear vs Non-Linear 
Exact vs Heuristic 
General vs Problem specific 

Notations 

Interior point 𝑥⃗ 𝑁𝜖(𝑥⃗) ⊂ 𝑆 for some 𝜖 > 0 

 

Boundary point 𝑥⃗ 𝑁𝜖(𝑥⃗) ∩ 𝑆 ≠ ∅ 𝑎𝑛𝑑 𝑁𝜖(𝑥⃗) ∩ (ℝ
𝑛 − 𝑆) ≠ ∅ for all 𝜖 > 0 

S closed all boundary points of S are in S  
 

S open all points of S are interior points  
 

S bounded 𝑆 ⊂ {𝑥⃗ ∈ ℝ𝑛: 𝑎⃗ ≤ 𝑥⃗ ≤ 𝑏⃗⃗}  
 

Global Optima 𝑥⃗∗: 𝑓(𝑥⃗) ≥ 𝑓(𝑥⃗) for all 𝑥⃗ ∈ 𝑆 

 

Local Optima 𝑥⃗∗: 𝑓(𝑥⃗) ≥ 𝑓(𝑥⃗) for all 𝑥⃗ ∈ 𝑁(𝑥⃗) ∩ 𝑆 

Graph 𝐻 = {(𝑥⃗, 𝑓(𝑥⃗)): 𝑥⃗ ∈ 𝑆}  

Level set for level 𝛼 𝐿𝛼 = {𝑥⃗ ∈ 𝑆: 𝑓(𝑥⃗) = 𝛼}  

 
Convex combination 2D: 𝑥⃗ = 𝜆𝑥1⃗⃗⃗⃗⃗ + (1 − 𝜆)𝑥2⃗⃗⃗⃗⃗ 

𝑥⃗ = ∑𝜆𝑖𝑥⃗
𝑖

𝑘

𝑖=1

 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜆 ∈ ℝ𝑘 

0 ≤ 𝜆 ≤ 1 

∑𝜆𝑖

𝑘

𝑖=1

= 1 

 
Convex set 𝑆 ⊂ ℝ𝑛 𝜆𝑥1⃗⃗⃗⃗⃗ + (1 − 𝜆)𝑥2⃗⃗⃗⃗⃗ ∈ 𝑆 

intersection of convex sets is convex 
𝑥1⃗⃗⃗⃗⃗, 𝑥2⃗⃗⃗⃗⃗ ∈ 𝑆 
0 ≤ 𝜆 ≤ 1 

 
Convex function 𝑓 (𝜆𝑥1⃗⃗⃗⃗⃗ + (1 − 𝜆)𝑥2⃗⃗⃗⃗⃗) ≤ 𝜆𝑓 (𝑥1⃗⃗⃗⃗⃗) + (1 − 𝜆)𝑓 (𝑥2⃗⃗⃗⃗⃗) 

 
Concave function 𝑓 (𝜆𝑥1⃗⃗⃗⃗⃗ + (1 − 𝜆)𝑥2⃗⃗⃗⃗⃗) ≥ 𝜆𝑓 (𝑥1⃗⃗⃗⃗⃗) + (1 − 𝜆)𝑓 (𝑥2⃗⃗⃗⃗⃗) 

 
Linear function is convex and concave   

Convex optimization 
problem 

max 𝑓(𝒙) : 𝒙 ∈ 𝑆 
-> every local optimum is on boundary 

with 𝑓 convex 
and S convex 

 
max 𝑓(𝒙) : 𝒙 ∈ 𝑆 

-> local optimum is the global optimum 
with 𝑓 concave 
and S convex 

 

𝑥⃗ 

𝑁𝜖(𝑥⃗) 

𝜖 

𝑆 

global 
local 

𝑁(𝑥⃗) 

𝑥1 𝑥2 

𝑥3 
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4+5. Linear Programming 

Problem 
Formulation 𝒙 ∈ ℝ𝑛 = {

𝑥1
𝑥2
…
𝑥𝑛

} 
𝑨 ∈ ℝ𝑚×𝑛 = {

𝐴11 … 𝐴1𝑛
… … …
𝐴𝑚1 … 𝐴𝑚𝑛

} 
𝒃 ∈ ℝ𝑚 = {

𝑏1
𝑏2
…
𝑏𝑚

} 𝒄 ∈ ℝ𝑛 = {

𝑐1
𝑐2
…
𝑐𝑛

} 

𝐼 = {1, … ,𝑚} 
𝐽 = {1, … , 𝑛} 

 𝒂𝑖 ∈ ℝ𝑛 = {𝐴𝑖1 … 𝐴𝑖𝑛} 

𝑨𝑗 ∈ ℝ
𝑚 = {

𝐴1𝑗
…
𝐴𝑚𝑗

} 

   

 

Linear function 𝑓:ℝ𝑛 → ℝ 

𝑓(𝒙) = 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛 =∑ 𝑎𝑗𝑥𝑗
𝑛

𝑗=1
= 𝒂𝑇𝒙, 𝒂 ∈ ℝ𝑛 

𝑓(𝛼𝒙 + 𝛽𝒚) = 𝑎𝑓(𝒙) + 𝛽𝑓(𝒚), 𝛼, 𝛽 ∈ ℝ 
Linear inequality 

∑ 𝑎𝑗𝑥𝑗
𝑛

𝑗=1
≤ 𝑏

𝒂𝑇𝒙 ≤ 𝑏

 , 𝒂 ∈ ℝ𝑛, 𝑏 ∈ ℝ 

System of linear 
inequalities 
 

𝑜𝑟 ≥ 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛

𝑗=1
≤ 𝑏𝑖

𝒂𝑖𝒙 ≤ 𝑏𝑖
𝑨𝒙 ≤ 𝒃

, 𝑖 ∈ 𝐼 

LP (Linear 
Program) 

Minimize linear objective function subject to linear constraints (linear (in)-equalities) 

Form 

 LP in General Form in Canonical Form in Standard Form LP in Inequality Form 

 𝑚𝑎𝑥,𝑚𝑖𝑛 𝒄𝑇𝒙 max 𝒄𝑇𝒙 min 𝒄𝑇𝒙 𝑚𝑎𝑥/𝑚𝑖𝑛 𝒄𝑇𝒙 max 𝒄𝑇𝒙 min 𝒄𝑇𝒙 

equalities 
𝑖 ∈ 𝐼 

𝒂𝑖𝒙 ≤ 𝑏𝑖  
𝒂𝑖𝒙 = 𝑏𝑖  
𝒂𝑖𝒙 ≥ 𝑏𝑖  

𝒂𝑖𝒙 ≤ 𝑏𝑖  𝒂𝑖𝒙 ≥ 𝑏𝑖  𝒂𝑖𝒙 = 𝑏𝑖  𝒂𝑖𝒙 ≤ 𝑏𝑖  𝒂𝑖𝒙 ≥ 𝑏𝑖  

variables 
𝑗 ∈ 𝐽 

𝑥𝑗 ≥ 0 

𝑥𝑗  𝑓𝑟𝑒𝑒 

𝑥𝑗 ≤ 0 

𝑥𝑗 ≥ 0 𝑥𝑗 ≥ 0 𝑥𝑗 ≥ 0  

Inequalities transformations 
1. replace variables (substitute in equalities, replace in variables) 
2. transform equalities 

equalities 
𝑖 ∈ 𝐼 

Inequality to Inequality 

𝒂𝑖𝒙 ≤ 𝑏𝑖 ↔ −𝒂𝑖𝒙 ≥ −𝑏𝑖  

Equality to Inequality 

𝒂𝑖𝒙 = 𝑏𝑖 ↔
𝒂𝑖𝒙 ≤ 𝑏𝑖
𝒂𝑖𝒙 ≥ 𝑏𝑖

 

Slack (Stillstand) variable 

𝒂𝑖𝒙 ≤ 𝑏𝑖 →
𝒂𝑖𝒙 + 𝑥𝑖

𝑠 = 𝑏𝑖
𝑥𝑖
𝑠 ≥ 0

 

Surplus (Überschuss) variable 

𝒂𝑖𝒙 ≥ 𝑏𝑖 →
𝒂𝑖𝒙 − 𝑥𝑖

𝑠 = 𝑏𝑖
𝑥𝑖
𝑠 ≥ 0

 

variables 
𝑗 ∈ 𝐽 

Nonpositive to nonnegative 

𝑥𝑗 ≤ 0 →
𝑥𝑗 = −𝑥𝑗̅
𝑥𝑗̅ ≥ 0

 

Free to nonnegative 

𝑥𝑗  𝑓𝑟𝑒𝑒 →
𝑥𝑗 = 𝑥𝑗

+ − 𝑥𝑗
−

𝑥𝑗
+, 𝑥𝑗

− ≥ 0
 

  

Geometric aspects 

Halfspace 𝐻 = {𝒙 ∈ ℝ𝑛: 𝒂𝑇𝒙 ≤ 𝑏} euclidean space divided by a plane 
linear: 𝑏 = 0, affine 𝑏 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 

 

Hyperplane 𝐻 = {𝒙 ∈ ℝ𝑛: 𝒂𝑇𝒙 = 𝑏} in 3D, the hyperplane is a 2d plane 
linear: 𝑏 = 0, affine 𝑏 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 

Normal vector 𝜶  

Polyhedron 𝑃 = {𝒙 ∈ ℝ𝑛: 𝑨𝒙 ≤ 𝒃} 
𝑖 = 1…𝑚 

is the intersection of a finite number 
of halfspaces. can be unbounded. 
solution space of a system of linear 
equalities is also a polyhedron. 
polyhedron is a convex set. 

 
always use ≤ 

Polytope 𝑃 = {𝒙 ∈ ℝ𝑛: 𝑨𝒙 ≤ 𝒃, 𝒍 ≤ 𝒙 ≤ 𝒖} bounded polyhedron 

Eulerian Walk  walk through a graph and use every 
vertex one's 

If a graph has an Eulerian walk 
then the number of odd degree 
vertices is either 0 or 2. 

Theorem A LP with solution space P always has an optimal solution that is a vertex, as far as 
- P has any vertices ("P is pointed") 
- the optimum is finite 

  

𝑎𝑥 = 𝑏 

𝑎𝑥 ≤ 𝑏 

𝑎𝑥 > 𝑏 

𝒂 

−𝑥 ≤ 0 

−𝑦 ≤ 0 

−𝑥 + 2𝑦 ≥ 8 
2𝑥 + 𝑦 ≤ 14 

2𝑥 − 𝑦 ≤ 10 
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Simplex Algorithm 

Given 

linear system 
(convert to ≤) 

𝑃 = {𝒙 ∈ ℝ2: 𝑨𝒙 ≤ 𝒃} −𝟑𝑥1 + 𝟐𝑥2 ≤ 𝟐 
−𝟐𝑥1 + 𝟓𝑥2 ≤ 𝟏𝟔 
𝟔𝑥1 + 𝟓𝑥2 ≤ 𝟕𝟐 

−𝑥1 ≤ 𝟎 
−𝑥2 ≤ 𝟎 

(1) 
(2) 
(3) 
(4) 
(5) 

level set max{𝒄𝑇𝒙: 𝒙 ∈ 𝑃} max{𝟓𝑥1 + 𝟖𝑥2}  

Prepare 

matrix 𝑨 
vector 𝒃 
level set 𝒄 𝑨 =

(

 
 

−𝟑 𝟐
−𝟐 𝟓
𝟔 𝟓
−𝟏 𝟎
𝟎 −𝟏)

 
 
, 𝒃 =

(

 
 

𝟐
𝟏𝟔
𝟕𝟐
𝟎
𝟎 )

 
 
, 𝒄 = (𝟓, 𝟖)𝑇 

These algorithm calc the max for min: min{−𝑐𝑥} = −max{𝑐𝑥} 
 

Algorithm 

1. choose basic 
selection 

Basic selection 𝐵 
Basis 𝑨𝐵  
right hand side 𝒃𝐵  

𝐵 ⊆ {1,… ,𝑚} 𝑜𝑓 |𝐵| = 𝑛 
 𝐵 = {1,2} 

𝑨𝐵 = (
−𝟑 𝟐
−𝟐 𝟓

) 

𝒃𝐵 = (
𝟐
𝟏𝟔
) 

2. calc the 
inverse 

inverse basis 𝑨̅ (𝟓, 𝟐) 
(−𝟐,−𝟑) 

𝑨̅ = 𝑨𝐵
−1 = (

−
𝟓

11

𝟐

11

−
𝟐

11

𝟑

11

) 

3. calc vertex 𝑣 basic solution 𝑣 𝒗 = 𝑨̅𝒃𝐵  

𝒗 = (
−
𝟓

11

𝟐

11

−
𝟐

11

𝟑

11

) ∗ (
𝟐
𝟏𝟔
) = (

2
4
) 

4. calc vector 
𝑢𝑇 

"reduced cost" 𝒖𝑇 𝒖𝑇 = 𝒄𝑇𝑨̅ 

𝒖𝑇 = (𝟓 𝟖)(
−
𝟓

11

𝟐

11

−
𝟐

11

𝟑

11

) = (−
41

11
,
34

11
) 

5. stop if 𝒖𝑇 ≥ 𝟎𝑇 
in all inequalities 

 𝑢𝑇 ≱ 0𝑇 

6. continue 𝑢𝑗 < 0 choose 𝑗 so that 𝑢𝑗 < 0 

𝒅 = −𝑨1̅̅ ̅ 
𝑓𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑢𝑇  𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣
𝑓𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐵 𝑖𝑠 1.→  𝑗 = 1

→ 𝒅 = (
5
11⁄

2
11⁄
) 

7. determine 
𝜆∗ 

𝜆 ∈ ℝ0 𝑨(𝒗 + 𝜆𝒅) = 𝑨𝒗 + 𝜆𝑨𝒅 ≤ 𝒃 

𝜆∗ = min {

𝑏𝑖 − 𝒂
𝑖𝒗

𝒂𝑖𝒅
:

𝑖 ∈ {1. . 𝑚}, 𝒂𝑖𝒅 > 0

} 

(

 
 

−𝟑 𝟐
−𝟐 𝟓
𝟔 𝟓
−𝟏 𝟎
𝟎 −𝟏)

 
 
(
2
4
) + 𝜆

(

 
 

−𝟑 𝟐
−𝟐 𝟓
𝟔 𝟓
−𝟏 𝟎
𝟎 −𝟏)

 
 
(
5
11⁄

2
11⁄
) ≤

(

 
 

𝟐
𝟏𝟔
𝟕𝟐
𝟎
𝟎 )

 
 

 

(

 
 

𝟐
−𝟏𝟔
𝟑𝟐
−𝟐
−𝟒 )

 
 
+ 𝜆

(

 
 

−𝟏
𝟎

𝟒𝟎/𝟏𝟏
−𝟓/𝟏𝟏
−𝟐/𝟏𝟏)

 
 
≤

(

 
 

𝟐
𝟏𝟔
𝟕𝟐
𝟎
𝟎 )

 
 
→ 𝜆 =

(

  
 

0
∞
𝟏𝟏

−
22

5
−22)

  
 

 

𝑘 = 3, 𝜆∗ = 11 
8. stop if 𝜆∗ = ∞ → 𝑨𝒅 ≤ 𝟎  

9. new basic 
selection 

𝐵′  𝐵′ = 𝐵 − {𝑗} ∪ {𝑘}  𝐵′ = {1,2} − {1} ∪ {3} = {2,3} 

10. calc vertex 
𝒗′ 

𝒗′ 𝒗′ = 𝒗 + 𝜆∗𝒅 
𝒗′ = (

2
4
) + 11(

5
11⁄

2
11⁄
) = (

7
6
) 

11. goto step 1    

visualise: 

𝑖 {𝐵} 𝒃𝑩 𝑨𝑩 𝑨𝐵
−1 𝒗 𝒖 𝑗 𝒅 𝜆∗ {𝑗} 𝒗′ 

 
inverse a 2x2 matrix 

[
𝑎 𝑏
𝑐 𝑑

]
−1

=
1

𝑎𝑑 − 𝑏𝑐
[
𝑑 −𝑏
−𝑐 𝑎

] 
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LP Overview 

Linear Program (LP) Mixed Integer LP (MIP) Integer LP (ILP or IP) 

max{𝒄𝑇𝒙: 𝒙 ∈ 𝑃} 
𝑃 = {𝒙 ∈ ℝ𝑛: 𝑨𝒙 ≤ 𝒃} 

max{𝒄𝑇𝒙: 𝒙 ∈ 𝑃 ∩ ℤ𝐾
𝑛 } 

𝑃 = {𝒙 ∈ ℝ𝑛: 𝑨𝒙 ≤ 𝒃} 
𝐾 ⊆ {1…𝑛} 

ℤ𝐾
𝑛 = {𝒙 ∈ ℝ𝑛: 𝑥𝑗 ∈ ℤ 𝑓𝑜𝑟 𝑗 ∈ 𝐾} 

max{𝒄𝑇𝒙: 𝒙 ∈ 𝑃 ∩ ℤ𝑛} 
𝑃 = {𝒙 ∈ ℝ𝑛: 𝑨𝒙 ≤ 𝒃} 

   

optimal solution on vertex some variables are integer all variables are integer 

Simplex  Commercial: Gurobi, CPLEX 
Non-Commercial: GLPK, LPSOLVE, SCIP, ... 
Algebraic Model Lang: GAMS, AMPL, LPL, 
OPL, AIMMS 

 

6+7. Integer Linear Programming  

Naive idea 
not practicable 

1. Solve problem with LP 
2. round up/down to get integer solution 
 
problems: 
solution may not be a feasible solution 
solution may be "far away" from optimal solution 

 
Relaxations 
 

Enlarge solution space 
𝑆 → 𝑆′ 𝑤𝑖𝑡ℎ 𝑆 ⊆ 𝑆′ 

max{𝑓(𝒙): 𝒙 ∈ 𝑆′} ≥ max{𝑓(𝒙): 𝒙 ∈ 𝑆} 
e.g. by removing constraints 

 
Increase objective function 

𝑓(𝒙) → 𝑓′(𝒙) 𝑤𝑖𝑡ℎ 𝑓′(𝒙) ≥ 𝑓(𝒙) 𝑓𝑜𝑟 𝒙 ∈ 𝑆 
max{𝑓′(𝒙): 𝒙 ∈ 𝑆′} ≥ max{𝑓(𝒙): 𝒙 ∈ 𝑆} 
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Branch-and-Bound (B&B) Method (=Divide and Conquer)  

Branching If LP solution is all integer: 
STOP -> Current node optimal solved 
 
Otherwise: Choose some fractional variable 
and round up/down 
 

max{∑𝑐𝑗𝑥𝑗
𝑗∈𝐽

:∑𝑎𝑗𝑥𝑗 ≤ 𝑏, 𝑥𝑗 ∈ {0,1}

𝑗∈𝐽

} 

 
Given: 

Item 𝑗 ∈ 𝐽 A B C D  𝑏 = 18 

Value 𝑐𝑗  10 12 28 21  

Volume 𝑎𝑗  7 4 8 9  

Prepare: 

1. Calc benefit per volume: 
𝑐𝑗
𝑎𝑗⁄  

2. Sort in decreasing order 

Item 𝑗 ∈ 𝐽 C B D A 

new 1 2 3 4 

Value 𝑐𝑗  28 12 21 10 

Volume 𝑎𝑗  8 4 9 7 

Benefit per Volume 
3
1

2
 3 2

1

3
 1

3

7
 

 

 

Algorithm 

Root Node no fixed values in root node 𝐽𝑟
0 = ∅, 𝐽𝑟

1 = ∅  

Per Node    

check if 𝑠𝑢𝑚 𝑜𝑓 𝑣𝑜𝑙𝑢𝑚𝑒 𝐽𝑟
1 > 𝑏 stop "pruning (infeasible)"  

calc upper bound add items from left to right 
last item fractionally 𝑥𝑈𝐵 = (1,1,

2

3
, 0,0)

𝑇

 𝑧𝑈𝐵 = 28 + 12 +
2

3
21 = 54 

check if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑈𝐵 < 𝑔𝑙𝑜𝑏𝑎𝑙𝐿𝐵 -> stop "pruning (dominance)"  

calc lower bound round down fractional item 𝑥𝐿𝐵 = (1,1,0,0,0)𝑇 𝑧𝐿𝐵 = 28 + 12 = 40 

check if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝐵 > 𝑔𝑙𝑜𝑏𝑎𝑙𝐿𝐵  -> add "global update" [1]: 𝑧𝐿𝐵 = 40 

check if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝐵 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑈𝐵 -> stop "pruning (optimal)"  

branch  (split by 
fractional item) 

{3} Leaf Node 1: 𝐽𝑟
0 = {3}, 𝐽𝑟

1 = ∅ 
Leaf Node 2: 𝐽𝑟

0 = ∅, 𝐽𝑟
1 = {3} 
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Cutting Planes 

Definition Let 𝑆 = 𝑃 ∩ ℤ𝑛 be the solution space for ILP Π. 
A polyhedron 𝑃′ ⊆ ℝ𝑛 is called an (ILP-)formulation for Π if 𝑃′ ∩ ℤ𝑛 = 𝑆 
𝑃′ is called a better formulation for Π if 𝑃′ ⊆ 𝑃. 

 
Convex hull 

𝑐𝑜𝑛𝑣(𝑆) = {𝒙 ∈ ℝ𝑛: 𝒙 = ∑𝜆𝑖𝑥
𝑖  𝑤𝑖𝑡ℎ 𝒙𝑖 ∈ 𝑆, 𝜆𝑖 ≥ 0, 𝑖 = 1…𝑘,∑𝜆𝑖 = 1

𝑘

𝑖=1

𝑘

𝑖=1

} 

𝑆 ⊆ 𝑐𝑜𝑛𝑣(𝑆) 
is the smallest convex set containing S. 

max{𝒄𝑇𝒙: 𝒙 ∈ 𝑆} = max{𝒄𝑇𝒙: 𝒙 ∈ 𝑐𝑜𝑛𝑣(𝑆)} 
Integer hull 𝑃ℤ = 𝑐𝑜𝑛𝑣(𝑃 ∩ ℤ

𝑛) 
If 𝑃 ⊆ ℝ𝑛 is a rational polyhedron then 𝑷ℤ is a rational polyhedron and 
the best ILP formulation. 
All vertices of 𝑃ℤ are interger. 
 

 
Rational 
polyhedron 

𝑃 = {𝑥 ∈ ℝ𝑛: 𝐴𝑥 ≤ 𝑏} for some 𝐴 ∈ ℚ𝑚×𝑛 , 𝑏 ∈ ℚ𝑚  

Theorem Each ILP corresponds to some LP 
Let 𝑃 ⊆ ℝ𝑛 be a rational polyhedron. 
Suppose ILP max{𝒄𝑇𝒙: 𝒙 ∈ 𝑃 ∩ ℤ𝑛} has a finite optimum. 
Then max{𝒄𝑇𝒙: 𝒙 ∈ 𝑃 ∩ ℤ𝑛} = max{𝒄𝑇𝒙: 𝒙 ∈ 𝑃ℤ} 

 
Valid inequality Let 𝑃 ⊆ ℝ𝑛 be a polyhedron. An inequality 𝒂𝑇𝒙 ≤ 𝛽 is a valid inequality 

for P if 𝒂𝑇𝒙 ≤ 𝛽 is valid for all 𝒙 ∈ 𝑃. 
-> It does not cut any point inside P. 

 

Cutting plane A cutting plane for a polyhedron P is a valid inequality for 𝑃ℤ. 
-> It does not cut any point inside 𝑃ℤ. 

Example Given: 3 Inequalities 
(1):−2𝑥1 + 𝑥2 ≤ 0 
(2): 2𝑥1 + 𝑥2 ≤ 6 
(3):−𝑥2 ≤ −1 

𝑨 = (
−2 1
2 1
0 −1

) , 𝒃 = (
0
6
−1
) 

Combine inequalities: 
3

4
∗ (1) +

1

4
∗ (2) 

3

4
∗ −2𝑥1 +

3

4
1𝑥2 +

1

4
∗ 2𝑥1 +

1

4
∗ 1𝑥2 ≤

3

4
∗ 0 +

1

4
∗ 6 

−𝑥1 + 𝑥2 ≤
3

2
(→ 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑑𝑜𝑤𝑛) 

resulting new inequality (Gomory-Chvatal-Cut) 

−𝑥1 + 𝑥2 ≤ 1 

𝒖 = (
3

4
,
1

4
, 0)

𝑇

≥ 𝟎 

𝜶 ≔ 𝒖𝑇𝑨 = (−1,1)𝑇  

𝛽 ≔ 𝒖𝑇𝒃 =
3

2
 

G-C-Cut 

𝜶𝑻𝒙 ≤ ⌊𝜷⌋ 
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8+9. Nonlinear Continuous Optimization 

Minimization 
Problem 

Given the (continuous) function 
𝑓:ℝ𝑛 → ℝ 
𝑥 → 𝑓(𝑥) 

Find a point 𝑥∗ where f attains its minimum. 

Remarks Looking for the maximum of a function f is equivalent to finding the minimum of −𝑓. 
The optimization is called one-dimensional if 𝑛 = 1 and multidimensional fi 𝑛 ≥ 2 

Gradient 

∇𝑓(𝑥⃗) =

(

 
 
 
 
 

𝛿𝑓(𝑥⃗)

𝛿𝑥1
𝛿𝑓(𝑥⃗)

𝛿𝑥2…
𝛿𝑓(𝑥⃗)

𝛿𝑥𝑛 )

 
 
 
 
 

 

The gradient of a function f: 
ℝ𝑛 → ℝ is the vector consisting of 
the n partial derivatives. 
At each point 𝑥⃗, the gradient 
∇𝑓(𝑥⃗) points in the direction of 
steepest ascent. 
Its norm |∇𝑓(𝑥⃗)| gives the slope. 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 

∇𝑓(𝑥, 𝑦) = (
2𝑥
2𝑦
) 

stationary point 
∇𝑓(𝑥0⃗⃗⃗⃗⃗) = 0⃗⃗ = (

0
…
0
) 

If the point 𝑥0⃗⃗⃗⃗⃗ is an extremal point, the gradient must vanish (=0). 
not every stationary point is an extremal point -> saddle point. 

Alg 1: 
Gradient descent 
 
Linear convergence 
-> Slow 

is an algorithm to find a local minimum of an (unconstrained multidimensional) function 𝑓 

start at random point 𝑥0 
iterate 𝑥𝑖 → 𝑥𝑖+1 
 determine gradient 
 move by some amount 𝛽 in opposite direction 
repeat until gradient is approximately zero 

𝑥𝑖+1 = 𝑥𝑖 − 𝛽∇𝑓(𝑥𝑖) 

Step size 𝛽 1: Successive halving of the step size (set 𝛽 = 1) 
- if worse -> half until better 
- if better -> doubling while better 

 

2: Successive halving of the step size with subsequent parabola fitting 
(choosing 𝑥𝑖+1 according to the minimum of the parabola). 
Compute 𝑃(𝑡) = 𝑎𝑡2 + 𝑏𝑡 + 𝑐 such that 

𝑃(0) = 𝑓(𝑥𝑖) = 𝑐 

𝑃(𝛽) = 𝑓 (𝑥𝑖 − 𝛽∇𝑓(𝑥𝑖)) = 𝑎𝛽2 + 𝑏𝛽 + 𝑐 

𝑃(2𝛽) = 𝑓 (𝑥𝑖 − 2𝛽∇𝑓(𝑥𝑖)) = 4𝑎𝛽2 + 2𝑏𝛽 + 𝑐 

𝑃(𝑡) attains its minimum in the intervall [0,2𝛽] at 

𝛽∗ =
𝛽

2
∗
3 ∗ 𝑃(0) − 4 ∗ 𝑃(𝛽) + 𝑃(2𝛽)

𝑃(0) − 2 ∗ 𝑃(𝛽) + 𝑃(2𝛽)
 𝛽∗ = −

𝑏

2𝑎
 

choose better of 𝛽 or 𝛽∗ 

Alg 2: 
Newton's Method 
(finds zeros of 
a function) 
 
Quadratic converg. 
-> Fast 

 Tangent t at (𝑥𝑖, 𝑓(𝑥𝑖)) has slope 𝑓′(𝑥𝑖) 

𝑡(𝑥) = 𝑓′(𝑥𝑖)(𝑥 − 𝑥𝑖) + 𝑓(𝑥𝑖) = 0 

→ 𝑥 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
 

apply to derivative 𝑓′(𝑥) approximates to zeros of 𝑓′(𝑥) 
-> extrem points 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓′(𝑥𝑖)

𝑓′′(𝑥𝑖)
 

for multidimensional -> use Hessian-matrix 

𝑥𝑖+1 = 𝑥𝑖 − (𝐻𝑓(𝑥
𝑖))

−1

∇𝑓(𝑥𝑖) 

 

𝐻𝑓(𝑥
𝑖) =

(

  
 

𝛿2𝑓(𝑥𝑖)

𝛿𝑥1𝛿𝑥1
…

𝛿2𝑓(𝑥𝑖)

𝛿𝑥1𝛿𝑥𝑛
… ⋱ …

𝛿2𝑓(𝑥𝑖)

𝛿𝑥𝑛𝛿𝑥1
…

𝛿2𝑓(𝑥𝑖)

𝛿𝑥𝑛𝛿𝑥𝑛)

  
 

 

Speed of 
convergence 

Linear convergence 𝑐 ∈ (0,1) 𝑎𝑛𝑑 𝑖0 ∈ ℕ such that for all 𝑖 ≥ 𝑖0 |𝑥∗ − 𝑥𝑖+1| ≤ 𝑐|𝑥∗ − 𝑥𝑖| 

Superlinear convergence sequence {𝑐𝑖}𝑖∈ℕ with lim
𝑛→∞

𝑐𝑖 = 0 |𝑥∗ − 𝑥𝑖+1| ≤ 𝑐𝑖|𝑥
∗ − 𝑥𝑖| 

Quadratic convergence 𝑐 > 0 𝑎𝑛𝑑 𝑖0 ∈ ℕ sucht that for all 𝑖 ≥ 𝑖0 |𝑥∗ − 𝑥𝑖+1| ≤ 𝑐|𝑥∗ − 𝑥𝑖|
2
 

 

Approximating 
partial derivates 

Computing the partial derivates of f exactly may be impossible or computationally too expensive. 

first partial derivatives 𝛿𝑓(𝑥)

𝛿𝑥𝑖
=
𝑓(𝑥1…𝑥𝑖+𝜖 …𝑥𝑛) − 𝑓(𝑥1…𝑥𝑖−𝜖 …𝑥𝑛)

2𝜖
 

second partial derivates 𝛿2𝑓(𝑥)

𝛿𝑥𝑖
2 =

𝑓(𝑥1…𝑥𝑖+𝜖 …𝑥𝑛) − 2𝑓(𝑥1…𝑥𝑛) + 𝑓(𝑥1…𝑥𝑖−𝜖 …𝑥𝑛)

𝜖2
 

 

𝑥0 
𝛽 
2𝛽 
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Alg 3: 
Broyden's Method 

Idea: Computing and inverting the Hessian matrix 𝐻𝑓(𝑥𝑖) exactly in the 

Newton's method is computationally expensive. The idea in quasi-

Newton is to approximate the inverse of the Hessian (𝐻𝑓(𝑥
𝑖))

−1

, by 

some matrix (𝐴𝑖)−1 that can be computed more efficiently. 

𝐴𝑖(𝑥𝑖 − 𝑥𝑖−1) = ∇𝑓(𝑥𝑖) − ∇𝑓(𝑥𝑖−1) 

𝐴𝑖 = 𝐴𝑖−1 +

((∇𝑓(𝑥𝑖) − ∇𝑓(𝑥𝑖−1))⏞              
𝑔𝑖

− 𝐴𝑖−1 (𝑥𝑖 − 𝑥𝑖−1)⏞      
𝑑𝑖

)(𝑥𝑖 − 𝑥𝑖−1)⏞      
𝑑𝑖

𝑇

|𝑥𝑖 − 𝑥𝑖−1⏟      
𝑑𝑖

|

2  

𝐴𝑖 =
(𝑔𝑖 − 𝐴𝑖−1𝑑𝑖)𝑑𝑖

𝑇

|𝑑𝑖|2
 

They key insight of Broyden's method is that we do not need to invert 

𝐴𝑖  explicitly in each step 

𝑥𝑖+1 = 𝑥𝑖 − (𝐴𝑖)−1∇𝑓(𝑥𝑖) 
Instead we can compute (𝐴𝑖)−1 by updating (𝐴𝑖−1)−1 according to the 
so-called Sherman-Morrison formula. 

 

computation 1. Start with 𝑥0. 

 a) Compute ∇𝑓(𝑥0) and set (𝐴0)−1 ≔ (𝐻𝑓(𝑥
0))

−1

. 

 b) Compute 𝑥1 = 𝑥0 − (𝐴0)−1∇𝑓(𝑥0) 
2. Iteration step: 

 a) Compute ∇𝑓(𝑥𝑖), 𝑔𝑖)∇𝑓(𝑥𝑖) − ∇𝑓(𝑥𝑖−1) and 𝑑𝑖 = 𝑥𝑖 − 𝑥𝑖−1 

 b) Compute (𝐴𝑖)−1 with Sherman-Morrison 

 c) Set 𝑥𝑖+1 = 𝑥𝑖 − (𝐴𝑖)−1∇𝑓(𝑥𝑖) 

Sherman-Morrison 
𝑂(𝑛2) instead 𝑂(𝑛3) 

Let A be a regular matrix, u and v two vectors. We can compute (𝐴𝑖)−1 directly from (𝐴𝑖−1)−1 

(𝐴𝑖)−1 = (𝐴𝑖−1)−1 −
((𝐴𝑖−1)−1𝑔𝑖 − 𝑑𝑖)(𝑑𝑖)𝑇(𝐴𝑖−1)−1

(𝑑𝑖)𝑇(𝐴𝑖−1)−1𝑔𝑖
 

Alg 4: 
Aitken's 
acceleration method 

Aitken's method is not a new method, but can be used to improve the 
convergence speed of other existing methods. 

 

Example with Pi 
𝜋 =∑

4

2𝑘 + 1
(−1)𝑘

∞

𝑘=0
= 3.14159265 

  𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 

normal 
formular 

𝑥𝑖 =∑
4

2𝑘 + 1
(−1)𝑘

𝑖

𝑘=0
 

4 2.6667 3.4667 2.8952 3.3397 

Aitken 
𝑦𝑖 = 𝑥𝑖 −

(𝑥𝑖 − 𝑥𝑖−1)2

𝑥𝑖 − 2𝑥𝑖−1 + 𝑥𝑖−2
 
− − 3.1667 3.1333 3.1452 

 

 

10+11. Graphs and Networks  

see document 'Combinatorial Problems' 
see document 'Graph Theory' 
 

12-14. Heuristics 

see document 'Combinatorial Problems' 
 


