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FTP_OPTIMIZATION

1. Introduction

Two main areas Optimization of business process (production, logistics, services, operations, management)
Optimization of technical processes (engineering)
Quantitative vs. Quantitative analysis and optimization (numerical, measurable data, mathematical models/algorithms)
Qualitative Qualitative analysis and optimization (informal facts, verbal description of processes and procedures)
typically progress Phase 1: Qualitative analysis (up to 80%, unclear problem description, mess of information)
Phase 2: Qualitative or quantitative -> handled in this course (need for decision support)
Types Continuous Optimization: infinitely solutions, represented by continuous variables

local optimization based on differential information (1% (gradient) & 2" derivative),

very difficult if non-continuous or non-differentiable, more difficult if constraints (Nebenbedingungen)
this course -> | Discrete Optimization (DO): finitely solutions, represented by integer variables

trivial algorithm (enumartion), can solve real world problems since invention of computers

find an "efficient" algorithm in a "reasonable" time to solve a specific problem -> Complexity Theory
Importance of Finite set of solutions -> Discrete optimization

Linearity Solution can be represented by a list of variables vector ¥ = (x;, x5, ..., X,)T

Solution is a finite set of points in n-dimensional space (e.g. convex hull)

Finite mesh implicite linearity!

Decision Problems | Decision Support (Entscheidungsunterstiitzung)

a) quantitative models

b) qualitative approach

Decision maker (Entscheidungstrager)

Alternatives (multiple possible decisions) with associated consequences (deterministic or stochastic)
Evaluation (Bewertung) of alternatives with regard to their consequences

Evaluation of Satisfication: Consequences has to fullfil certain constraints (Ger: Restriktionen),
Consequences in order to have a feasible (Ger: zuldssig) alternative.
Optimization: Consequences has to reach best possible value, most be optimal among all alternatives.

Introduction 1. Frequency Assignment in Mobile Networks
Examples 2. Product Mixture in an Oil Refinery

3. Vehicle Dispatching in a Car Rental Company

4. Shift Planning in a Department Store

5. Design of a Regional Optical Fiber Network

6. Sudoku
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2+3. Mathematical Models

Descriptive also called: "Evaluation Models" Parameters :
Models Question: "What if?" P=(PisPrres,)
Calculates for a given alternative the l
resulting consequences. Calculation of
e.g. Problem 3: vehicle dispatching Variables Consequences Consequences :
(see Excel spreadsheet) (Alternative) : k, = fy(x,p) k,
Variables: User specified X=(X,, %,y X,) k = fi(x.p) k,
Parameters: Given
Consequences: Calculate k, = f,(x.p) k,
5 things to notice || Sets I Set of locations supplier i customer j
Parameters a; | Number of available vehicles at location i
with vehicle b; |Number of requested vehicles at location j
displatching c;; |Distance (km) from location i to location j
problem || variables Xij |Number of vehicles transferred
/ Alternatives from location i to location j
Consequences ko |Total distance (km) of all transfer
kP¥ | Number of vehicles transferred out of location i
k}” Number of vehicles transferred into location j )
Model k0=ZZCijxij kiout:inj k}n=inj le1={1 n}
i€l jel jel i€l jel={1..n}
Optimization also called: "Prescriptive Models" Parameters :
Models Question: "What's best?" p=(p.p,--.P,)
b=(b.b,.....b,)
Calculates in the set of all feasible l
alternatives an optimal alternative R Objective :
Set of all feasible solutions: solution i Caleulationof = oy .
i Consequences : . Optimal
space k=) Constraints : Solution :
Variables: . = r(x,p) - k <b L
Optimization algorithms needed! X=X %) k= fip) &=k, Optimum :
-> Operations Research P '
Lok, =1,(xp) k,<b, Jox)
s .| (or: = 2>)
5 things to notice || Sets I |Set of locations {1..n}
Parameters a; |Number of available vehicles at location i
b; | Number of requested vehicles at location j
c;; |Distance (km) from location i to location j
Variables xi; |Number of vehicles transferred from location i to location j iel
Constraints i
injsai szjzbf x;; =0 JEl
jel i€l
Objective Function min Z Z cxs
i€l _jel
Example variables | alternative
x 11 x 12 x 13 x 21 x 22 x 23 x 31 x 32 x33
[ 4 3 0 0 5 0 0 3 5 |
CONS equences constraints
i=1 1 1 1 a1 7 == 7
=2 1 1 1 a2 5 == 5 available
i=3 1 1 1 al 5 «= 9
=1 1 1 1 b 1 4 = 4
F2 1 1 1 b 2 1M1 == 11 requested
=3 1 1 1 b 3 6 == 6
parameters / constants objective
c11 c12 «c¢13 c¢21 ¢22 ¢ 23 ¢ 31 ¢ 32 «c 33 min
0 20 35 20 0 19 35 24 0 132
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General
Optimization
Model

General optimization problem I1: max{f (¥): X € S}

Decision variables = (x;..x,))T €R"

(Feasible) solutions X€eS

Solution space SCR"

Objective function f:S-R

Optimal solution (Optimizer) |X* € S such that f(X*) = f(X) forallX € S
Optimum (Optimal value) f: (%9

Conditions for
Existence of
Optimum

Feasibility S0

Ex. Infeasibility max{x;: 2x; + 4x, = 5,% € 7%}

Boundedness feasible, Jw: f(¥) < w forallX € S
Ex. Unboundedness max{x;: 2x; + 4x, = 5,% € R?}
Closedness feasible, bounded, optimum exists

Ex. Unclosedness max{x;:x; < 1,X € R}

Example

A company produces different types of feed for farm animals by mixing several ingredients.

Each ingredient contains a certain amount of protein and calcium (given in gram per kg),
and each type of feed requires a minimum total amount of protein and calcium (given in
gram per kg). Furthermore, the purchase price for each ingredient is given (in dollar per

kg), and the sales price for each type of feed is given (in dollar per kg).

Finally, the production quantity of each feed type should not exceed a specified limit (in kg).

Formulate a linear programming model which calculates an optimal production plan,
i.e. a production plan that maximizes total profit.

Sets :

I Set of ingredients, 7 = {L,...,m}

J  Set of feed types, J ={L....,n}

Parameters:

a; Amount of protein (gram per kg) contained in ingredient 7, i e/

a;™ Amount of calcium (gram per kg) contained in ingredient i, i € J
d™ Total amount of protein (gram per kg) required for feed type j.j € J
d™ Total amount of calcium (gram per kg) required for feed type j, j € J
f;  Purchase price (dollar per kg) for ingredient i, i e [

¢,  Sales price (dollar per kg) for feed type j,j € J

b,  Maximum production quantity (kg) for feed typej, j e J

Variables :

x,  Amount (kg) of ingredient i mixed into feed typej, iel,jeJ

max » ¢, > x, = fi) %,

jed iel iel J

Prot Prot .
Za, x; 2d,; Zx,.., jed

iel iel

Cale Cale -
Yatx,2d ™y x,, jed

iel iel
< .

Z x;<b, jeJ

iel

x;20, iel,jeJ
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Basic Concepts
Problem and Problem =
Problem e.g.:max Z CjXj
Instances j=1
Problem Instance | e.g.: max{4x; + 7x,:3x; + 5x, < 17,% € R?}
Powerset S =1{1,2,3} |P(S)| = 28!
P(S) =1{0,{1},{2},{3},{1,2},{1,3},{2,3}, {1,2,3}
Neighborhood Neighborhood N:S - P(S)
user defined Neighbor solutions Nx)ES
Per definition | am my own neighbor.
Usage: Local Search Metaheuristics - N(x)
search in my neighborhood for better
solutions, repeat until best.
Usage: Euclidean Neighborhood
Types of models | Unconstrained 'S Constrained Convex 'S Non-Convex
Global Vs Local Linear Vs Non-Linear
Differentiable Vs Non-Differentiable Exact Vs Heuristic
Discrete Vs Continuous General Vs Problem specific
Notations
Interior point X N.(X)cS for some e > 0

Boundary point ¥ N. () NS#=@and N.(X)N(R*—5) # @ foralle >0

S closed all boundary points of Sare in S

S open all points of S are interior points

S bounded Sc{feR%:d<Z<bh)

Global Optima X f(X) = f(@) forallX € S ocal
Local Optima X f(X) = f(@) forallX e N(X) NS ocs
Graph H={(%f®)%eS}

Level set for level a

L,=GRES SR =a}

Convex combination 20:% = Axt + (1 — D)x2 0<i<i1
K k
X’:Z/lia?i for some 1 € R¥ zli=1
i=1 i=1
Convex set S ¢ R" A+ (1-Dx2eS xLx2es
intersection of convex sets is convex 0<1<1

Convex function

f(AF+ (1 —A)F) <If (F’) +(1 —A)f(ﬁ)

Concave function

f(AF+ (1 —A)F) > Af (F’) +(1 —A)f(ﬁ)

JS(x)

S

Linear function

is convex and concave

Convex optimization
problem

max f(x):x €S
-> every local optimum is on boundary

with f convex
and

max f(x):x €S
-> local optimum is the global optimum

with f concave
and
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4+5. Linear Programming

Problem X1 Ay . Ay by G| I={1,..,m}
Formulation yepr=d2|AE R™XM = { } beR™= by (|pepr=]%2{|/={1...n}
Ami o Apn
‘le bm CTl
aleR"={A; .. Ay}
Alj
Linear function f:R" > R
n
f(x) = ayx; + azx, + -+ apx, = Z ax;=a'x, a€eR"
j=1
f(ax:- By) =af(x) +Bf(¥),a,BER
Linear inequality
ijlaffob, aeR"beER
aTan b
.System-o.f linear Z ayx; < by
inequalities j=1 , el
a'x < b;
or > Ax<b
LP (Linear Minimize linear objective function subject to linear constraints (linear (in)-equalities)
Program)
Form
LP in General Form in Canonical Form in Standard Form LP in Inequality Form
max, min ¢’ x max ¢’ x min c’x max/min cTx max ¢’ x min c”x
equalities a‘x < b;
i€l alx = b, alx < b; alx > b; alx = b; alx < b; alx > b;
a‘x > b;
variables x =0
j€E]J x; free x; =0 xj =0 x =0
Xj <0
Inequalities transformations
1. replace variables (substitute in equalities, replace in variables)
2. transform equalities
equalities | Inequality to Inequality Equality to Inequality Slack (Stillstand) variable Surplus (Uberschuss) variable
el @x < b o —ax=-b aixzbiea:bei aixsbiealxtxis:bi aixzbiealx_sxisti
a'x > b; x; >0 x; >0
variables | Nonpositive to nonnegative |Free to nonnegative
j €] X = —X x; = xt —x7
: xj§0—>szo xjfree_)]?fﬁxjj'_zoj
Geometric aspects
Halfspace H={x€eR%a’"x < b} euclidean space divided by a plane ax=>b ax > b
linear: b = 0, affine b = arbitrary
Hyperplane H = {x € R*: a’x = b} in 3D, the hyperplane is a 2d plane
linear: b = 0, affine b = arbitrary ax <b .~
Normal vector a
Polyhedron P ={x e R":Ax < b} is the intersection of a finite number | —xH 2y> 8
i=1..m of halfspaces. can be unbounded. 2xt+y <14
solution space of a system of linear
equalities is also a polyhedron. —3=0 2xFy <10
polyhedron is a convex set. <
Polytope P={x€eR"Ax < b,l < x < u} |bounded polyhedron
always use <
Eulerian Walk walk through a graph and use every If a graph has an Eulerian walk
vertex one's then the number of odd degree
vertices is either 0 or 2.
Theorem A LP with solution space P always has an optimal solution that is a vertex, as far as
- P has any vertices ("P is pointed")
- the optimum is finite
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Simplex Algorithm

Given Il (3): ().\'I + 5.\': <72 ): _3'\.1 +2x, <2
linearsystem |P={x€R*Ax<b}| —3x;+2x,<2 ||| 8-
(convert to <) —2x; + 5x, <16 | (2) -l
6x; +5x, <72 | (3) (2):=2x, +3x, <16
—x, <0 @) ¢+
—x, <0 (5)
level set max{c’x: x € P} max{5x; + 8x,} c=(58)
Prepare )
matrix 4 /—3 2 \ /2
vector b -2 5 16
levelsetc|A=| 6 5 =|72],c=(5,8)T
-1 0 0
0 -1 0
These algorithm calc the max for min: min{—cx} = — max{cx} 1 2 3 4 5 6 7 8 9 10 11 12
Algorithm
1. choose basic | Basic selection B Bc{l,..,m}of |IBl|=n Ag = (—3 2)
selection Basis Ag B = {1,2} —22 5
right hand side by bg = (16)
2. calcthe inverse basis A (5,2) 5 2
inverse (=2,-3) % oa-1 11 11
A=A = 2 3
_ 11 11
3. calc vertex v | basic solution v = Aby 5 2
_ 11 11 2N _
2z 3/ (16) ( )
_ 1111
4. calcvector |"reduced cost" u’ ul =c"A 5 2
T 11 11 41 34
u T 11 11| _ (__ _)
11 11
5. stop if u’ > 07 ul 207
in all inequalities
6. continue u; <0 choose j so that uji 0 first element of uy is negativ
=—4; first elementof Bis1.» j=1 -es
7. determine AER° A+ Ad)=Av+AAd < b — / \ /
A* bi — a[ -2 5

)
N o A T A 4

e K ) RIS
(G6\ [ o\ (i) )

L
E/AEA

=11
8. stop if A= - Ad <0
9. new basic B’ B' =B — {j}u {k} B’ ={1,2} — {1} v {3} = {2,3}
selection
10. calc vertex v vV=v4+2A
5 v=()rnl)-0)
11.gotostep 1
visualise:
L ¢ [ By | by | 4p | A" | v | w [ j | da [ x» [ 3 [ @

inverse a 2x2 matrix

e R
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Linear Program (LP)

Mixed Integer LP (MIP)

Integer LP (ILP or IP)

max{c"x: x € P}
P = {x € R™ Ax < b}

max{c"x:x € P N 71}
P = {x € R": Ax < b}
Kc{l..n}
Zﬁz{xeR":ijZforjeK}

max{c"x:x € P N7Z"}
P = {x € R": Ax < b}

g

4 \5

W

s [y

A
I
|
I

optimal solution on vertex

some variables are integer

all variables are integer

Simplex

Commercial: Gurobi, CPLEX
Non-Commercial: GLPK, LPSOLVE, SCIP, ...
Algebraic Model Lang: GAMS, AMPL, LPL,
OPL, AIMMS

6+7. Integer Linear Programming

Naive idea
not practicable

problems:

1. Solve problem with LP
2. round up/down to get integer solution

solution may not be a feasible solution
solution may be "far away" from optimal solution

of (IP)

Optimal solution -..

- Rounded vectors

;"Optimal solution

of (LP)

Relaxations Enlarge solution space

S-S withScs'
max{f(x):x € '} = max{f(x): x € S}
e.g. by removing constraints

Increase objective function

fx) - f'(x)withf'(x) = f(x) forx €S
max{f'(x):x € §'} = max{f (x): x € S}

IEON
£10x) —
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Branch-and-Bound (B&B) Method (=Divide and Conquer)

Branching If LP solution is all integer: ) x
STOP -> Current node optimal solved 3

I, : 11, with additional constraint x, < |

X =42 1 1, with add. conse . - >
UB _ B
Otherwise: Choose some fractional variable o=l

and round up/down x," =(2,1%)

zf‘? =19

max z CjX;j :Z ajx; < b,x; € {0,1}

Jj€J J€J
Given:
ltemj €] A |B |C |D b =18
Value ¢; 10 |12 |28 (21
Volume a; 7 |4 |8 |9
Prepare:

C.
1. Calc benefit per volume: ]/aj

2. Sort in decreasing order

ltemj € ] C B|D]|A
new| 1 2 | 3| 4

Value ¢; 28 |12 21| 10
Volume q; 8 4 |9 |7
Benefit per Volume 1 1 3
3= | 3 |2=]1=

2 3 7

Algorithm

Root Node no fixed values in root node J2=0jl=0

Per Node
check | if sum of volume J! > b stop "pruning (infeasible)"

calc upper bound | add items from left to right 2 T 2

last item fractionally X = (1'1'5' 0'0) 77 =28+412 +§21 =>4

check | if currentys < global; g -> stop "pruning (dominance)"

calc lower bound | round down fractional item x'® = (1,1,0,0,0)T zlB =28+ 12 =40
check | if current,p > global, g -> add "global update" [1]:z!B = 40
check | if current; g = currentyg -> stop "pruning (optimal)"

branch (split by {3} Leaf Node 1: /2 = {3},J1 = ¢

fractional item) Leaf Node 2:J°? = @, ]! = {3}

x? =(1,1,1,0),z7 =28
X2 =(1,1,0,0),z% =28
Global Update

[9]r=1:
J=p3LT =0
X =(1,1,0,9),z% =28+12+£10 =482

Pruning (Dominance)

=@, J =3}
X% =(1,4,1,0,2° =28+112+21=52
% =(1,0,1,0),zF =28+21=49

Global Update

[6]1r=3:
I ={2},J; = {3}

X7 =(1,0,1,1),z% =28+21+110=502
x% =(1,0,1,0),z7 =28+21=49

Blr=4:
J,=@,0;={23}
% =(£,1,1,0),z% =228+12+21=501
x¥ =(0,1,1,0),z” =10+21=33

o *

[81r=7:

o 1
J, ={2,4},7, ={3}
% =(1,0,1,0),z"% =28+21=49
Pruning (Dominance, Optimality)

[71r=8:
JP={2LJl = (3.4}

X =(3,0,1),z7 =128 +21+10=38
x¥ =(0,0,1,1),z¥ =20+10=31
Pruning (Dominance)

[5]r=5:
g ={1},J; ={2,3)

x® =(0,1,1,%),z% =12+21+210 =404
Pruning (Dominance)

[4]r=6:
JP=@,J ={1,2,3}
Pruning (Infeasibility)
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Definition Let S = P N Z™ be the solution space for ILP II.

A polyhedron P’ € R" is called an (ILP-)formulation for [1if P’ N Z" = §

P' is called a better formulation for ITif P' < P.
Convex hull k k

conv(S) = [x ER™x = Zlixi withx' € 5,1, 20,i=1 ...k,z A= 1}
i=1 i=1
S C conv(S)
is the smallest convex set containing S.
max{c’x: x € S} = max{c"x: x € conv(S)}

Integer hull P, = conv(P N'Z")

If P € R" is a rational polyhedron then Py is a rational polyhedron and

the best ILP formulation.

All vertices of Py are interger.
Rational P ={x € R": Ax < b}forsome A € Q™ ™, b € Q™
polyhedron
Theorem Each ILP corresponds to some LP

Let P € R"™ be a rational polyhedron.
Suppose ILP max{c"x: x € P N Z"} has a finite optimum.
Then max{c"x:x € P N Z"} = max{c"x:x € P;}

Valid inequality

Let P € R™ be a polyhedron. An inequality a”x < f is a valid inequality
for Pif a’x < B is valid for all x € P.
-> |t does not cut any point inside P.

Cutting plane

A cutting plane for a polyhedron P is a valid inequality for Py.
-> |t does not cut any point inside Py.

Example

Given: 3 Inequalities X
(D):—2x,+x, <0
(2):2x1 aF Xo <6
(3): —x2 S _1
Combine inequalities: z * (1) + i * (2)

3 3 1 1 3 1
1*72x1+21x2+z*2x1+z*1x2SZ*O+Z*6 |

3
—x; +x,; < > (= can be rounded down)

-2 1 0 _T
3
A:(Z 1>;b=(6> (l):_2x1+x1<0
0 -1 -1 &

=% 4h g Sl

(2):2x, +x,<6

resulting new inequality (Gomory-Chvatal-Cut)

31 \" G-C-Cut 4
=(=,= >
u=(33:0) 20 | arx<ip)

—X1 + Xy <1 a = uTA = (—1’1)T T

B:: usz

N | w
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Lecturer: Prof. Dr. Andreas Klinkert & Prof. Dr. Lin Himmelmann

Page 9 of 11



ZHAW/HSR Print date: 08.02.19 FTP_Optimiz

8+9. Nonlinear Continuous Optimization

Minimization Given the (continuous) function
Problem fiR* > R
x = f(x)
Find a point x* where f attains its minimum.
Remarks | Looking for the maximum of a function f is equivalent to finding the minimum of —f.
The optimization is called one-dimensional if n = 1 and multidimensional fin > 2

Gradient 8f (%) The gradient of a function f: flx,y) = x? +y?
8x, R"™ > R is' the vgcto'r consisting of Vf(x,y) = @x)
Sf(®) the n partial derivatives. y
V(@) = | 5x | At each point %, the gradient
i Vf (X) points in the direction of
\Sf(x) steepest ascent.
5xy, Its norm |Vf(%)]| gives the slope.
stationary point N 0 If the point X, is an extremal point, the gradient must vanish (=0).
Vixe) =0={ .. not every stationary point is an extremal point -> saddle point.
0
Alg 1: is an algorithm to find a local minimum of an (unconstrained multidimensional) function f
Gradient descent start at random point x,
iterate x; = x;44 _ _ .
Linear convergence determine gradient xt = xt — BVf(x)
-> Slow move by some amount [ in opposite direction
repeat until gradient is approximately zero
Step size 8 1: Successive halving of the step size (set § = 1) 80
- if worse -> half until better
- if better -> doubling while better 66 /
2: Successive halving of the step size with subsequent parabola fitting | 74 o
(choosing x;,, according to the minimum of the parabola). | — ——»
Compute P(t) = at? + bt + c such that \ £ 8% 28
P(0) = f(xH =c } e
P(B) = f (x' ~ BVFGY) =P Hbb P
P(2p) = f (x' - 28Vf () = 4af® +2bf + c (g
P(t) attains its minimum in the intervall [0,23] at ‘ SN .
__B 3+P(0)—4+P(B) +P(2p) P
= — % - —
B 2 PO)—2xP(B)+P(2B) 2a
choose better of 5 or §*
ﬁ'g zt: '« Method Tangent t at (xi,f(xi)) has slope f'(x*) @
ewton's Metho N i iy —
(finds zeros of te) = f(x)(x x})c(-;i];(x )=0 Py tangent at (x”,1(x),
a function) Sx=xl— - ; e Bopeo)
f’(xl) f(;)
Quadratic converg. apply to derivative f'(x) approximates to zeros of f'(x) stai VIR

-> extrem points

-> Fast £ 52f (xh) 82f (xh)
. . x
X =t = s 8x16%, 85x,6x,
f (x ) Hf(xl) = .
for muItldlmen5|or1aI -> us'e He55|an‘-malt1r|x | 82F (xY) 52f (xh)
el =i — (Hf(x‘)) VF(xh) §x,0x; T 6x,6xy,
Speed of Linear convergence c € (0,1) and iy € Nsuchthatforalli i, | |x* — x| < c|x” — x|
convergence Superlinear convergence |sequence {c;};ey With lim ¢; =0 x* — xi+1| <clx - le
n—-oo
Quadratic convergence ¢ > 0and iy € N sucht that for all i > i, x* — xi+1| < clx* = xi|2
Approximating Computing the partial derivates of f exactly may be impossible or computationally too expensive.
partial derivates first partial derivatives Sf(x)  fOrq o Xipe o xn) = f(X1 o Xy o Xp)
Sx; 2€
second partial derivates 82f(x) [y e Xipe o X)) = 2 (g X)) + fO01 o Xy )
5x? €2
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Alg 3: Idea: Computing and inverting the Hessian matrix Hf(xi) exactly in the
Broyden's Method |Newton's method is computationally expensive. The idea in quasi-

N1
Newton is to approximate the inverse of the Hessian (Hf(xl)) , by

some matrix (A})~* that can be computed more efficiently.
At = %) = VF(D) = Vf ()
gt dt dt

(Vf(xi) _ Vf(xi‘l)) — Ai-1 (xi _ xi—l) (xi _ xi—l)

T

At = AT+

2
xi — xi-1
h,'_/

dl
(g _Ai—ldi)diT

|a|?
They key insight of Broyden's method is that we do not need to invert
At explicitly in each step
xi+1 — xi _ (Ai)—lvf(xi)
Instead we can compute (4°)~ by updating (4°"1)~* according to the
so-called Sherman-Morrison formula.
computation|1. Start with x°.
-1

a) Compute Vf(x%) and set (497 1:= (Hf(xo)) .

b) Compute x!'=x°— (49" 1Vf(x?)
2. Iteration step:

a) Compute Vf(x!), gHVf(x) —Vf(x1) and di = x!—xi!

b) Compute (49! with Sherman-Morrison

c) Set xi*1 = x! — (A)~VF(xY)
Sherman-Morrison | Let A be a regular matrix, u and v two vectors. We can compute (A")~" directly from (41=1)~!
0(n?) instead 0(n?) . . A Tlgl — T(4i-1)~1
4 :(Al_l)_l_(( )"'g ')( ) ( )
( )T(Al—l)—lgl
Alg 4: Aitken's method is not a new method, but can be used to improve the
Aitken's convergence speed of other existing methods.
acceleration method
Example with Pi z‘” 4 K
= —1)* = 3.14159265
k=02k +1 D

i=0|i=1|i=2|i=3|i=4
normal . Zi 4 n 4 |2.6667|3.4667 |2.8952|3.3397
formular| * T k=0 2k + 1'( )
Aitken (xt — xi71)2 - — 3.1667|3.1333|3.1452

T T

10+11. Graphs and Networks

see document 'Combinatorial Problems'
see document 'Graph Theory'

12-14. Heuristics

see document 'Combinatorial Problems'
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