GRAPH THEORY

Introduction			
Graph G	A graph is an ordered pair $G=(V, E)$ where V is a finite set of elements and E is a set of 2-subsets of V .		$\begin{gathered} V=\{1,2,3\} \\ E=\{\{1,2\},\{1,3\}\} \end{gathered}$
Edges E	connection between two vertex. $E \subseteq V \times V$		$\|E\|=n_{E} \geq 0$
Vertices V (nodes)	point where two or more lines meet		$\|V\|=n_{V}>0$
Face F	plane between lines/edges		$\|F\|=n_{F} \geq 0$
Euler	for connected planar subdivisions (we also count the face around)	$2 \leq n_{V}-n_{E}+n_{F}$	
Loop	Is an edge which start and ends at the same vertex	0	
Multiple edge	Is an edge where there has been already an edge	\longrightarrow	
Multigraph	A multigraph is a graph with multiple edges. Multigraphs are allowed to have multiple edges and loops		
Simple graphs	Graphs without loops, nor multiple edges		
Directed graph	Each edge has a associated direction. The order of two vertices defining an edge matters.		$E=\{(1,2),(1,3)\}$
Order of the graph	number of vertices		$\|V\|=3$
Size of the graph	number of edges		$\|E\|=2$
Adjacent = Neighbors	either two vertexes which are connected by an edge or two edges which have a common vertex		
Degree of a vertex	number of edges through this vertex = open neighborhood $\operatorname{deg}_{G}(v)=\left\|N_{G}(v)\right\|$		$\operatorname{deg}_{G}(v)=4$
Weighted graph	Each edge is assigned a real number as its "weight". A weight function assigning a real number to each edge $e \in E$.	$\begin{array}{r} 30 \\ 0 \end{array}$	
Diameter of a graph	The longest distance between two nodes is called the diameter of the graph. In weighted graph.		$d i a=5$
Families of Graphs			
Empty graph	No edges between vertexes		$\begin{aligned} & \|V\|=n \\ & \|E\|=0 \end{aligned}$
Sparse Graph	A graph in which the number of edges is much less than the possible number of edges.		$\|E\| \ll\left\|E_{\max }\right\|$
Dense Graph	A graph in which the number of edges is close to the possible number of edges.		$\|E\| \gg\left\|E_{\min }\right\|$
Complete Graphs K_{n}	Each vertex connects each other.		$\begin{gathered} \|V\|=n \\ \|E\|=\frac{n *(n-1)}{2} \end{gathered}$
Bipartite Graph	A graph whose vertex set can be partitioned into 2 sets V_{1}, and V_{2} such that every edge $u v \in E$ has $u \in V_{1}$ and $v \in V_{2}$.		
Complete Bipartite Graph $\boldsymbol{K}_{\boldsymbol{n}, \boldsymbol{m}}$	A bipartite graph with every possible edge		$K_{3,2}$
Star $\boldsymbol{K}_{\mathbf{1 , m}}$	A Complete Bipartite start with only one vertex on one side.		$K_{1,3}$
(Hamilton) Circles $\boldsymbol{C}_{\boldsymbol{n}}$	Each vertex has 2 neighboors. A cycle C_{n} is a graph whose vertices can be arranged in a cyclic sequence, such that the edge set is $E=\left\{v_{i} v_{i+1} \mid i=1 \ldots n-1\right\} \cup\left\{v_{i} v_{n}\right\}, n \geq 3$		$\begin{aligned} & \|V\|=n \\ & \|E\|=n \end{aligned}$
Path $\boldsymbol{P}_{\boldsymbol{n}}$	A path P_{n} is a graph whose vertices can be arranged in a sequence, such that the edge set is $E=\left\{v_{i} v_{i+1} \mid i=1 \ldots n-1\right\}$	$\bullet-\bigcirc$	$\begin{gathered} \|V\|=n \\ \|E\|=n-1 \end{gathered}$
Triangle	triangle $=C_{3}=K_{3}$		$\begin{aligned} & \|V\|=3 \\ & \|E\|=3 \end{aligned}$

| connected graph | A graph G is connected if for every pair of distinct vertices $u, b \in$
 $V(g)$ there is a path from u to v in G. | $\|E\|=\|V\|-1$ |
| :--- | :--- | :--- | :--- |
| Tree | A tree is a connected graph without cycles.
 A tree is a minimal graph connecting all of its nodes. | 2-regular = cycles
 $3-r e g u l a r ~=~ c u b i c ~$ |
| Disconnected graph | | |
| or Subdivision | | |\quad A graph with a single or multiple vertices without connection

Storage Formats / Data Structures

Adjacency Matrix	captions are vertices. content are edges. $\left.A=\begin{array}{c} \\ 1 \\ 2 \\ 3 \end{array} \begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right], \quad A_{i j}=\left\{\begin{array}{c} 1, \text { if } i j \in E \\ 0, \text { otherwise } \end{array}\right.$ Note: same information as the graph Note: the sum of a row/column is the degree Undirected graphs have symetric matrices. Weighted graphs have the weights in the matrix.	$\begin{aligned} & \text { place complexity: } \\ & \quad M\left(n_{V}, n_{E}\right) \in O\left(n_{V}{ }^{2}\right) \\ & \text { update: } O(1) \end{aligned}$	
Adjaceny List	Each node has direct access to a list of its neighbors. Use for a sparse graph. Space-efficient.	$\begin{aligned} & M\left(n_{V}, n_{E}\right) \in O\left(n_{V}+n_{E}\right) \\ & \text { update: } O(\log (n)) \end{aligned}$	$\begin{array}{\|l\|l\|l\|} \hline 1 & 2 & 3 \\ \hline 2 & \\ \hline 2 & \\ \cline { 1 - 1 } 3 & \\ \hline \end{array}$
Winged Edge Data Structure 1972	class Edge\{Vertex X Y, Face 1 2, Edge b c de\} class Vertex\{Edge[x]\} class Face\{Edge[x]\}	simple and easily usable redundant information holes in faces not allowed	
DCEL - Doubly Connected Edge List 1978	class Vertex\{Edge incident\} class Face\{Edge outer, Edge inner\} class HalfEdge\{Vertex origin,Face incident, Edge twin next prev\} inner boundary circle is clockwise outer boundary circle is counter-clockwise	very intuitive, easy to use restricted to surfaces used in CGAL \# edges $=2$ * edges incidence $=$ some kind of neighboorhood	
Quad-Edge Data Structure 1985	```class Edge{Vertex origin, Edge next rot flipped} class Vertex{Edge incident} class PrimalVertex{} class DualVertex{} Dnext = e. }\mp@subsup{\underbrace}{\mathrm{ sym }}{\mathrm{ rot.rot }}.\mathrm{ oNext. }\mp@subsup{\underbrace}{\mathrm{ sym }}{\mathrm{ rot.rot} Rnext = e.rot.oNext.rot.rot.rot Lnext = e.rot.rot.rot.oNext.rot```	represents map and dual can represent möbius strip simplified version in JTS \# edges $=4$ * edges 	

