GRAPH THEORY

Introduction			
Graph G	A graph is an ordered pair $G = (V, E)$ where V is a finite set of		$V = \{1, 2, 3\}$
	elements and E is a set of 2-subsets of V.		$E = \{\{1,2\},\{1,3\}\}$
Edges E	connection between two vertex. $E \subseteq V \times V$		$ E = n_E \ge 0$
Vertices V (nodes)	point where two or more lines meet		$ V = n_V > 0$
Face F	plane between lines/edges		$ F = n_F \ge 0$
Euler	for connected planar subdivisions (we also count the face around)	2 ≤	$n_V - n_E + n_F$
Loop	Is an edge which start and ends at the same vertex		
Multiple edge	Is an edge where there has been already an edge		
Multigraph	A multigraph is a graph with multiple edges. Multigraphs are allowed to have multiple edges and loops	5	
Simple graphs	Graphs without loops, nor multiple edges	4	
Directed graph	Each edge has a associated direction. The order of two vertices defining an edge matters.	4	$E = \{(1,2), (1,3)\}$
Order of the graph	number of vertices		V = 3
Size of the graph	number of edges	~	E = 2
Adjacent = Neighbors	either two vertexes which are connected by an edge or two edges which have a common vertex	• — •	
Degree of a vertex	number of edges through this vertex = open neighborhood $\deg_{G}(v) = N_{G}(v) $	\checkmark	$\deg_{\rm G}(v)=4$
Weighted graph	Each edge is assigned a real number as its "weight".		
	A weight function assigning a real number to each edge $e \in E$.	3	
Diameter of a graph	The longest distance between two nodes is called the diameter of the graph. In weighted graph.	2	<i>dia</i> = 5
Families of Graphs			
Empty graph	No edges between vertexes	•••	V = n $ E = 0$
Sparse Graph	A graph in which the number of edges is much less than the possible number of edges.	. \ \	$ E \ll E_{max} $
Dense Graph	A graph in which the number of edges is close to the possible number of edges.		$ E \gg E_{min} $
Complete Graphs K _n	Each vertex connects each other.		$ V = n$ $ E = \frac{n * (n - 1)}{2}$
Bipartite Graph	A graph whose vertex set can be partitioned into 2 sets V_1 , and V_2 such that every edge $uv \in E$ has $u \in V_1$ and $v \in V_2$.		
Complete Bipartite Graph $K_{n,m}$	A bipartite graph with every possible edge	×.	K _{3,2}
Star K _{1,m}	A Complete Bipartite start with only one vertex on one side.	>	K _{1,3}
(Hamilton) Circles C_n	Each vertex has 2 neighboors. A cycle C_n is a graph whose vertices can be arranged in a cyclic sequence, such that the edge set is $E = \{v_i v_{i+1} i = 1 \dots n-1\} \cup \{v_i v_n\}, n \ge 3$	\bigcirc	V = n $ E = n$
Path P _n	A path P_n is a graph whose vertices can be arranged in a sequence, such that the edge set is $E = \{v_i v_{i+1} i = 1 \dots n - 1\}$	• • • •	V = n $ E = n - 1$
Triangle	$triangle = C_3 = K_3$	4	V = 3 $ E = 3$

ZHAW/HSR

Print date: 08.02.19

connected graph	A graph G is connected if for every pair of distinct vertices $u, b \in V(g)$ there is a path from u to v in G .	4	
Tree	A tree is a connected graph without cycles. A tree is a minimal graph connecting all of its nodes.		E = V - 1
Disconnected graph or Subdivision	A graph with a single or multiple vertices without connection	Γ.	
Regular graph	A graph G is r -regular if $\deg_g(v) = r$, $\forall v \in V(G)$ Paths are not regular. Complete graphs are $(n - 1)$ -regular	Ð	2-regular = cycles 3-regular = cubic
Plane Graph	Can be drawn without any edge crossings.	Ø	
Dual	 rotating edges by 90° replace vertices with faces and vice versa Dual of a tetrahedron is a rotated copy of itself. Dual of a Cube is a octahedron. 		

Storage Formats / Data Structures						
Adjacency Matrix	captions are vertices. content are edges. $A = \begin{cases} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 3 & 1 & 0 & 0 \end{cases}, \qquad A_{ij} = \begin{cases} 1, if \ ij \in E \\ 0, otherwise \end{cases}$ Note: same information as the graph Note: the sum of a row/column is the degree Undirected graphs have symetric matrices. Weighted graphs have the weights in the matrix.	place complexity: $M(n_V, n_E) \in O(n_V^2)$ update: $O(1)$	1 2 3			
Adjaceny List	Each node has direct access to a list of its neighbors. Use for a sparse graph. Space-efficient.	$M(n_V, n_E) \in O(n_V + n_E)$ update: $O(\log(n))$	1 2 3 2 3			
Winged Edge Data Structure 1972	class Edge{Vertex X Y, Face 1 2, Edge b c d e} class Vertex{Edge[x]} class Face{Edge[x]}	simple and easily usable redundant information holes in faces not allowed				
DCEL - Doubly Connected Edge List 1978	class Vertex{Edge incident} class Face{Edge outer, Edge inner} class HalfEdge{Vertex origin,Face incident, Edge twin next prev} inner boundary circle is clockwise outer boundary circle is counter-clockwise	very intuitive, easy to use restricted to surfaces used in CGAL # edges = 2 * edges incidence = some kind of neighboorhood	v Twin(\vec{e})			
Quad-Edge Data Structure 1985	class Edge{Vertex origin, Edge next rot flipped } class Vertex{Edge incident } class PrimalVertex{} class DualVertex{} Dnext = e. <u>rot.rot</u> .oNext. <u>rot.rot</u> sym Rnext = e.rot.oNext.rot.rot Lnext = e.rot.rot.rot.oNext.rot	represents map and dual can represent möbius strip simplified version in JTS # edges = 4 * edges Primal & Dual	Right			