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ADVANCED PROGRAMMING PARADIGMS 
120min, alle schriftlichen Unterlagen, keine elektronische Geräte 

Introduction (1 Woche) 

Programming Paradigms 

paradigm theory of ideas about how something should be done (e.g. pattern) 

programming 
paradigm 

fundamental style of programming, with explicit aspects (e.g. state, concurrency/parallelism, nondeterm.) 
e.g. ‘see below’ and constraint programming, concurrent programming and parallel programming 

software 
quality 

• reliability (correctness, robustness) 

• modularity (extendibility / reusability) 

• compatibility, efficiency, portability, ease of use, timeliness 

Multiparadigm Several paradigms 
can be combined into 
a single language 

ML -> functional with imperative features 
C# -> object-oriented with functional features 
F# -> functional with object-oriented features 

Scala -> functional + object-oriented 
Curry -> function + logic 
Curry is based on Haskel 

Correctness program should be correct with respect to its specifications 

• testing (find faults/bugs) -> choose input, run, and check output 

• proving (show the absence of faults) -> no input, nor exec, but apply mathematical rules 

Verification tools for object-oriented programs: Spec#, Dafny 
first step towards program verification: ill-typed expression will not compile (automatic, light-weight) 

 Example Theorem: (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 
Es kann mit endlichen vielen Schritten gezeigt werden, dass es für unendlich viele Werte gilt. 

Referential 
Transparency 

LEIBNIZ = substitution of equals for equals = referential transparency 
-> order has no influence on result 

Program 
transformation 

𝑥 = 𝑓(𝑎), 𝑎𝑛𝑑, 𝑥 + 𝑥 = 2 ∗ 𝑥 
𝑥 + 𝑥 = 2 ∗ 𝑥 = 𝑓(𝑎) + 𝑥 = 𝑥 + 𝑓(𝑎) = 𝑓(𝑎) + 𝑓(𝑎) = 2 ∗ 𝑓(𝑎) 

Misuse of the 
Equality Symbol  

assignments like 𝑥 ≔ 𝑥 + 1 has not the slightest similarity to equality 
𝑥 becomes/gets/receives 𝑥 + 1, but never 𝑥 equals/is 𝑥 + 1 ---> a different symbol should be used ≔ or ← 

Reducible expr  redex: e.g. 𝑚𝑢𝑙𝑡(𝑥, 𝑦) = 𝑥 ∗ 𝑦 

Evaluation 
Strategies 

 innermost (call-by-value) 
prefer leftmost 

outermost (call-by-name) 
prefer leftmost 

lazy (outermost + sharing) 
work with pointers 

Example 𝑚𝑢𝑙𝑡(1 + 2, 2 + 3) 
= 𝑚𝑢𝑙𝑡(3, 2 + 3) 
= 𝑚𝑢𝑙𝑡(3, 5) 
= 3 ∗ 5 = 15 

𝑚𝑢𝑙𝑡(1 + 2, 2 + 3) 
= (1 + 2) ∗ (2 + 3) 
= 3 ∗ (2 + 3) 
= 3 ∗ 5 = 15 

𝑠𝑞𝑢𝑎𝑟𝑒(1 + 2) 
= (1 + 2) ∗ (1 + 2) 
= 3 ∗ (1 + 2) 
= 3 ∗ 3 = 9 

argument evaluated exactly once zero or more times at most once 

sharing: keep only a single copy of the argument expression and maintain a pointer to it 
whenever there exists an order of evaluation that terminates, outermost (and thus lazy) evaluation finds it 

 Overview 

 imperative object-oriented functional logic 

based on read and update state 
(e.g. Turing machine) 

<-- imperative with support for 
abstraction and modularization 

𝜆-calculus and reduction 
(replace by simpler expr) 

first-order logic 
(pedicate logic) 

concepts data structures (variable, 
records, array, pointers) 
computations: 

• expressions (literal, identifier, 
operation, function call) 

• commands (assign, 
composition, conditional, 
loop, procedure call) 

abstraction: function/procedure 

objects as instances of classes 
encapsulation (inform. hiding) 
inheritance for modularity, 
subtyping, polymorphism, 
dynamic binding 
genericity 

no state/cmds, but expr. 
no loops, but recursion 
functions (recursiv, anonym, 
curried, higher order), 
polymorphic 
overloaded types 
pattern matching 
type interface 
eager or lazy evaluation 

logical formulas 
expr 
machine solves 
and 
programmer 
guides 
HORN clauses 

examples Ada, Algo, C, Cobol, 
Fortran, Modula, Pascal 

C++, C#, Eiffel, Java, 
Objective-C, Simula Smalltalk 

F#, Haskell (lazy eval),Lisp, 
ML (eager eval), OCaml 

Prolog 

consist of n-expr: 
n-cmds: 

𝑦 ≔ 0, 𝑎 ≔ 3 
function 𝑓(𝑥)  begin 𝑦 ≔ 𝑦 + 1; return 𝑥 + 𝑦 end 

n-decl: 𝑓(𝑥) = 2 ∗ 𝑥 + 1 
𝑎 = 3 

 

1-expr: 𝑎 + 𝑓(𝑎) 

n-exec: 𝑓(𝑎) + 𝑓(𝑎) returns 4 + 5 = 9 1-eval: 3 + 𝑓(3) = 10 

order no referential transparency referential transparency  

syntax expressions (-> yield value) + commands (-> new state) expressions -> yield value  

semantics values + environment + state values + environment  

proving possible but complicated, use HOARE logic/triple easy  
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Funktionale Programmierung - Programming in Haskell (5 Wochen) 

Ch1-Ch3 – Introduction, First Steps, Types and Classes 

Functional prog. Programming style in which the basic method of computation is the application of functions to arguments. 

File suffix .hs 

Compiler GHC (Glasgow Haskell Compiler) is the leading implementation of Haskell, compiler and interpreter "ghci" 

Interpreter : (mit Doppelpunkt) 

File/Script :l FileName // = :load 
:r // = :reload 
:? oder :h // = :help 

lade ein File 
reload script (no change detection) 
show all commands 

Types 
Uppercase, 
Typ-safe/error 

e :: t // e has type t 
:t 1+1 // = :type 1+1 

type inference -> autom. calculated at compile time 
show type without evaluating 

Bool // False or True 
Char 
String // = [Char] 
Int  
Integer 
Float, Double 

Logical values 
Single Character 
Strings of characters 
Fixed-precision integer 
Arbitrary-precision integer 
Floating-point numbers 

show :set +t 
:unset +t 

Show type in following expressions 
Hide type in following expressions 

type classes Eq 
Show - Read 
Num 
Ord // Eq a => Ord 
Integral // (Num a, Ord a) => Integral 
Fractional // Num a => Fractional 
Enum – Bounded – Floating 

Equality – all except IO and functions 
Showable / Readable – all except IO and functions 
Numeric – Int, Integer, Float, Double 
Ordered – all except IO and functions 
Integral – Int, Integer 
Fractional – Float, Double 
sequentially ordered – upper/lower bound - floating 

basic functions 
lower-case 

+ - * 
negate, abs, signum 
^ 
fromInteger 
/ 
fromRational 
recip 
== /= 
< <= > >= 
min, max 
show 
read 
sqrt 
div, quot, rem, mod 
quotRem, divMod 
&&, || 
not 

:: Num a => a -> a -> a 
:: Num a => a -> a 
:: (Num a, Integral b) => a -> b -> a 
:: Num a => Integer -> a 
:: Fractional a => a -> a -> a 
:: Fractional a => Rational -> a 
:: Fractional a => a -> a 
:: Eq a => a -> a -> Bool 
:: Ord a => a -> a -> Bool 
:: Ord a => a -> a -> a 
:: Show a => a -> String 
:: Read a => String -> a 
:: Floating a => a -> a 
:: Integral a => a -> a -> a 
:: Integral a => a -> a -> (a,a) 
:: Bool -> Bool -> Bool 
:: Bool -> Bool 

Cast 2 // Num p => p 
2 :: Int // Int 
2 :: Float // 2.0 Float 
(2 + 2) :: Double // 4.0 Double 
2.0 // Fract.. p=>p 
2.0 :: Int // error 
(2::Int)+(2::Double) // error 
[2, 2.0] // Fract.. a=>[a] 
[2::Float, 2::Double] // error 

 
 
 
 
 
No instance for (Fractional Int) arising from literal 
Couldn't match expected type with actual type 
 
Couldn't match expected type with actual type 

Declaration x = 17 // or “let x = 17”  

List [1,2,3] // Num a => [a] 
[False,'a',False] // error 
[['a'],['b','c']] // [[Char]] 
[] // [] 

Declare list, all elements must be from the same type 
Length not known during compile time 
list arguments have a 's' suffix 
empty list 

functions head [1,2,3,4,5] // 1 
head [] // exception 

select the first element :: [a]->a 

tail [1,2,3,4] // [2,3,4] 
tail [5] // [] 
tail "x" // "" -> type 

remove the first element :: [a]->[a] 
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[1,2,3,4,5] !! 2 // 3 select the nth element :: [a]->Int->a 

take 3 [1,2,3,4,5] // [1,2,3] select the first n elements :: Int->[a]->[a] 

drop 3 [1,2,3,4,5] // [4,5] Remove the first n elements :: Int->[a]->[a] 

length [1,2,3,4,5] // 5 length of a list :: [a]->Int 

sum [1,2,3,4,5] // 15 sum of a list of numbers :: Num a=>[a]->a 

product [1,2,3,4,5] // 120 product of a list of numbers :: Num a=>[a]->a 

[1,2,3] ++ [4,5] // [1,2,3,4,5] Prepend a lists  :: [a]->[a]->[a] 

'h' : "allo" // "hallo" prepend element to list :: a->[a]->[a] 

reverse [1,2,3,4,5] // [5,4,3,2,1] Reverse a list :: [a]->[a] 

init [1..5] // [1,2,3,4] remove the last element :: [a]->[a] 

Tuple (False,'a') // (Bool,Char) 
(True,['a','b'])  // (Bool,[Char]) 
(1) // =1 
() // () 

List with different type, fix length during runtime 
Type of tuple encodes its size 

Functions Mathematics 
f(x) 
f(x,y) 
f(g(x)) 
f(x)g(y) 

Java 
f(x) 
f(x,y) 
f(g(x)) 
f(a,b)+ c*d 

Haskel 
f x 
f x y // function has higher priority 
f (g x) 
f x * g y 

layout f :: Int -> Int -- var A 
f x = x^2 

{f :: Int -> Int; f x = x^2} // var B 

define not :: Bool -> Bool 
not a = a == False 

functions and arguments lowercase 
a function is a mapping from values of one type to 
values of another type mult :: Num a => a -> a -> a 

mult x y = x*y 
factorial (Enum a, Num a) => a -> a 
factorial n = product [1..n] 
add :: Num a => (a, a) -> a 
add (x,y) = x+y 
twice :: (t -> t) -> t -> t 
twice f x = f (f x) 

use factorial // error 
factorial 10 // 3628800 
factorial 10 20 // error 
add (2,3) // 5 
([abs, factorial] !! 1) 3 // 6 

No instance for (Show (Integer -> Integer)) 

it :: (Num a, Enum a) => a 
Non type-variable argument in the constraint 
attention, takes a tuple as input 
works because of lazy evaluation 

Curried 
Functions 
(default) 

add' x y = x + y // Int->(Int->Int) 
mult (add’ 2 3) 5 
Int -> Int -> Int // Int -> (Int->Int) 
mult x y z // ((mult x) y) z 

return functions as results 
this allows multiple arguments 
the arrow ‘->’ associates to the right 
natural functions associate to the left 

Polymorphic 
Functions 

length :: [a] -> Int 
length [False,True] // 2 (a=Bool) 

type contains one or more type variables (e.g. a) 
type variables are lower-case, and usually a,b,c, ... 

Overloaded 
Functions 

(+) :: Num a => a -> a -> a type contains one or more class constraints 
e.g. Num is for Int and Float 

Layout rule a = 10 
b = 20 // Good 

a = 10 
 b = 20 // Bad 

declaration must stay on the same column 
implicit grouping 

last value it  

Ch4 –  Defining functions 

conditional expr abs n = if n >= 0 then n else -n // abs (-4) 
signum n = if n < 0 then -1 else if n == 0 then 0 else 1 // 'else' is obligate 

Guarded 
Equations 

abs n | n >= 0 = n | otherwise = -n 

Pattern 
matching 
(separate file) 

{not False = True; not True = False} patterns are matched order 
not :: Bool -> Bool 
not False = True 
not _     = False 

more efficient (does not evaluate second arg if True) 
'_' is a wildcard pattern that matches any value 

List patterns [1,2,3,4] // = 1:(2:(3:(4:[]))) 
adds an element to the start of a list 
1:[]     // = [1] 
[1]:[]   // = [[1]] 
[2]:[3]:[]  // = [[2],[3]] 
([]:[]):[]  // = [[[]]] 

internally, every non-empty list is constructed by 
repeated use of operator ":" called "cons" 
[] = nil 

1:[2] // ok, [1,2] 
[1]:[2] // error 
[]:[]:[] // ok, [[],[]] 
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head (x:_) = x   // head :: [a] -> a 
tail (_:xs) = xs // tail :: [a] -> [a] 

functions on lists use this ":" operator 
x:xs patterns only match non-empty lists 
parenthesis due to priority (application over ":") 

f2 [x,y] = (x,y) // f2 [1,2] -> (1,2) Exception by parameter missmatch 

Lambda 
expressions 

𝜆𝑥 → 𝑥 + 𝑥 // lambda is written as '\' 
double x = x + x 

nameless function, usefule when defining functions 
that return functions as result 

e.g. odds n = map (\x -> x*2 + 1) [0..n-1] 
odds 10 // [1,3,5,7,9,11,13,15,17,19] 

maps an anonymus function to a list 

Operator 
Sections 

1+2 == (+) 1 2 == (1+) 2 == (+2) 1 
(/2) 

sections of operation 1+2 
halving function 

 f x g == x `f` g change operator from prefix to infix 

ch5 –  List comprehensions 

Comprehension {𝑥2|𝑥 ∈ {1. .5}} mathematic comprehension notation 

Generator [1..5] // [1,2,3,4,5]  

Lists 
comprehensions 

[x^2  | x <- [1..5]] // [1,4,9,16,25] 
[(x,y) | x <- [1,2,3], y <- [4,5]] 

define new lists based on old ones 
multiple ones are comma separated, order matters 

Dependant Gen. [(x,y] | x <- [1..3], y <- [x..3]] they are like nested loops 

concat concat :: [[a]] -> [a] 
concat xss = [x | xs <- xss, x <- xs] 
concat [[1,2,3],[4,5]] // [1,2,3,4,5] 

concatenates a list of lists to one list 
use dependant generators 

guards [x | x <- [1..9], even x] // [2,4,6,8] restrict values produced by earlier generators 

factors factors :: Int -> [Int] 
factors n = [x | x<-[1..n], n`mod`x==0] 
factors 15 // [1,3,5,15] 

factorize a number 
using list comprehension with guard 

prime prime :: Int -> Bool 
prime n = factors n == [1,n] 
prime 15 // False 

detect if number is a prime 

primes primes :: Int -> [Int] 
primes n = [x | x <- [2..n], prime x] 
primes 30 // [,3,5,7,11,13,17,19,23,29] 

list all primes until a number 
using list comprehension with guard 

zip zip :: [a] -> [b] -> [(a,b)] 
zip ['a'..'b'][0..] //[('a',0),('b',1)] 

maps two lists to a list of pairs 

pairs pairs :: [] -> [(a,a)] 
pairs xs = zip xs (tail xs) 
pairs [1,2,3,4] // [(1,2),(2,3),(3,4)] 

list of all pairs of adjacent elements from a list 

sorted sorted :: Ord a => [a] => Bool 
sorted xs = and [x<=y|(x,y)<-pairs xs] 
sorted [1,2,3,4] // True 

check if a list is sorted using pairs 

positions positions :: Eq a => a -> [a] -> [Int] 
positions x xs = [i | (x',i) <- zip xs 
 [0..], x == x'] 
positions 0 [1,0,0,1,0] // [1,2,4] 

list of all positions of a value in a  list 

string 
comprehensions 

"ab" :: String // == ['a','b']::[Char] 
zip "abc" [1,2] // [('a',1),('b',2)] 

because a string is a char list 
any polymorphic function works on strings 

count count :: Char -> String -> Int 
count x xs = length [x'|x'<-xs,x==x'] 
count 's' "Mississippi" // 4 

counting how many times a character occurs 

pyths pyths :: Int -> [(Int,Int,Int)] 
pyths z = [(x,y,z) | x<-[1..z], 
  y<-[1..z], x^2+y^2 == z^2] 

pythagorean: 
triple (x,y,z) of positive integers 

perfects perfects :: Integral a => a -> [a] 
perfects n = [n' | n' <- [1..n], sum 
(init (factors n')) == n'] 
perfects 500 // [6,28,496] 

factor n’, remove last element (init) and sum them, 
add only if equals n’ 

scalar product scalar :: Num a => [a] -> [a] -> [a] 
scalar a b = [c | i <- [0..length a-1], 
c <- [a!!i*b!!i]] 
scalar [2,5,3] [6,4,2] // [12,20,6] 

use iterater with length of list a, 
multiply each element of a and b 

Excursion: Implication and Equivalence  

implication 
→ 

(==>) :: Bool -> Bool -> Bool 
False ==> _ = True 
True ==> p = p 

define a function ==> which needs two bools 
when first param is False it returns True 
when first param is True it returns the second param 
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equivalence 
⇒ 

(<=>) :: Bool -> Bool -> Bool 
p <=> q = p == q 

define a function <=> which needs two bools 
returns if 'p' is equal to 'q' 

check 
correctness 

verifyImp p q = (p ==> q) <=> (not p || q) 
verifyEqu p q = (p <=> q) <=> ((p ==> q) && (q ==> p)) 
check verify = and [verify p q | p <- [False, True], q <- [False, True]] 
check verifyImp 
check verifyEqu 

Ch6 –  Recursive Functions 

Recursion fac n | n == 0 = 1 | otherwise = n * fac(n-1) as guarded equation 
rev [] = [] 
rev (x:xs) = rev xs ++ [x] 

as pattern matching 

on lists product :: Num a => [a] -> a 
product [] = 1 
product (n:ns) = n * product ns 

multiply each element of a list 

length :: [a] -> Int 
lenght [] = 0 
length (_:xs) = 1 + length xs 

length of a list 

reverse :: [a] -> [a] 
reverse [] = [] 
reverse [x:xs] = reverse xs ++ [x] 

reverse a  list 

multiple args zip :: [a] -> [b] -> [(a,b)] 
zip [] _ = [] 
zip _ [] = [] 
zip (x:xs) (y:ys) = (x,y) : zip xs ys 

zipping the elements of two lists 

drop drop :: Int -> [a] -> [a] 
drop 0 xs = xs 
drop _ [] = [] 
drop n (_:xs) = drop (n-1) xs 

remove the first n elements from a list 

append (++) :: [a] -> [a] -> [a] 
[] ++ ys = ys 
(x:xs) ++ ys = x : (xs ++ ys) 

append two lists 

Quicksort qsort :: Ord a => [a] -> [a] 
qsort [] = [] 
qsort (x:xs) = qsort smaller ++[x]++ qsort larger 
    where 
        smaller = [a | a <- xs, a <= x] 
        larger =  [b | b <- xs, b > x] 

split array by head element and sort 

and and :: [Bool] -> Bool 
and [] = True 
and (x:xs) = x && and xs 

logica and using recursion 

concat concat :: [[a]] -> [a] 
concat [] = [] 
concat (x:xs) = x ++ concat xs 

concat a list of lists to a list 

replicate replicate :: Int -> a -> [a] 
replicate 0 x = [] 
replicate n x = x : replicate (n-1) x 

adds an element n times to a list 

select (!!) :: [a] -> Int -> a 
(x:xs) !! 0 = x 
(x:xs) !! n = xs !! (n-1) 

select the n-th element of a list 

elem elem :: Eq a => a -> [a] -> Bool 
elem y [] = False 
elem y (x:xs) = if x == y then True else elem y xs 

check if a list contains an element 

merge merge :: Ord a => [a] -> [a] -> [a] 
merge [] [] = [] 
merge xs [] = xs 
merge [] ys = ys 
merge (x:xs) (y:ys) = if x < y then x : merge xs (y:ys) else y : merge (x:xs) ys 

msort msort :: Ord a => [a] -> [a] 
msort [] = [] 
msort xs = merge (qsort(take (length xs `div` 2) xs)) 
                 (qsort(drop (length xs `div` 2) xs)) 
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Ch7 –  High-order functions 

higher-order  taking a function as an argument or 
returning a function as a result 

twice twice :: (a -> a) -> a -> a 
twice f x = f (f x) 

takes function as input 

map map :: (a -> b) -> [a] -> [b] 
map f xs = [f x | x <- xs] // list compreh. 
map f (x:xs) = f x : map f xs // recursion 
map (+1) [1,3,5,7] // [2,4,6,8] 

apply a function to every element of a list 

filter filter :: (a -> Bool) -> [a] -> [a] 
filter p xs = [x | x <- xs, p x] 
filter even [1..10] // [2,4,6,8,10] 

selects every element from a list, 
that satisfies a predicate 

foldr foldr :: (a -> b -> b) -> b -> [a] -> b 
foldr f v [] = v 
foldr f v (x:xs) = f x (foldr f v xs) 

f maps the empty list to some value v, 
and non-empty list to some function f 
applied to its head and foldr of its tail 

e.g. sum = foldr (+) 0 
product = foldr (*) 1 
or = foldr (||) False 
and = foldr (&&) True  
length = foldr (𝜆_ n -> 1+n) 0 
reverse = foldr (𝜆x xs -> xs ++ [x]) [] 
(++ ys) = foldr (:) ys 

it is defined with recursion, 
but it is best to think of non-recursive. 
replace each (:) in a list with a given function, 
and [] with a value 

composition (.) :: (b -> c) -> (a -> b) -> (a -> c) 
f . g = 𝜆x -> f (g x) // f after g 
map((*2).(+1)) [1,2,3] // [4,6,8] 
compiler = codeGen.typeChecker.parser.scanner 

two functions composite to one 

e.g. odd :: Int -> Bool 
odd = not . even 

 

all all :: (a -> Bool) -> [a] -> Bool 
all p xs = and [p x | x <- xs] 
all even [2,4,6,8] // True 

decide if every element of a list satisfies a 
given predicate p 

any any :: (a -> Bool) -> [a] -> Bool 
any p xs = or [p x | x <- xs] 
any (== ' ') "abc def" // True 

decide if at least one element of a list 
satisfies a predicate 

takeWhile takeWhile :: (a -> Bool) -> [a] -> [a] 
takeWhile p [] = [] 
takeWhile p (x:xs) 
    | p x = x:takeWhile p xs 
    | otherwise = [] 
takeWhile (/= ' ') "abc def" // "abc" 

selects elements from a list while a predicate 
holds of all the elements 

dropWhile dropWhile :: (a -> Bool) -> [a] -> [a] 
dropWhile p [] = [] 
dropWhile p (x:xs) 
    | p x = dropWhile p xs 
    | otherwise = x:xs 
dropWhile (== ' ') "   abc  " // "abc  " 

selects elements from a list while a predicate 
holds of all the elements 
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Ch8 –  Declaring Types and Classes 

type declaration type String = [Char] 
type Pos = (Int,Int) 

String is an array of Chars 

e.g. origin :: Pos 
origin = (0,0) 

defines the origin 

left :: Pos -> Pos 
left (x,y) = (x-1,y) 
left origin // (-1,0) 

move position one to the left 

with params type Pair a = (a,a) 
mult :: Pair Int -> Int 
mult (m,n) = m*n 

 

 copy :: a -> Pair a 
copy x = (x,x) 

 

nested type Trans = Pos -> Pos can be nested 

recursive type Tree = (Int,[Tree]) cannot be recursive 

data declaration 
(new type, 
like an enum) 

data Answer = Yes | No | Unknown 
answers :: [Answer] 
answers = [Yes,No,Unknown] 

Answer is the new type 
Yes, No and Unknown are data constructors 
both must start with upper-case letter 

function flip :: Answer -> Answer 
flip Yes = No 
flip No = Yes 
flip Unknown = Unknown 

 

with params data Shape = Circle Float | Rect Float Float like functions: Rect::Float->Shape 
square :: Float -> Shape 
square n = Rect n n 
area :: Shape -> Float 
area (Circle r) = pi * r^2 
area (Rect x y) = x * y 

 

with type 
params 

data Maybe a = Nothing | Just a 
safediv :: Int -> Int -> Maybe Int 
safediv _ 0 = Nothing 
safediv m n = Just (m `div` n) 

 

safehead :: [a] -> Maybe a 
safehead [] = Nothing 
safehead xs = Just (head xs) 

 

recusive types data Nat = Zero | Succ Nat natural numbers 

convert to nat2int :: Nat -> Int 
nat2int Zero = 0 
nat2int (Succ n) = 1 + nat2int n 

convert our type to Int using recursion 

convert from int2nat :: Int -> Nat 
int2nat 0 = Zero 
int2nat n = Succ (int2nat (n-1)) 

convert Int to our type using recursion 

function add :: Nat -> Nat -> Nat 
add Zero n = n 
add (Succ m) n = Succ (add m n) 

avoid conversion with function add 

arithmetic 
expressions 

data Expr = Val Int 
    | Add Expr Expr 
    | Mul Expr Expr 

 
eval eval :: Expr -> Int 

eval (Val n) = n 
eval (Add x y) = eval x + eval y 
eval (Mul x y) = eval x * eval y 
eval (Add (Val 1) (Mul (Val 2) (Val 3))) // 7 

evaluate an arithmetic expression 

Binary Trees 
two-way- 
branching 
structure 

data Tree a = Leaf a 
            | Node (Tree a) a (Tree a) 
t :: Tree Int 
t = Node (Node (Leaf 1) 3 (Leaf 4)) 5 
         (Node (Leaf 6) 7 (Leaf 9))  

occurs occurs :: Eq a => a -> Tree a -> Bool 
occurs x (Leaf y)     = x == y 
occurs x (Node l y r) = x == y 
                        || occurs x l 
                        || occurs x r 

 

+
1

*
2

3

5

3
1

4

7
6

9
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flatten flatten :: Tree a -> [a] 
flatten (Leaf x) = [x] 
flatten (Node l x r) = flatten 1 
                       ++ [x] 
                       ++ flatten r 

 

 

Ch9 –  The Countdown problem 

 kein Prüfungsstoff  

 

Ch10 – Interactive programming 

Until know: 
New (impure): 

input -> program -> output 
input+keyboard -> program -> output+screen 

pure functions (no side effects) 
interactive programs (with side effects) 

Input/Output IO Char 
IO () // tuples with no component 

the type of actions that return a character 
the type of purely side effecting actions (no result) 

actions getChar :: IO Char reads a character from the keyboard, 
echoes it to the screen an returns it 

putChar :: Char -> IO () writes a character c to the screen and returns no value 
return :: a -> IO a returns the value without any interaction 

exec action evaluating an action executes its side effects, with the final result value being discarded 

Sequencing combine actions  

e.g. act :: IO (Char,Char) 
act = do x <- getChar 
         getChar   --ignored 
         y <- getChar 
         return (x,y) 
act 
1 3 // -> (1,3) 

«do» ist syntaktischer Zucker für ">>=" (bind) 
 
liest drei character, 
 auch möglich: "_ <- getChar" 

getLine getLine :: IO String 
getLine = do x <- getChar 
             if x == '\n' then 
               return [] 
             else 
               do xs <- getLine 
                  return (x:xs) 

 

putStr putStr :: String -> IO () 
putStr [] = return () 
putStr (x:xs) = do putChar x 
                   putStr xs 
putStr “hello world\n” 

write a string to the screen 

putStrLn putStrLn :: String -> IO () 
putStrLn xs = do putStr xs 
                 putChar '\n' 
putStrLn “hello world” 

write a string and move to a new line 

strLen strLen :: IO () 
strLen = do putStr "Enter a string: " 
            xs <- getLine 
            putStr "The string has " 
            putStr (show (length xs)) 
            putStrLn " characters" 
strLen // Enter a string: 
Hello  // The string has 5 characters 

prompt for a string to be entered and display it length 
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Programmverifikation (4 Wochen) 

Problem of  
Errorneous 
Software 

produce high cost 
disclaimer instead of guarantee 

types: 
unspectacular, but many errors (e.g. office) 
seldom, but spectacular errors (e.g. ariane, intel pentium, airport of denver) 

Software 
Qualities 

Reliabilty: correctness, robustness 
Dependability: knowing that software is reliable, certification 
Correctness is the most important of all software qualities, and it is only sensible against a specification 

Overview 

 

Testing 
Execute program with chosen input. 
Output consistent with 
specification. 
show the presence of bugs, 
but never to show their absence! 
 
Proving 
program will not be executed, 
show the absence of bugs 
 
Consistency: Testing + Proving 

IML Imperative Mini Language – consist of preconditions, postconditions and commands 

Assertions 
"Zusicherung" 

should yield always true. If it does not, the program is in error. 
Assert statements are a simple yet powerful possibility to check assertions at run time. 

bool expr + 
state 

boolean expression + state -> true or false 
boolean expression + true -> set of states 

Implication   Implication Contrapositive  

𝑨 𝑩 𝑨 ⇒ 𝑩 ≡ ¬𝐴 ∨ 𝐵 ¬𝑩 ⇒ ¬𝑨  

True True True True ok 

True False False False not ok 

False True True True ex falso quodlibet 
(from false what you like) False False True True 

Example If I win, I'll eat my hat I can’t eat my hat, I can’t win  
 

Hoare Triple Syntax 
{𝑃} 𝐶 {𝑄} 

 

P: assertion (precondition) of hoare triple 
C: command 
Q: assertion (postcondition) of hoare triple 
prestate = state before execution 
poststate = state after execution 

Example 
{𝑥 > 5} 𝑥 ≔ 𝑥 + 1 {𝑥 > 6} 

Properties 
∞ 𝑙𝑜𝑜𝑝 → 𝑜𝑘  
P stronger than Q  

Validity vs 
Truth 

valid: true in all states ⊨ 𝑥 + 5 = 5 + 𝑥 
𝑠0(𝑥) = 0 → 𝑡𝑟𝑢𝑒 
𝑠1(𝑥) = 1 → 𝑡𝑟𝑢𝑒 

valid Hoare triple ⊨ {𝑃} 𝐶 {𝑄} ⊨ {𝑥 > 5} 𝑥 ≔ 𝑥 + 1 {𝑥 > 6} 

not valid: not true in all states ⊭ 𝑥 + 5 = 𝑦 
𝑠0(𝑥) = 3, 𝑠0(𝑦) = 8 → 𝑡𝑟𝑢𝑒 
𝑠1(𝑥) = 3, 𝑠0(𝑦) = 7 → 𝑓𝑎𝑙𝑠𝑒 

non-valid Hoare triple ⊭ {𝑃} 𝐶 {𝑄} ⊭ {𝑥 = 5} 𝑥 ≔ 𝑥 + 1 {𝑥 = 17} 

Partial correct if the program ever terminates, then the result is correct. 
-> a program that does not "crash" but produces a wrong result is generally by far more dangerous. 

total correct the program is partial correct and will terminate. 

specification of 
imperative 
program 

Syntax: 
{𝑃} 𝑥 ≔? {𝑄} 

precondition P 
List x of variables that might be changed, others are forbidden to change 
postcondition Q 

Rigid variables variables for specifications, do not occur in program  
also called ghost variables or local variable 

{𝑥 = 𝑿} 𝑥 ≔? {𝑥 = 𝑿 + 6} 
𝑜𝑙𝑑(𝑥) refers to 𝑥 in the prestate 

WP: weakest 
preconditions 
𝑤𝑝(𝐶, 𝑄) 

set of all prestates in which execution of C terminates in a poststate satisfying 
Q, or in which execution of C does not terminate. 

Example: 
𝐶: 𝑥 ≔ 𝑥 + 1 
𝑄: 𝑥 > 5 

𝑤𝑝(𝐶, 𝑄) = 𝑥 > 4 
Theorem: start with the postcondition to arrive at the precondition 

⊨ {𝑃} 𝐶 {𝑄} 𝑖𝑠 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 ⊨ 𝑃 ⟹ 𝑤𝑝(𝐶, 𝑄) 
Program 
Verification 

prove that a Hoare triple {𝑃} 𝐶 {𝑄} is valid  
from the back to the front -> looks strange, but simpler 

usually long and boring -> automatically 
but proof problem is undecidable in 
general 

 
  

Specifications 
describes what the function does 

Implementation 
how to compute the function 

Validation -> Psychology 
Build the right product 

Verification -> Mathematic 
Build the product right 

Design 

Requirements 

Hardware 
Experiment -> Physis 
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Inference 
Rules 
 
 

let 𝑓, 𝑓1, … , 𝑓𝑛 be boolean formulas 
-> here assertions or hoard triples, 𝑛 ≥ 0 

𝑓1, … , 𝑓𝑛
𝑓

→
𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 𝑜𝑟 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑒𝑠

𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛
 (𝑘𝑒𝑖𝑛 𝐵𝑟𝑢𝑐ℎ) 

the interference rule is correct, if the validity of the conclusion 
follows from the validity (premises or hypotheses) 

𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑐𝑎𝑙𝑙 𝑖𝑡 𝑎𝑥𝑖𝑜𝑚 

C: Commands 
𝐶𝑡 , 𝐶𝑒: cmd's 
P,Q,R,S: assert 
E: Expression 
id: variable 
𝐵: bool expr 

 

 Theorem 𝒏 Example 

Skip Axiom 
 

{𝑃} 𝑠𝑘𝑖𝑝 {𝑃}
 0 ⊨ {𝑥 > 5} 𝑠𝑘𝑖𝑝 {𝑥 > 5} 

Skip WP 𝑃 ∈ 𝑤𝑝(𝑠𝑘𝑖𝑝, 𝑃)   

Assignment 
Axiom 

 

{𝑃[𝑖𝑑 ← 𝐸]} 𝑖𝑑 ≔ 𝐸 {𝑃}
 0 ⊨ {(𝑥 + 1) = 5} 𝑥 ≔ 𝑥 + 1 {𝑥 = 5} 

(Textual Substitution: replace id with E) 

Assignment 
WP 

𝑑𝑒𝑓𝑖𝑛𝑒𝑑(𝐸) ∧ 𝑃[𝑖𝑑 ← 𝐸] ∈ 𝑤𝑝(𝑖𝑑 ≔ 𝐸, 𝑃) 
ensure that 𝐸 is defined in the prestate 

 
𝑤𝑝 (𝑧 ≔

𝑦

𝑥 − 1
, 𝑧 ≥ 1) = 𝑥 − 1 ≠ 0 ∧

𝑦

𝑥 − 1
≥ 1 

Rule of 
Consequence 

𝑃 ⇒ 𝑄, {𝑄}𝐶{𝑅}, 𝑅 ⇒ 𝑆

{𝑃}𝐶{𝑆}
 

 ⊨ 𝑥 > 6 ⇒ 𝑥 > 5,⊨ {𝑥 > 5}𝑠𝑘𝑖𝑝{𝑥 > 5}, ⊨ 𝑥 > 5 ⇒ 𝑥 > 5

⇒ {𝑥 > 6}𝑠𝑘𝑖𝑝{𝑥 > 5}
 

(interface between Hoare logic and ordinary math) 

Composition 
Rule {𝑃0}𝐶1{𝑃1}, … , {𝑃𝑛−1}𝐶𝑛{𝑃𝑛}

{𝑃0}𝐶1; … ; 𝐶𝑛{𝑃𝑛}
 

≥ 2 ⊨ {𝑦 = 𝐴 ∧ 𝑥 = 𝐵} ℎ ≔ 𝑥 {𝑦 = 𝐴 ∧ ℎ = 𝐵} 
⊨ {𝑦 = 𝐴 ∧ ℎ = 𝐵} 𝑥 ≔ 𝑦 {𝑥 = 𝐴 ∧ ℎ = 𝐵} 
⊨ {𝑥 = 𝐴 ∧ ℎ = 𝐵} 𝑦 ≔ ℎ {𝑥 = 𝐴 ∧ 𝑦 = 𝐵} 

⊨ {𝑦 = 𝐴 ∧ 𝑥 = 𝐵} ℎ ≔ 𝑥; 𝑥 ≔ 𝑦; 𝑦 ≔ ℎ {𝑥 = 𝐴 ∧ 𝑦 = 𝐵} 
Composition 
WP 

𝑃0 ∈ 𝑤𝑝(𝐶1; … ; 𝐶𝑛, 𝑃𝑛) 
≥ 2 strange swap: 

⊨  −𝑥 ≔ 𝑥 − 𝑦;  𝑥 ≔ 𝑥 + 𝑦;  𝑥 ≔ 𝑦 − 𝑥 {−𝑥 = 𝐴 ∧ 𝑦 = 𝐵} 

Conditional 
Rule 

{𝑃 ∧ 𝐵}𝐶𝑡{𝑄}, {𝑃 ∧ ¬𝐵}𝐶𝑒{𝑄}

{𝑃} 𝑖𝑓 𝐵 𝑡ℎ𝑒𝑛 𝐶𝑡𝑒𝑙𝑠𝑒 𝐶𝑒  𝑒𝑛𝑑𝑖𝑓 {𝑄}
 

 𝑖𝑓( 𝑥 ≤  𝑦 )𝑡ℎ𝑒𝑛 𝑠𝑘𝑖𝑝 𝑒𝑙𝑠𝑒 ℎ ≔ 𝑥;  𝑥 ≔ 𝑦;  𝑦 ≔ ℎ;  𝑒𝑛𝑑𝑖𝑓 
⊨ {𝑡𝑟𝑢𝑒} 𝐶 {𝑥 ≤  𝑦} 

Conditional 
WP 

𝑃𝑡 ∈ 𝑤𝑝(𝐶𝑡 , 𝑄) 
𝑃𝑒 ∈ 𝑤𝑝(𝐶𝑒 , 𝑄) 

(𝑃𝑡 ∧ 𝐵) ∨ (𝑃𝑒 ∧ ¬𝐵) ∈ 
𝑤𝑝(𝑖𝑓 𝐵 𝑡ℎ𝑒𝑛 𝐶𝑡  𝑒𝑙𝑠𝑒 𝐶𝑒𝑒𝑛𝑑𝑖𝑓, 𝑄) 

(𝐵 ⇒ 𝑃𝑡) ∧ (¬𝐵 ⇒ 𝑃𝑒) ∈ 
𝑤𝑝(𝑖𝑓 𝐵 𝑡ℎ𝑒𝑛 𝐶𝑡  𝑒𝑙𝑠𝑒 𝐶𝑒𝑒𝑛𝑑𝑖𝑓, 𝑄) 

 

 
 

Invariants ⊨ {𝐼} 𝐶 {𝐼}  𝑥 − 𝑦 = ∆;  𝑥 ≔ 𝑥 + 1;  𝑦 ≔ 𝑦 + 1 

Invariants of 
a loop 

{𝐼 ∧ 𝐵} 𝐶 {𝐼}

{𝐼} 𝑤ℎ𝑖𝑙𝑒 𝐵 𝑑𝑜 𝐶 𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒 {𝐼 ∧ ¬𝐵}
 

 𝑤ℎ𝑖𝑙𝑒 𝑖 > 0 𝑑𝑜 𝑖 ≔ 𝑖 − 1 𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒 
Invariant: 𝑖 ≥ 0 

Loop 
Loop with init 

⊨ {𝑃} 𝑤ℎ𝑖𝑙𝑒 𝐵 𝑑𝑜 𝐶 𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒 {𝑄} 
⊨ {𝑃} 𝐶𝑖𝑛𝑖;  𝑤ℎ𝑖𝑙𝑒 𝐵 𝑑𝑜 𝐶𝑟𝑒𝑝 𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒 {𝑄} 

 
 

WP of Loop too complicated   

 

Proof 
Procedure 

prove if {𝑃} 𝐶 {𝑄} is valid 
1. compute the weakest precondition 𝑤𝑝(𝐶, 𝑄) 
2. determine the verification condition (VC) 𝑃 ⇒ 𝑤𝑝(𝐶, 𝑄) 

automatically done by verification condition generator 
3. prove the verification condition valid (Discharging) 

automatically discharged by an automated theorem prover 

Example: {𝑥 > 6} 𝑠𝑘𝑖𝑝 {𝑥 > 5} 
1. 𝑤𝑝(𝑠𝑘𝑖𝑝, 𝑥 > 5) = 𝑥 > 5 
2. 𝑥 > 6 ⇒ 𝑥 > 5 

 
3. prove that VC valid 

Proof Outline a program annotated with assertions (as comments) between each pair of commands 

Annotated 
program 

a program annotated with assertions (as comments or assert-commands) for purposes of documentation 

good practise “enough assertions should be inserted to make the program understandable, 
but not so many that the program is hidden from view.” 
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Multiparadigmen- und stark getypte Programmierung (4 Wochen)  

Scala – Multiparadigm Language 

Multiparadigm Multi-paradigm programming (functional and object-oriented) 
Objects and Syntax from Java/C++/C/Smalltalk/Simula, 
Functional programming von Haskel/ML/Lisp, 
Actors von Erlang, Pattern matching von Prolog 

Properties Object-oriented, Functional, type safe, performant, agile, lightweight syntax 

Java (anno 
domini) 

Pro: popularity, acceptance, object-riented and strong typing, library, tools, JVM (platform independent) 
Cons: Very imperative, not highly concurrent, verbose (to much boilerplate code) -> source code generator  

based on JVM Clojure, Groovy, JRuby, Jython, Scala, Kotlin, Ceylon 

Scala Pro over 
Java (anno 
domini) 

functions are classes and can be passed around, values are objects (pure object-oriented), 
operators are just methods, statically typed (as Java) but uses type inference, 
supports the principle of uniform access, supports concurrency, is concise (short and precise) 

Example class Person (val name: String, var age: Int) 

Pro Scala is scalable and extensible 

Types Byte -> Short -> Int -> Long -> Float -> Double. 
Char: assignment compatibility Char -> Int 
Boolean 
Unit (void), only one value "()" 
Null: subtype of all reference types, only instance is null 
Nothing: bottom type, is a subtype of all types, no instance 
Lists (concrete classes, no interface, linked, immutable) 
String (lot of methods, interpolation, multiline) 
Tuples (fixed size, different types, access is 1-based) 
Maps (pairs, immutable -> mutable variants exist) 
Any = Scala base type (isInstanceOf, asInstanceOf) 
AnyRef = root of all reference (equals, eq, hascode, ...) 
AnyVal = root of all values 
 
types have methods (5.toFloat) 
operators are method calls  (10 ./(3)  

Variable decl val (const, final) 
var 

val year = 1989 
var age = 27; age = 28 

Control expr if, no ternary "?" 
while 
do-loop (expr of type Unit) 
for-comprehension (expr of 
type Unit or first generator) 

val res = if(false) { println(1) } else 2 // 2 
val res = while (age > 10) age -= 1 // () 
val res = do age -= 1 while ( age > 10 ) // () 
val res = for(i <- 1 to 10 if i%2==0) yield (i*i) 
// Vector(4, 16, 36, 64, 100) 

Classes abstract, final, single 
inheritance, nested classes 
 
members: values (var or val), 
methods (def), 
types (type) 
-> default visibility is public 
 
every class has a primary 
constructor 

class CreditCard(val numb: Int, var limit: Int) { 
  def this(numb: Int) = this(numb, 1000) // aux cons 
  println("new card created") // exec in primary cons 
  private var sum = 0 
  def buy(amount: Int) { 
  if(sum + amount > limit) throw new RuntimeException 
    sum += amount 
  } 
  def remainder = limit-sum // method without param 
} 
val a = new CreditCard(2000); 

Inheritance 
abstract class 

doSmth() must be 
overwritten 

abstract class Base(param: String) { 
  def doSmth: String    // without body abstract 
  override def toString() = "^"+ super.toString() 
} 
class Derived extends Base("0") { 
  def doSmth = "working" 
} 

Methods similar to Java, default val 
multiple returns with Tuples 
param called by name 
curried param list 

def add(x: Int, y: Int = 1): Int = {return x+y} 
def quorem(m: Int, n: Int) : (Int, Int) = (m/n, m%n) 
quorem(n = 2, m = 4) 
def sub(m: Int)(n: Int) = m-n; println(sub(2){5}) 
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Singleton 
Objects 

can be accessed by its name 
Name represents the single 
instance 
Singleton can be passed to 
functions with parameter 
ColorFactory.type 

class Color(val r: Int, val g: Int, val b: Int) 
object ColorFactory{ 
  private val cols = Map( 
    "red" -> new Color(255,0,0), 
    "blue" -> new Color(0,0,255), 
    "green" -> new Color(0,255,0)) 
  def getColor(color: String) = 
    if(cols contains color) cols(color) else null } 
val c = ColorFactory.getColor("red") 

Companion 
Objects 

similar to “friends” in C++ 
classes and companion 
objects can access private 
fields 

class Color private (val r:Int, val g:Int, val b:Int) 
object Color { 
  def getColor() = new Color(255,0,0) 
} 

Functions are instance of class 
FunctionX 
X=(0..22) 
curried 
 
tuppled 
curried definition 
type interference 
subclass of FunctionX 

val add = (m: Int, n: Int) => m + n add(2,3) //5 
           add.apply(2,3)//5 
val addc = add.curried 
val inc = addc(1)        inc(5) //6 
val addt = add.tupled       addt(2 -> 3) //5 
val add1 = (x: Int) => (y: Int) => x+y //curried 
val add2 : Int => Int => Int = (x:Int) => (y:Int) => x+y 
object add extends Function2[Int, Int, Int] { 
    def apply(x: Int, y: Int) = x+y  } 

Pattern 
Matching 

similar to switch-case 
Match expression, No fall-
through 
throws error if no pattern 
matches 

def patternMatching(i : Int) = { 
  i match { 
    case 0 => "Null" 
    case 1 => "One" 
    case _ => "?" 

with types and guards 
 
can match lists, tuples 

def patternMatching(any : Any) = 
  any match { 
    case i : Int => "Int: " + i 
    case s : String => "String: " + s 
    case d : Double if d > 0 => "Pos Double: " + d 
    case List() => "empty list" 
    case any => any.toString  } 

matching lists def length(list: List[Any]) : Int= { 
  list match { 
  case List() => 0 
  case x :: xs=> 1 + length(xs)  }  } 

matching tuples def process(input: Any) = { 
  input match { 
    case (a,b) => printf("Processing (%d,%d)...\n", a, b) 
    case "done" => println("done") 
    case _ => null  }  } 

Case classes new is not mandatory 
getter are automatically 
defined 
equals(), hasCode(), toString() 
decompe with pattern 
matching 

abstract class Tree 
case class Sum(x: Tree, y: Tree) extends Tree 
case class Prod(x: Tree, y: Tree) extends Tree 
case class Var(n: String) extends Tree 
case class Const(v: Int) extends Tree 
def eval(t: Tree, env: Map[String,Int]) : Int = t match { 
  case Sum(x, y) => eval(x, env) + eval(y, env) 
  case Prod(x, y) => eval(x, env) * eval(y, env) 
  case Var(n) => env(n) 
  case Const(v) => v  } 

Scala Traits  

Multiple 
inheritance 

Unterscheiden zwischen: Interface Inheritance oder Code Inheritance 
Works fine when you combine classes that have nothing in common. 
Problem with multiple inherited methods (solved in C# (explicit interface implem.), not in C++ or Java)  
Problem with diamond inheritance problem (use virtual inheritance in C++). 
Java: Single implementation inheritance, multiple interface inheritance -> duplicated code 
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Traits in Scala analogous to Java interfaces, but with implementations and fields and dynamic composition 
Solution for the diamond problem and linearization problem 
e.g. «TraitA with TraitB with TraitC» is the data type 
super.log invokes next trait in the trait hierarchy (stackable modifications) and not the base class 
traits can not be instantiated, but can be added to new objects 

Self types trait ExceptionLoggerextends Logger { 
    this: Exception => 
    def log() { log(getMessage()) } 
} 

In the trait methods, any methods of the self 
type can be invoked 
a trait with a self type is similar to a trait with 
a supertype 

Linearization 1. actual type as first 
2. add right to left 
3. remove duplicates 

left to right 
4. append AnyRef and 

Any 

 

class C3 extends C2 with T1 w. T2 w. T3 
ℒ(𝐶3) = 𝐶3 + ℒ(𝑇3)⏟  

𝑇3𝐶1

+ ℒ(𝑇2)⏟  
𝑇2𝐶1

+ ℒ(𝑇1)⏟  
𝑇1𝐶1

+ ℒ(𝐶2)⏟  
𝐶2 𝑇2⏟
𝑇2𝐶1

 

ℒ(𝐶3) = 𝐶3𝑇3𝑇1𝐶2𝑇2𝐶1 + 𝐴𝑛𝑦𝑅𝑒𝑓 + 𝐴𝑛𝑦 
→ 𝑠𝑢𝑝𝑒𝑟𝑐𝑎𝑙𝑙 
← 𝑖𝑛𝑖𝑡 

 class C1 { print(">>C1"); // constr 
  def m = List("C1") 
} 
trait T1 extends C1 { print(">>T1") 
  override def m = { "T1" :: super.m } 
} 
trait T2 extends C1 { print(">>T2") 
  override def m = { "T2" :: super.m } 
} 
trait T3 extends C1 { print(">>T3") 
  override def m = { "T3" :: super.m } 
} 
class C2 extends T2 { print(">>C2") 
  override def m = { "C2" :: super.m } 
} 
class C3 extends C2 with T1 with T2 with T3 { 
  print(">>C3") 
  override def m = { "C3" :: super.m } 
} 

val a  = new C1 // >>C1 
print(a.m)      // List(C1) 
 
val a  = new C3 
// >>C1>>T2>>C2>>T1>>T3>>C3 
print(a.m) 
// List(C3, T3, T1, C2, T2, C1) 
 
a.isInstanceOf[C1 with T2] //true 
a.isInstanceOf[T1 with T3] //true 

??? def ??? : Nothing = throw new NotImplementedError mark methods to be implemented 

Parameterized Types  

Type 
parameters 

// on classes or traits 
case class Pair[T, S](val first: T, val second: S) 
val p1 = Pair(42, "String") 
// on functions or methods 
def getMiddle[T](a: Array[T]) = a(a.length / 2) 

change override überschriebene Methoden dürfen mehr liefern als verlangt (return type) -> covariant (erlaubt in Java) 
überschriebene Methoden dürfen weniger erwarten als verlangt (params) -> contravariants (nicht in Java) 

mutable 
immutable 

likely to be changed 
unable to change 

 Java: use-site declaration (?super, ?extend) 
Scala: declaration-site declaration (+/-T) 

Variance of 
Subtyping 

 

invariant is default 

 class Animal; class Bird extends Animal; 
class Cage[A]   // invariant (default) 
class Cage1[+A] // covariant, C#: out 
class Cage2[-A] // contravariant, C#: in 
val animalCage: Cage1[Animal] = new Cage1[Bird] // allowed when [+A] 
val birdCage: Cage2[Bird] = new Cage2[Animal] // allowed when [-A] 

 

Animal 

Bird 

Cage[Animal] 

Cage[Bird] 

Cage[Animal] 

Cage[Bird] 

Cage[Animal] 

Cage[Bird] 

covariant, +T invariant, T contravariant, -T 
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Implicit Converions 

implicit 
functions 

class BlingString(string: String) { def bling = "*" + string + "*" } 
implicit def blingToString(s: String) = new BlingString(s) 
print("Hello".bling) // *Hello* 

Method bling is now available on all strings (as if it were defined in class String)  

implicit classes implicit class BlingString(string: String) { def bling = "*" + string + "*" } 
print("Hello".bling) // *Hello* 

usages val f: Fraction = 12 // type differs from expected type 
"hello".bling // non-existent member access 
3 * Fraction(4,5) // Int.* does not accept a Fraction arg 

rules No implicit conversions if the code compiles without it 
The compiler will NEVER attempt multiple conversions 
Ambiguous conversions are an error 
implicit conversion must be in scope 

implicit 
parameters 

case class Delimiters(left: String, right: String) 
def quote(text: String)(implicit delims: Delimiters) = 
   delims.left + text + delims.right 
print(quote("Bonjour")(Delimiters("«", "»"))) // «Bonjour» 
//quote("Hello") – error: could not find implicit value for parameter delims 

only works for the last parameter list 

type classes most powerful features in Haskell 
They allow you to define generic interfaces that provide a common feature set over a wide variety of types.  
Type classes define a group (class) of types which satisfy some contract (defined in a trait). 
trait Monoid[A] { 
  def op(x: A, y: A) : A 
  def unit : A 
} 
implicit object stringMonoid extends Monoid[String] { 
  def op(x: String, y: String) = x + y 
  def unit = "" 
} 
implicit object addMonoid extends Monoid[Int] { 
  def op(x: Int, y: Int) = x + y 
  def unit = 0 
} 

 


