
ZHAW/HSR Druckdatum: 05.07.18 TSM_AdvPrPa

Marcel Meschenmoser Dozent: Dr. Edgar Lederer, Dominik Gruntz Seite 1 von 14

ADVANCED PROGRAMMING PARADIGMS
120min, alle schriftlichen Unterlagen, keine elektronische Geräte

Introduction (1 Woche)

Programming Paradigms

paradigm theory of ideas about how something should be done (e.g. pattern)

programming
paradigm

fundamental style of programming, with explicit aspects (e.g. state, concurrency/parallelism, nondeterm.)
e.g. ‘see below’ and constraint programming, concurrent programming and parallel programming

software
quality

• reliability (correctness, robustness)

• modularity (extendibility / reusability)

• compatibility, efficiency, portability, ease of use, timeliness

Multiparadigm Several paradigms
can be combined into
a single language

ML -> functional with imperative features
C# -> object-oriented with functional features
F# -> functional with object-oriented features

Scala -> functional + object-oriented
Curry -> function + logic
Curry is based on Haskel

Correctness program should be correct with respect to its specifications

• testing (find faults/bugs) -> choose input, run, and check output

• proving (show the absence of faults) -> no input, nor exec, but apply mathematical rules

Verification tools for object-oriented programs: Spec#, Dafny
first step towards program verification: ill-typed expression will not compile (automatic, light-weight)

 Example Theorem: (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2
Es kann mit endlichen vielen Schritten gezeigt werden, dass es für unendlich viele Werte gilt.

Referential
Transparency

LEIBNIZ = substitution of equals for equals = referential transparency
-> order has no influence on result

Program
transformation

𝑥 = 𝑓(𝑎), 𝑎𝑛𝑑, 𝑥 + 𝑥 = 2 ∗ 𝑥
𝑥 + 𝑥 = 2 ∗ 𝑥 = 𝑓(𝑎) + 𝑥 = 𝑥 + 𝑓(𝑎) = 𝑓(𝑎) + 𝑓(𝑎) = 2 ∗ 𝑓(𝑎)

Misuse of the
Equality Symbol

assignments like 𝑥 ≔ 𝑥 + 1 has not the slightest similarity to equality
𝑥 becomes/gets/receives 𝑥 + 1, but never 𝑥 equals/is 𝑥 + 1 ---> a different symbol should be used ≔ or ←

Reducible expr redex: e.g. 𝑚𝑢𝑙𝑡(𝑥, 𝑦) = 𝑥 ∗ 𝑦

Evaluation
Strategies

 innermost (call-by-value)
prefer leftmost

outermost (call-by-name)
prefer leftmost

lazy (outermost + sharing)
work with pointers

Example 𝑚𝑢𝑙𝑡(1 + 2, 2 + 3)
= 𝑚𝑢𝑙𝑡(3, 2 + 3)
= 𝑚𝑢𝑙𝑡(3, 5)
= 3 ∗ 5 = 15

𝑚𝑢𝑙𝑡(1 + 2, 2 + 3)
= (1 + 2) ∗ (2 + 3)
= 3 ∗ (2 + 3)
= 3 ∗ 5 = 15

𝑠𝑞𝑢𝑎𝑟𝑒(1 + 2)
= (1 + 2) ∗ (1 + 2)
= 3 ∗ (1 + 2)
= 3 ∗ 3 = 9

argument evaluated exactly once zero or more times at most once

sharing: keep only a single copy of the argument expression and maintain a pointer to it
whenever there exists an order of evaluation that terminates, outermost (and thus lazy) evaluation finds it

 Overview

 imperative object-oriented functional logic

based on read and update state
(e.g. Turing machine)

<-- imperative with support for
abstraction and modularization

𝜆-calculus and reduction
(replace by simpler expr)

first-order logic
(pedicate logic)

concepts data structures (variable,
records, array, pointers)
computations:

• expressions (literal, identifier,
operation, function call)

• commands (assign,
composition, conditional,
loop, procedure call)

abstraction: function/procedure

objects as instances of classes
encapsulation (inform. hiding)
inheritance for modularity,
subtyping, polymorphism,
dynamic binding
genericity

no state/cmds, but expr.
no loops, but recursion
functions (recursiv, anonym,
curried, higher order),
polymorphic
overloaded types
pattern matching
type interface
eager or lazy evaluation

logical formulas
expr
machine solves
and
programmer
guides
HORN clauses

examples Ada, Algo, C, Cobol,
Fortran, Modula, Pascal

C++, C#, Eiffel, Java,
Objective-C, Simula Smalltalk

F#, Haskell (lazy eval),Lisp,
ML (eager eval), OCaml

Prolog

consist of n-expr:
n-cmds:

𝑦 ≔ 0, 𝑎 ≔ 3
function 𝑓(𝑥) begin 𝑦 ≔ 𝑦 + 1; return 𝑥 + 𝑦 end

n-decl: 𝑓(𝑥) = 2 ∗ 𝑥 + 1
𝑎 = 3

1-expr: 𝑎 + 𝑓(𝑎)

n-exec: 𝑓(𝑎) + 𝑓(𝑎) returns 4 + 5 = 9 1-eval: 3 + 𝑓(3) = 10

order no referential transparency referential transparency

syntax expressions (-> yield value) + commands (-> new state) expressions -> yield value

semantics values + environment + state values + environment

proving possible but complicated, use HOARE logic/triple easy

ZHAW/HSR Druckdatum: 05.07.18 TSM_AdvPrPa

Marcel Meschenmoser Dozent: Dr. Edgar Lederer, Dominik Gruntz Seite 2 von 14

Funktionale Programmierung - Programming in Haskell (5 Wochen)

Ch1-Ch3 – Introduction, First Steps, Types and Classes

Functional prog. Programming style in which the basic method of computation is the application of functions to arguments.

File suffix .hs

Compiler GHC (Glasgow Haskell Compiler) is the leading implementation of Haskell, compiler and interpreter "ghci"

Interpreter : (mit Doppelpunkt)

File/Script :l FileName // = :load
:r // = :reload
:? oder :h // = :help

lade ein File
reload script (no change detection)
show all commands

Types
Uppercase,
Typ-safe/error

e :: t // e has type t
:t 1+1 // = :type 1+1

type inference -> autom. calculated at compile time
show type without evaluating

Bool // False or True
Char
String // = [Char]
Int
Integer
Float, Double

Logical values
Single Character
Strings of characters
Fixed-precision integer
Arbitrary-precision integer
Floating-point numbers

show :set +t
:unset +t

Show type in following expressions
Hide type in following expressions

type classes Eq
Show - Read
Num
Ord // Eq a => Ord
Integral // (Num a, Ord a) => Integral
Fractional // Num a => Fractional
Enum – Bounded – Floating

Equality – all except IO and functions
Showable / Readable – all except IO and functions
Numeric – Int, Integer, Float, Double
Ordered – all except IO and functions
Integral – Int, Integer
Fractional – Float, Double
sequentially ordered – upper/lower bound - floating

basic functions
lower-case

+ - *
negate, abs, signum
^
fromInteger
/
fromRational
recip
== /=
< <= > >=
min, max
show
read
sqrt
div, quot, rem, mod
quotRem, divMod
&&, ||
not

:: Num a => a -> a -> a
:: Num a => a -> a
:: (Num a, Integral b) => a -> b -> a
:: Num a => Integer -> a
:: Fractional a => a -> a -> a
:: Fractional a => Rational -> a
:: Fractional a => a -> a
:: Eq a => a -> a -> Bool
:: Ord a => a -> a -> Bool
:: Ord a => a -> a -> a
:: Show a => a -> String
:: Read a => String -> a
:: Floating a => a -> a
:: Integral a => a -> a -> a
:: Integral a => a -> a -> (a,a)
:: Bool -> Bool -> Bool
:: Bool -> Bool

Cast 2 // Num p => p
2 :: Int // Int
2 :: Float // 2.0 Float
(2 + 2) :: Double // 4.0 Double
2.0 // Fract.. p=>p
2.0 :: Int // error
(2::Int)+(2::Double) // error
[2, 2.0] // Fract.. a=>[a]
[2::Float, 2::Double] // error

No instance for (Fractional Int) arising from literal
Couldn't match expected type with actual type

Couldn't match expected type with actual type

Declaration x = 17 // or “let x = 17”

List [1,2,3] // Num a => [a]
[False,'a',False] // error
[['a'],['b','c']] // [[Char]]
[] // []

Declare list, all elements must be from the same type
Length not known during compile time
list arguments have a 's' suffix
empty list

functions head [1,2,3,4,5] // 1
head [] // exception

select the first element :: [a]->a

tail [1,2,3,4] // [2,3,4]
tail [5] // []
tail "x" // "" -> type

remove the first element :: [a]->[a]

ZHAW/HSR Druckdatum: 05.07.18 TSM_AdvPrPa

Marcel Meschenmoser Dozent: Dr. Edgar Lederer, Dominik Gruntz Seite 3 von 14

[1,2,3,4,5] !! 2 // 3 select the nth element :: [a]->Int->a

take 3 [1,2,3,4,5] // [1,2,3] select the first n elements :: Int->[a]->[a]

drop 3 [1,2,3,4,5] // [4,5] Remove the first n elements :: Int->[a]->[a]

length [1,2,3,4,5] // 5 length of a list :: [a]->Int

sum [1,2,3,4,5] // 15 sum of a list of numbers :: Num a=>[a]->a

product [1,2,3,4,5] // 120 product of a list of numbers :: Num a=>[a]->a

[1,2,3] ++ [4,5] // [1,2,3,4,5] Prepend a lists :: [a]->[a]->[a]

'h' : "allo" // "hallo" prepend element to list :: a->[a]->[a]

reverse [1,2,3,4,5] // [5,4,3,2,1] Reverse a list :: [a]->[a]

init [1..5] // [1,2,3,4] remove the last element :: [a]->[a]

Tuple (False,'a') // (Bool,Char)
(True,['a','b']) // (Bool,[Char])
(1) // =1
() // ()

List with different type, fix length during runtime
Type of tuple encodes its size

Functions Mathematics
f(x)
f(x,y)
f(g(x))
f(x)g(y)

Java
f(x)
f(x,y)
f(g(x))
f(a,b)+ c*d

Haskel
f x
f x y // function has higher priority
f (g x)
f x * g y

layout f :: Int -> Int -- var A
f x = x^2

{f :: Int -> Int; f x = x^2} // var B

define not :: Bool -> Bool
not a = a == False

functions and arguments lowercase
a function is a mapping from values of one type to
values of another type mult :: Num a => a -> a -> a

mult x y = x*y
factorial (Enum a, Num a) => a -> a
factorial n = product [1..n]
add :: Num a => (a, a) -> a
add (x,y) = x+y
twice :: (t -> t) -> t -> t
twice f x = f (f x)

use factorial // error
factorial 10 // 3628800
factorial 10 20 // error
add (2,3) // 5
([abs, factorial] !! 1) 3 // 6

No instance for (Show (Integer -> Integer))

it :: (Num a, Enum a) => a
Non type-variable argument in the constraint
attention, takes a tuple as input
works because of lazy evaluation

Curried
Functions
(default)

add' x y = x + y // Int->(Int->Int)
mult (add’ 2 3) 5
Int -> Int -> Int // Int -> (Int->Int)
mult x y z // ((mult x) y) z

return functions as results
this allows multiple arguments
the arrow ‘->’ associates to the right
natural functions associate to the left

Polymorphic
Functions

length :: [a] -> Int
length [False,True] // 2 (a=Bool)

type contains one or more type variables (e.g. a)
type variables are lower-case, and usually a,b,c, ...

Overloaded
Functions

(+) :: Num a => a -> a -> a type contains one or more class constraints
e.g. Num is for Int and Float

Layout rule a = 10
b = 20 // Good

a = 10
 b = 20 // Bad

declaration must stay on the same column
implicit grouping

last value it

Ch4 – Defining functions

conditional expr abs n = if n >= 0 then n else -n // abs (-4)
signum n = if n < 0 then -1 else if n == 0 then 0 else 1 // 'else' is obligate

Guarded
Equations

abs n | n >= 0 = n | otherwise = -n

Pattern
matching
(separate file)

{not False = True; not True = False} patterns are matched order
not :: Bool -> Bool
not False = True
not _ = False

more efficient (does not evaluate second arg if True)
'_' is a wildcard pattern that matches any value

List patterns [1,2,3,4] // = 1:(2:(3:(4:[])))
adds an element to the start of a list
1:[] // = [1]
[1]:[] // = [[1]]
[2]:[3]:[] // = [[2],[3]]
([]:[]):[] // = [[[]]]

internally, every non-empty list is constructed by
repeated use of operator ":" called "cons"
[] = nil

1:[2] // ok, [1,2]
[1]:[2] // error
[]:[]:[] // ok, [[],[]]

ZHAW/HSR Druckdatum: 05.07.18 TSM_AdvPrPa

Marcel Meschenmoser Dozent: Dr. Edgar Lederer, Dominik Gruntz Seite 4 von 14

head (x:_) = x // head :: [a] -> a
tail (_:xs) = xs // tail :: [a] -> [a]

functions on lists use this ":" operator
x:xs patterns only match non-empty lists
parenthesis due to priority (application over ":")

f2 [x,y] = (x,y) // f2 [1,2] -> (1,2) Exception by parameter missmatch

Lambda
expressions

𝜆𝑥 → 𝑥 + 𝑥 // lambda is written as '\'
double x = x + x

nameless function, usefule when defining functions
that return functions as result

e.g. odds n = map (\x -> x*2 + 1) [0..n-1]
odds 10 // [1,3,5,7,9,11,13,15,17,19]

maps an anonymus function to a list

Operator
Sections

1+2 == (+) 1 2 == (1+) 2 == (+2) 1
(/2)

sections of operation 1+2
halving function

 f x g == x `f` g change operator from prefix to infix

ch5 – List comprehensions

Comprehension {𝑥2|𝑥 ∈ {1. .5}} mathematic comprehension notation

Generator [1..5] // [1,2,3,4,5]

Lists
comprehensions

[x^2 | x <- [1..5]] // [1,4,9,16,25]
[(x,y) | x <- [1,2,3], y <- [4,5]]

define new lists based on old ones
multiple ones are comma separated, order matters

Dependant Gen. [(x,y] | x <- [1..3], y <- [x..3]] they are like nested loops

concat concat :: [[a]] -> [a]
concat xss = [x | xs <- xss, x <- xs]
concat [[1,2,3],[4,5]] // [1,2,3,4,5]

concatenates a list of lists to one list
use dependant generators

guards [x | x <- [1..9], even x] // [2,4,6,8] restrict values produced by earlier generators

factors factors :: Int -> [Int]
factors n = [x | x<-[1..n], n`mod`x==0]
factors 15 // [1,3,5,15]

factorize a number
using list comprehension with guard

prime prime :: Int -> Bool
prime n = factors n == [1,n]
prime 15 // False

detect if number is a prime

primes primes :: Int -> [Int]
primes n = [x | x <- [2..n], prime x]
primes 30 // [,3,5,7,11,13,17,19,23,29]

list all primes until a number
using list comprehension with guard

zip zip :: [a] -> [b] -> [(a,b)]
zip ['a'..'b'][0..] //[('a',0),('b',1)]

maps two lists to a list of pairs

pairs pairs :: [] -> [(a,a)]
pairs xs = zip xs (tail xs)
pairs [1,2,3,4] // [(1,2),(2,3),(3,4)]

list of all pairs of adjacent elements from a list

sorted sorted :: Ord a => [a] => Bool
sorted xs = and [x<=y|(x,y)<-pairs xs]
sorted [1,2,3,4] // True

check if a list is sorted using pairs

positions positions :: Eq a => a -> [a] -> [Int]
positions x xs = [i | (x',i) <- zip xs
 [0..], x == x']
positions 0 [1,0,0,1,0] // [1,2,4]

list of all positions of a value in a list

string
comprehensions

"ab" :: String // == ['a','b']::[Char]
zip "abc" [1,2] // [('a',1),('b',2)]

because a string is a char list
any polymorphic function works on strings

count count :: Char -> String -> Int
count x xs = length [x'|x'<-xs,x==x']
count 's' "Mississippi" // 4

counting how many times a character occurs

pyths pyths :: Int -> [(Int,Int,Int)]
pyths z = [(x,y,z) | x<-[1..z],
 y<-[1..z], x^2+y^2 == z^2]

pythagorean:
triple (x,y,z) of positive integers

perfects perfects :: Integral a => a -> [a]
perfects n = [n' | n' <- [1..n], sum
(init (factors n')) == n']
perfects 500 // [6,28,496]

factor n’, remove last element (init) and sum them,
add only if equals n’

scalar product scalar :: Num a => [a] -> [a] -> [a]
scalar a b = [c | i <- [0..length a-1],
c <- [a!!i*b!!i]]
scalar [2,5,3] [6,4,2] // [12,20,6]

use iterater with length of list a,
multiply each element of a and b

Excursion: Implication and Equivalence

implication
→

(==>) :: Bool -> Bool -> Bool
False ==> _ = True
True ==> p = p

define a function ==> which needs two bools
when first param is False it returns True
when first param is True it returns the second param

ZHAW/HSR Druckdatum: 05.07.18 TSM_AdvPrPa

Marcel Meschenmoser Dozent: Dr. Edgar Lederer, Dominik Gruntz Seite 5 von 14

equivalence
⇒

(<=>) :: Bool -> Bool -> Bool
p <=> q = p == q

define a function <=> which needs two bools
returns if 'p' is equal to 'q'

check
correctness

verifyImp p q = (p ==> q) <=> (not p || q)
verifyEqu p q = (p <=> q) <=> ((p ==> q) && (q ==> p))
check verify = and [verify p q | p <- [False, True], q <- [False, True]]
check verifyImp
check verifyEqu

Ch6 – Recursive Functions

Recursion fac n | n == 0 = 1 | otherwise = n * fac(n-1) as guarded equation
rev [] = []
rev (x:xs) = rev xs ++ [x]

as pattern matching

on lists product :: Num a => [a] -> a
product [] = 1
product (n:ns) = n * product ns

multiply each element of a list

length :: [a] -> Int
lenght [] = 0
length (_:xs) = 1 + length xs

length of a list

reverse :: [a] -> [a]
reverse [] = []
reverse [x:xs] = reverse xs ++ [x]

reverse a list

multiple args zip :: [a] -> [b] -> [(a,b)]
zip [] _ = []
zip _ [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

zipping the elements of two lists

drop drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop _ [] = []
drop n (_:xs) = drop (n-1) xs

remove the first n elements from a list

append (++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

append two lists

Quicksort qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort smaller ++[x]++ qsort larger
 where
 smaller = [a | a <- xs, a <= x]
 larger = [b | b <- xs, b > x]

split array by head element and sort

and and :: [Bool] -> Bool
and [] = True
and (x:xs) = x && and xs

logica and using recursion

concat concat :: [[a]] -> [a]
concat [] = []
concat (x:xs) = x ++ concat xs

concat a list of lists to a list

replicate replicate :: Int -> a -> [a]
replicate 0 x = []
replicate n x = x : replicate (n-1) x

adds an element n times to a list

select (!!) :: [a] -> Int -> a
(x:xs) !! 0 = x
(x:xs) !! n = xs !! (n-1)

select the n-th element of a list

elem elem :: Eq a => a -> [a] -> Bool
elem y [] = False
elem y (x:xs) = if x == y then True else elem y xs

check if a list contains an element

merge merge :: Ord a => [a] -> [a] -> [a]
merge [] [] = []
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys) = if x < y then x : merge xs (y:ys) else y : merge (x:xs) ys

msort msort :: Ord a => [a] -> [a]
msort [] = []
msort xs = merge (qsort(take (length xs `div` 2) xs))
 (qsort(drop (length xs `div` 2) xs))

ZHAW/HSR Druckdatum: 05.07.18 TSM_AdvPrPa

Marcel Meschenmoser Dozent: Dr. Edgar Lederer, Dominik Gruntz Seite 6 von 14

Ch7 – High-order functions

higher-order taking a function as an argument or
returning a function as a result

twice twice :: (a -> a) -> a -> a
twice f x = f (f x)

takes function as input

map map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs] // list compreh.
map f (x:xs) = f x : map f xs // recursion
map (+1) [1,3,5,7] // [2,4,6,8]

apply a function to every element of a list

filter filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]
filter even [1..10] // [2,4,6,8,10]

selects every element from a list,
that satisfies a predicate

foldr foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

f maps the empty list to some value v,
and non-empty list to some function f
applied to its head and foldr of its tail

e.g. sum = foldr (+) 0
product = foldr (*) 1
or = foldr (||) False
and = foldr (&&) True
length = foldr (𝜆_ n -> 1+n) 0
reverse = foldr (𝜆x xs -> xs ++ [x]) []
(++ ys) = foldr (:) ys

it is defined with recursion,
but it is best to think of non-recursive.
replace each (:) in a list with a given function,
and [] with a value

composition (.) :: (b -> c) -> (a -> b) -> (a -> c)
f . g = 𝜆x -> f (g x) // f after g
map((*2).(+1)) [1,2,3] // [4,6,8]
compiler = codeGen.typeChecker.parser.scanner

two functions composite to one

e.g. odd :: Int -> Bool
odd = not . even

all all :: (a -> Bool) -> [a] -> Bool
all p xs = and [p x | x <- xs]
all even [2,4,6,8] // True

decide if every element of a list satisfies a
given predicate p

any any :: (a -> Bool) -> [a] -> Bool
any p xs = or [p x | x <- xs]
any (== ' ') "abc def" // True

decide if at least one element of a list
satisfies a predicate

takeWhile takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)
 | p x = x:takeWhile p xs
 | otherwise = []
takeWhile (/= ' ') "abc def" // "abc"

selects elements from a list while a predicate
holds of all the elements

dropWhile dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p (x:xs)
 | p x = dropWhile p xs
 | otherwise = x:xs
dropWhile (== ' ') " abc " // "abc "

selects elements from a list while a predicate
holds of all the elements

ZHAW/HSR Druckdatum: 05.07.18 TSM_AdvPrPa

Marcel Meschenmoser Dozent: Dr. Edgar Lederer, Dominik Gruntz Seite 7 von 14

Ch8 – Declaring Types and Classes

type declaration type String = [Char]
type Pos = (Int,Int)

String is an array of Chars

e.g. origin :: Pos
origin = (0,0)

defines the origin

left :: Pos -> Pos
left (x,y) = (x-1,y)
left origin // (-1,0)

move position one to the left

with params type Pair a = (a,a)
mult :: Pair Int -> Int
mult (m,n) = m*n

 copy :: a -> Pair a
copy x = (x,x)

nested type Trans = Pos -> Pos can be nested

recursive type Tree = (Int,[Tree]) cannot be recursive

data declaration
(new type,
like an enum)

data Answer = Yes | No | Unknown
answers :: [Answer]
answers = [Yes,No,Unknown]

Answer is the new type
Yes, No and Unknown are data constructors
both must start with upper-case letter

function flip :: Answer -> Answer
flip Yes = No
flip No = Yes
flip Unknown = Unknown

with params data Shape = Circle Float | Rect Float Float like functions: Rect::Float->Shape
square :: Float -> Shape
square n = Rect n n
area :: Shape -> Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y

with type
params

data Maybe a = Nothing | Just a
safediv :: Int -> Int -> Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)

safehead :: [a] -> Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)

recusive types data Nat = Zero | Succ Nat natural numbers

convert to nat2int :: Nat -> Int
nat2int Zero = 0
nat2int (Succ n) = 1 + nat2int n

convert our type to Int using recursion

convert from int2nat :: Int -> Nat
int2nat 0 = Zero
int2nat n = Succ (int2nat (n-1))

convert Int to our type using recursion

function add :: Nat -> Nat -> Nat
add Zero n = n
add (Succ m) n = Succ (add m n)

avoid conversion with function add

arithmetic
expressions

data Expr = Val Int
 | Add Expr Expr
 | Mul Expr Expr

eval eval :: Expr -> Int

eval (Val n) = n
eval (Add x y) = eval x + eval y
eval (Mul x y) = eval x * eval y
eval (Add (Val 1) (Mul (Val 2) (Val 3))) // 7

evaluate an arithmetic expression

Binary Trees
two-way-
branching
structure

data Tree a = Leaf a
 | Node (Tree a) a (Tree a)
t :: Tree Int
t = Node (Node (Leaf 1) 3 (Leaf 4)) 5
 (Node (Leaf 6) 7 (Leaf 9))

occurs occurs :: Eq a => a -> Tree a -> Bool
occurs x (Leaf y) = x == y
occurs x (Node l y r) = x == y
 || occurs x l
 || occurs x r

+
1

*
2

3

5

3
1

4

7
6

9

ZHAW/HSR Druckdatum: 05.07.18 TSM_AdvPrPa

Marcel Meschenmoser Dozent: Dr. Edgar Lederer, Dominik Gruntz Seite 8 von 14

flatten flatten :: Tree a -> [a]
flatten (Leaf x) = [x]
flatten (Node l x r) = flatten 1
 ++ [x]
 ++ flatten r

Ch9 – The Countdown problem

 kein Prüfungsstoff

Ch10 – Interactive programming

Until know:
New (impure):

input -> program -> output
input+keyboard -> program -> output+screen

pure functions (no side effects)
interactive programs (with side effects)

Input/Output IO Char
IO () // tuples with no component

the type of actions that return a character
the type of purely side effecting actions (no result)

actions getChar :: IO Char reads a character from the keyboard,
echoes it to the screen an returns it

putChar :: Char -> IO () writes a character c to the screen and returns no value
return :: a -> IO a returns the value without any interaction

exec action evaluating an action executes its side effects, with the final result value being discarded

Sequencing combine actions

e.g. act :: IO (Char,Char)
act = do x <- getChar
 getChar --ignored
 y <- getChar
 return (x,y)
act
1 3 // -> (1,3)

«do» ist syntaktischer Zucker für ">>=" (bind)

liest drei character,
 auch möglich: "_ <- getChar"

getLine getLine :: IO String
getLine = do x <- getChar
 if x == '\n' then
 return []
 else
 do xs <- getLine
 return (x:xs)

putStr putStr :: String -> IO ()
putStr [] = return ()
putStr (x:xs) = do putChar x
 putStr xs
putStr “hello world\n”

write a string to the screen

putStrLn putStrLn :: String -> IO ()
putStrLn xs = do putStr xs
 putChar '\n'
putStrLn “hello world”

write a string and move to a new line

strLen strLen :: IO ()
strLen = do putStr "Enter a string: "
 xs <- getLine
 putStr "The string has "
 putStr (show (length xs))
 putStrLn " characters"
strLen // Enter a string:
Hello // The string has 5 characters

prompt for a string to be entered and display it length

ZHAW/HSR Druckdatum: 05.07.18 TSM_AdvPrPa

Marcel Meschenmoser Dozent: Dr. Edgar Lederer, Dominik Gruntz Seite 9 von 14

Programmverifikation (4 Wochen)

Problem of
Errorneous
Software

produce high cost
disclaimer instead of guarantee

types:
unspectacular, but many errors (e.g. office)
seldom, but spectacular errors (e.g. ariane, intel pentium, airport of denver)

Software
Qualities

Reliabilty: correctness, robustness
Dependability: knowing that software is reliable, certification
Correctness is the most important of all software qualities, and it is only sensible against a specification

Overview

Testing
Execute program with chosen input.
Output consistent with
specification.
show the presence of bugs,
but never to show their absence!

Proving
program will not be executed,
show the absence of bugs

Consistency: Testing + Proving

IML Imperative Mini Language – consist of preconditions, postconditions and commands

Assertions
"Zusicherung"

should yield always true. If it does not, the program is in error.
Assert statements are a simple yet powerful possibility to check assertions at run time.

bool expr +
state

boolean expression + state -> true or false
boolean expression + true -> set of states

Implication Implication Contrapositive

𝑨 𝑩 𝑨 ⇒ 𝑩 ≡ ¬𝐴 ∨ 𝐵 ¬𝑩 ⇒ ¬𝑨

True True True True ok

True False False False not ok

False True True True ex falso quodlibet
(from false what you like) False False True True

Example If I win, I'll eat my hat I can’t eat my hat, I can’t win

Hoare Triple Syntax
{𝑃} 𝐶 {𝑄}

P: assertion (precondition) of hoare triple
C: command
Q: assertion (postcondition) of hoare triple
prestate = state before execution
poststate = state after execution

Example
{𝑥 > 5} 𝑥 ≔ 𝑥 + 1 {𝑥 > 6}

Properties
∞ 𝑙𝑜𝑜𝑝 → 𝑜𝑘
P stronger than Q

Validity vs
Truth

valid: true in all states ⊨ 𝑥 + 5 = 5 + 𝑥
𝑠0(𝑥) = 0 → 𝑡𝑟𝑢𝑒
𝑠1(𝑥) = 1 → 𝑡𝑟𝑢𝑒

valid Hoare triple ⊨ {𝑃} 𝐶 {𝑄} ⊨ {𝑥 > 5} 𝑥 ≔ 𝑥 + 1 {𝑥 > 6}

not valid: not true in all states ⊭ 𝑥 + 5 = 𝑦
𝑠0(𝑥) = 3, 𝑠0(𝑦) = 8 → 𝑡𝑟𝑢𝑒
𝑠1(𝑥) = 3, 𝑠0(𝑦) = 7 → 𝑓𝑎𝑙𝑠𝑒

non-valid Hoare triple ⊭ {𝑃} 𝐶 {𝑄} ⊭ {𝑥 = 5} 𝑥 ≔ 𝑥 + 1 {𝑥 = 17}

Partial correct if the program ever terminates, then the result is correct.
-> a program that does not "crash" but produces a wrong result is generally by far more dangerous.

total correct the program is partial correct and will terminate.

specification of
imperative
program

Syntax:
{𝑃} 𝑥 ≔? {𝑄}

precondition P
List x of variables that might be changed, others are forbidden to change
postcondition Q

Rigid variables variables for specifications, do not occur in program
also called ghost variables or local variable

{𝑥 = 𝑿} 𝑥 ≔? {𝑥 = 𝑿 + 6}
𝑜𝑙𝑑(𝑥) refers to 𝑥 in the prestate

WP: weakest
preconditions
𝑤𝑝(𝐶, 𝑄)

set of all prestates in which execution of C terminates in a poststate satisfying
Q, or in which execution of C does not terminate.

Example:
𝐶: 𝑥 ≔ 𝑥 + 1
𝑄: 𝑥 > 5

𝑤𝑝(𝐶, 𝑄) = 𝑥 > 4
Theorem: start with the postcondition to arrive at the precondition

⊨ {𝑃} 𝐶 {𝑄} 𝑖𝑠 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 ⊨ 𝑃 ⟹ 𝑤𝑝(𝐶, 𝑄)
Program
Verification

prove that a Hoare triple {𝑃} 𝐶 {𝑄} is valid
from the back to the front -> looks strange, but simpler

usually long and boring -> automatically
but proof problem is undecidable in
general

Specifications
describes what the function does

Implementation
how to compute the function

Validation -> Psychology
Build the right product

Verification -> Mathematic
Build the product right

Design

Requirements

Hardware
Experiment -> Physis

ZHAW/HSR Druckdatum: 05.07.18 TSM_AdvPrPa

Marcel Meschenmoser Dozent: Dr. Edgar Lederer, Dominik Gruntz Seite 10 von 14

Inference
Rules

let 𝑓, 𝑓1, … , 𝑓𝑛 be boolean formulas
-> here assertions or hoard triples, 𝑛 ≥ 0

𝑓1, … , 𝑓𝑛
𝑓

→
𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 𝑜𝑟 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑒𝑠

𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛
 (𝑘𝑒𝑖𝑛 𝐵𝑟𝑢𝑐ℎ)

the interference rule is correct, if the validity of the conclusion
follows from the validity (premises or hypotheses)

𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑐𝑎𝑙𝑙 𝑖𝑡 𝑎𝑥𝑖𝑜𝑚

C: Commands
𝐶𝑡 , 𝐶𝑒: cmd's
P,Q,R,S: assert
E: Expression
id: variable
𝐵: bool expr

 Theorem 𝒏 Example

Skip Axiom

{𝑃} 𝑠𝑘𝑖𝑝 {𝑃}
 0 ⊨ {𝑥 > 5} 𝑠𝑘𝑖𝑝 {𝑥 > 5}

Skip WP 𝑃 ∈ 𝑤𝑝(𝑠𝑘𝑖𝑝, 𝑃)

Assignment
Axiom

{𝑃[𝑖𝑑 ← 𝐸]} 𝑖𝑑 ≔ 𝐸 {𝑃}
 0 ⊨ {(𝑥 + 1) = 5} 𝑥 ≔ 𝑥 + 1 {𝑥 = 5}

(Textual Substitution: replace id with E)

Assignment
WP

𝑑𝑒𝑓𝑖𝑛𝑒𝑑(𝐸) ∧ 𝑃[𝑖𝑑 ← 𝐸] ∈ 𝑤𝑝(𝑖𝑑 ≔ 𝐸, 𝑃)
ensure that 𝐸 is defined in the prestate

𝑤𝑝 (𝑧 ≔

𝑦

𝑥 − 1
, 𝑧 ≥ 1) = 𝑥 − 1 ≠ 0 ∧

𝑦

𝑥 − 1
≥ 1

Rule of
Consequence

𝑃 ⇒ 𝑄, {𝑄}𝐶{𝑅}, 𝑅 ⇒ 𝑆

{𝑃}𝐶{𝑆}

 ⊨ 𝑥 > 6 ⇒ 𝑥 > 5,⊨ {𝑥 > 5}𝑠𝑘𝑖𝑝{𝑥 > 5}, ⊨ 𝑥 > 5 ⇒ 𝑥 > 5

⇒ {𝑥 > 6}𝑠𝑘𝑖𝑝{𝑥 > 5}

(interface between Hoare logic and ordinary math)

Composition
Rule {𝑃0}𝐶1{𝑃1}, … , {𝑃𝑛−1}𝐶𝑛{𝑃𝑛}

{𝑃0}𝐶1; … ; 𝐶𝑛{𝑃𝑛}

≥ 2 ⊨ {𝑦 = 𝐴 ∧ 𝑥 = 𝐵} ℎ ≔ 𝑥 {𝑦 = 𝐴 ∧ ℎ = 𝐵}
⊨ {𝑦 = 𝐴 ∧ ℎ = 𝐵} 𝑥 ≔ 𝑦 {𝑥 = 𝐴 ∧ ℎ = 𝐵}
⊨ {𝑥 = 𝐴 ∧ ℎ = 𝐵} 𝑦 ≔ ℎ {𝑥 = 𝐴 ∧ 𝑦 = 𝐵}

⊨ {𝑦 = 𝐴 ∧ 𝑥 = 𝐵} ℎ ≔ 𝑥; 𝑥 ≔ 𝑦; 𝑦 ≔ ℎ {𝑥 = 𝐴 ∧ 𝑦 = 𝐵}
Composition
WP

𝑃0 ∈ 𝑤𝑝(𝐶1; … ; 𝐶𝑛, 𝑃𝑛)
≥ 2 strange swap:

⊨ −𝑥 ≔ 𝑥 − 𝑦; 𝑥 ≔ 𝑥 + 𝑦; 𝑥 ≔ 𝑦 − 𝑥 {−𝑥 = 𝐴 ∧ 𝑦 = 𝐵}

Conditional
Rule

{𝑃 ∧ 𝐵}𝐶𝑡{𝑄}, {𝑃 ∧ ¬𝐵}𝐶𝑒{𝑄}

{𝑃} 𝑖𝑓 𝐵 𝑡ℎ𝑒𝑛 𝐶𝑡𝑒𝑙𝑠𝑒 𝐶𝑒 𝑒𝑛𝑑𝑖𝑓 {𝑄}

 𝑖𝑓(𝑥 ≤ 𝑦)𝑡ℎ𝑒𝑛 𝑠𝑘𝑖𝑝 𝑒𝑙𝑠𝑒 ℎ ≔ 𝑥; 𝑥 ≔ 𝑦; 𝑦 ≔ ℎ; 𝑒𝑛𝑑𝑖𝑓
⊨ {𝑡𝑟𝑢𝑒} 𝐶 {𝑥 ≤ 𝑦}

Conditional
WP

𝑃𝑡 ∈ 𝑤𝑝(𝐶𝑡 , 𝑄)
𝑃𝑒 ∈ 𝑤𝑝(𝐶𝑒 , 𝑄)

(𝑃𝑡 ∧ 𝐵) ∨ (𝑃𝑒 ∧ ¬𝐵) ∈
𝑤𝑝(𝑖𝑓 𝐵 𝑡ℎ𝑒𝑛 𝐶𝑡 𝑒𝑙𝑠𝑒 𝐶𝑒𝑒𝑛𝑑𝑖𝑓, 𝑄)

(𝐵 ⇒ 𝑃𝑡) ∧ (¬𝐵 ⇒ 𝑃𝑒) ∈
𝑤𝑝(𝑖𝑓 𝐵 𝑡ℎ𝑒𝑛 𝐶𝑡 𝑒𝑙𝑠𝑒 𝐶𝑒𝑒𝑛𝑑𝑖𝑓, 𝑄)

Invariants ⊨ {𝐼} 𝐶 {𝐼} 𝑥 − 𝑦 = ∆; 𝑥 ≔ 𝑥 + 1; 𝑦 ≔ 𝑦 + 1

Invariants of
a loop

{𝐼 ∧ 𝐵} 𝐶 {𝐼}

{𝐼} 𝑤ℎ𝑖𝑙𝑒 𝐵 𝑑𝑜 𝐶 𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒 {𝐼 ∧ ¬𝐵}

 𝑤ℎ𝑖𝑙𝑒 𝑖 > 0 𝑑𝑜 𝑖 ≔ 𝑖 − 1 𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒
Invariant: 𝑖 ≥ 0

Loop
Loop with init

⊨ {𝑃} 𝑤ℎ𝑖𝑙𝑒 𝐵 𝑑𝑜 𝐶 𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒 {𝑄}
⊨ {𝑃} 𝐶𝑖𝑛𝑖; 𝑤ℎ𝑖𝑙𝑒 𝐵 𝑑𝑜 𝐶𝑟𝑒𝑝 𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒 {𝑄}

WP of Loop too complicated

Proof
Procedure

prove if {𝑃} 𝐶 {𝑄} is valid
1. compute the weakest precondition 𝑤𝑝(𝐶, 𝑄)
2. determine the verification condition (VC) 𝑃 ⇒ 𝑤𝑝(𝐶, 𝑄)

automatically done by verification condition generator
3. prove the verification condition valid (Discharging)

automatically discharged by an automated theorem prover

Example: {𝑥 > 6} 𝑠𝑘𝑖𝑝 {𝑥 > 5}
1. 𝑤𝑝(𝑠𝑘𝑖𝑝, 𝑥 > 5) = 𝑥 > 5
2. 𝑥 > 6 ⇒ 𝑥 > 5

3. prove that VC valid

Proof Outline a program annotated with assertions (as comments) between each pair of commands

Annotated
program

a program annotated with assertions (as comments or assert-commands) for purposes of documentation

good practise “enough assertions should be inserted to make the program understandable,
but not so many that the program is hidden from view.”

ZHAW/HSR Druckdatum: 05.07.18 TSM_AdvPrPa

Marcel Meschenmoser Dozent: Dr. Edgar Lederer, Dominik Gruntz Seite 11 von 14

Multiparadigmen- und stark getypte Programmierung (4 Wochen)

Scala – Multiparadigm Language

Multiparadigm Multi-paradigm programming (functional and object-oriented)
Objects and Syntax from Java/C++/C/Smalltalk/Simula,
Functional programming von Haskel/ML/Lisp,
Actors von Erlang, Pattern matching von Prolog

Properties Object-oriented, Functional, type safe, performant, agile, lightweight syntax

Java (anno
domini)

Pro: popularity, acceptance, object-riented and strong typing, library, tools, JVM (platform independent)
Cons: Very imperative, not highly concurrent, verbose (to much boilerplate code) -> source code generator

based on JVM Clojure, Groovy, JRuby, Jython, Scala, Kotlin, Ceylon

Scala Pro over
Java (anno
domini)

functions are classes and can be passed around, values are objects (pure object-oriented),
operators are just methods, statically typed (as Java) but uses type inference,
supports the principle of uniform access, supports concurrency, is concise (short and precise)

Example class Person (val name: String, var age: Int)

Pro Scala is scalable and extensible

Types Byte -> Short -> Int -> Long -> Float -> Double.
Char: assignment compatibility Char -> Int
Boolean
Unit (void), only one value "()"
Null: subtype of all reference types, only instance is null
Nothing: bottom type, is a subtype of all types, no instance
Lists (concrete classes, no interface, linked, immutable)
String (lot of methods, interpolation, multiline)
Tuples (fixed size, different types, access is 1-based)
Maps (pairs, immutable -> mutable variants exist)
Any = Scala base type (isInstanceOf, asInstanceOf)
AnyRef = root of all reference (equals, eq, hascode, ...)
AnyVal = root of all values

types have methods (5.toFloat)
operators are method calls (10 ./(3)

Variable decl val (const, final)
var

val year = 1989
var age = 27; age = 28

Control expr if, no ternary "?"
while
do-loop (expr of type Unit)
for-comprehension (expr of
type Unit or first generator)

val res = if(false) { println(1) } else 2 // 2
val res = while (age > 10) age -= 1 // ()
val res = do age -= 1 while (age > 10) // ()
val res = for(i <- 1 to 10 if i%2==0) yield (i*i)
// Vector(4, 16, 36, 64, 100)

Classes abstract, final, single
inheritance, nested classes

members: values (var or val),
methods (def),
types (type)
-> default visibility is public

every class has a primary
constructor

class CreditCard(val numb: Int, var limit: Int) {
 def this(numb: Int) = this(numb, 1000) // aux cons
 println("new card created") // exec in primary cons
 private var sum = 0
 def buy(amount: Int) {
 if(sum + amount > limit) throw new RuntimeException
 sum += amount
 }
 def remainder = limit-sum // method without param
}
val a = new CreditCard(2000);

Inheritance
abstract class

doSmth() must be
overwritten

abstract class Base(param: String) {
 def doSmth: String // without body abstract
 override def toString() = "^"+ super.toString()
}
class Derived extends Base("0") {
 def doSmth = "working"
}

Methods similar to Java, default val
multiple returns with Tuples
param called by name
curried param list

def add(x: Int, y: Int = 1): Int = {return x+y}
def quorem(m: Int, n: Int) : (Int, Int) = (m/n, m%n)
quorem(n = 2, m = 4)
def sub(m: Int)(n: Int) = m-n; println(sub(2){5})

ZHAW/HSR Druckdatum: 05.07.18 TSM_AdvPrPa

Marcel Meschenmoser Dozent: Dr. Edgar Lederer, Dominik Gruntz Seite 12 von 14

Singleton
Objects

can be accessed by its name
Name represents the single
instance
Singleton can be passed to
functions with parameter
ColorFactory.type

class Color(val r: Int, val g: Int, val b: Int)
object ColorFactory{
 private val cols = Map(
 "red" -> new Color(255,0,0),
 "blue" -> new Color(0,0,255),
 "green" -> new Color(0,255,0))
 def getColor(color: String) =
 if(cols contains color) cols(color) else null }
val c = ColorFactory.getColor("red")

Companion
Objects

similar to “friends” in C++
classes and companion
objects can access private
fields

class Color private (val r:Int, val g:Int, val b:Int)
object Color {
 def getColor() = new Color(255,0,0)
}

Functions are instance of class
FunctionX
X=(0..22)
curried

tuppled
curried definition
type interference
subclass of FunctionX

val add = (m: Int, n: Int) => m + n add(2,3) //5
 add.apply(2,3)//5
val addc = add.curried
val inc = addc(1) inc(5) //6
val addt = add.tupled addt(2 -> 3) //5
val add1 = (x: Int) => (y: Int) => x+y //curried
val add2 : Int => Int => Int = (x:Int) => (y:Int) => x+y
object add extends Function2[Int, Int, Int] {
 def apply(x: Int, y: Int) = x+y }

Pattern
Matching

similar to switch-case
Match expression, No fall-
through
throws error if no pattern
matches

def patternMatching(i : Int) = {
 i match {
 case 0 => "Null"
 case 1 => "One"
 case _ => "?"

with types and guards

can match lists, tuples

def patternMatching(any : Any) =
 any match {
 case i : Int => "Int: " + i
 case s : String => "String: " + s
 case d : Double if d > 0 => "Pos Double: " + d
 case List() => "empty list"
 case any => any.toString }

matching lists def length(list: List[Any]) : Int= {
 list match {
 case List() => 0
 case x :: xs=> 1 + length(xs) } }

matching tuples def process(input: Any) = {
 input match {
 case (a,b) => printf("Processing (%d,%d)...\n", a, b)
 case "done" => println("done")
 case _ => null } }

Case classes new is not mandatory
getter are automatically
defined
equals(), hasCode(), toString()
decompe with pattern
matching

abstract class Tree
case class Sum(x: Tree, y: Tree) extends Tree
case class Prod(x: Tree, y: Tree) extends Tree
case class Var(n: String) extends Tree
case class Const(v: Int) extends Tree
def eval(t: Tree, env: Map[String,Int]) : Int = t match {
 case Sum(x, y) => eval(x, env) + eval(y, env)
 case Prod(x, y) => eval(x, env) * eval(y, env)
 case Var(n) => env(n)
 case Const(v) => v }

Scala Traits

Multiple
inheritance

Unterscheiden zwischen: Interface Inheritance oder Code Inheritance
Works fine when you combine classes that have nothing in common.
Problem with multiple inherited methods (solved in C# (explicit interface implem.), not in C++ or Java)
Problem with diamond inheritance problem (use virtual inheritance in C++).
Java: Single implementation inheritance, multiple interface inheritance -> duplicated code

ZHAW/HSR Druckdatum: 05.07.18 TSM_AdvPrPa

Marcel Meschenmoser Dozent: Dr. Edgar Lederer, Dominik Gruntz Seite 13 von 14

Traits in Scala analogous to Java interfaces, but with implementations and fields and dynamic composition
Solution for the diamond problem and linearization problem
e.g. «TraitA with TraitB with TraitC» is the data type
super.log invokes next trait in the trait hierarchy (stackable modifications) and not the base class
traits can not be instantiated, but can be added to new objects

Self types trait ExceptionLoggerextends Logger {
 this: Exception =>
 def log() { log(getMessage()) }
}

In the trait methods, any methods of the self
type can be invoked
a trait with a self type is similar to a trait with
a supertype

Linearization 1. actual type as first
2. add right to left
3. remove duplicates

left to right
4. append AnyRef and

Any

class C3 extends C2 with T1 w. T2 w. T3
ℒ(𝐶3) = 𝐶3 + ℒ(𝑇3)⏟

𝑇3𝐶1

+ ℒ(𝑇2)⏟
𝑇2𝐶1

+ ℒ(𝑇1)⏟
𝑇1𝐶1

+ ℒ(𝐶2)⏟
𝐶2 𝑇2⏟
𝑇2𝐶1

ℒ(𝐶3) = 𝐶3𝑇3𝑇1𝐶2𝑇2𝐶1 + 𝐴𝑛𝑦𝑅𝑒𝑓 + 𝐴𝑛𝑦
→ 𝑠𝑢𝑝𝑒𝑟𝑐𝑎𝑙𝑙
← 𝑖𝑛𝑖𝑡

 class C1 { print(">>C1"); // constr
 def m = List("C1")
}
trait T1 extends C1 { print(">>T1")
 override def m = { "T1" :: super.m }
}
trait T2 extends C1 { print(">>T2")
 override def m = { "T2" :: super.m }
}
trait T3 extends C1 { print(">>T3")
 override def m = { "T3" :: super.m }
}
class C2 extends T2 { print(">>C2")
 override def m = { "C2" :: super.m }
}
class C3 extends C2 with T1 with T2 with T3 {
 print(">>C3")
 override def m = { "C3" :: super.m }
}

val a = new C1 // >>C1
print(a.m) // List(C1)

val a = new C3
// >>C1>>T2>>C2>>T1>>T3>>C3
print(a.m)
// List(C3, T3, T1, C2, T2, C1)

a.isInstanceOf[C1 with T2] //true
a.isInstanceOf[T1 with T3] //true

??? def ??? : Nothing = throw new NotImplementedError mark methods to be implemented

Parameterized Types

Type
parameters

// on classes or traits
case class Pair[T, S](val first: T, val second: S)
val p1 = Pair(42, "String")
// on functions or methods
def getMiddle[T](a: Array[T]) = a(a.length / 2)

change override überschriebene Methoden dürfen mehr liefern als verlangt (return type) -> covariant (erlaubt in Java)
überschriebene Methoden dürfen weniger erwarten als verlangt (params) -> contravariants (nicht in Java)

mutable
immutable

likely to be changed
unable to change

 Java: use-site declaration (?super, ?extend)
Scala: declaration-site declaration (+/-T)

Variance of
Subtyping

invariant is default

 class Animal; class Bird extends Animal;
class Cage[A] // invariant (default)
class Cage1[+A] // covariant, C#: out
class Cage2[-A] // contravariant, C#: in
val animalCage: Cage1[Animal] = new Cage1[Bird] // allowed when [+A]
val birdCage: Cage2[Bird] = new Cage2[Animal] // allowed when [-A]

Animal

Bird

Cage[Animal]

Cage[Bird]

Cage[Animal]

Cage[Bird]

Cage[Animal]

Cage[Bird]

covariant, +T invariant, T contravariant, -T

ZHAW/HSR Druckdatum: 05.07.18 TSM_AdvPrPa

Marcel Meschenmoser Dozent: Dr. Edgar Lederer, Dominik Gruntz Seite 14 von 14

Implicit Converions

implicit
functions

class BlingString(string: String) { def bling = "*" + string + "*" }
implicit def blingToString(s: String) = new BlingString(s)
print("Hello".bling) // *Hello*

Method bling is now available on all strings (as if it were defined in class String)

implicit classes implicit class BlingString(string: String) { def bling = "*" + string + "*" }
print("Hello".bling) // *Hello*

usages val f: Fraction = 12 // type differs from expected type
"hello".bling // non-existent member access
3 * Fraction(4,5) // Int.* does not accept a Fraction arg

rules No implicit conversions if the code compiles without it
The compiler will NEVER attempt multiple conversions
Ambiguous conversions are an error
implicit conversion must be in scope

implicit
parameters

case class Delimiters(left: String, right: String)
def quote(text: String)(implicit delims: Delimiters) =
 delims.left + text + delims.right
print(quote("Bonjour")(Delimiters("«", "»"))) // «Bonjour»
//quote("Hello") – error: could not find implicit value for parameter delims

only works for the last parameter list

type classes most powerful features in Haskell
They allow you to define generic interfaces that provide a common feature set over a wide variety of types.
Type classes define a group (class) of types which satisfy some contract (defined in a trait).
trait Monoid[A] {
 def op(x: A, y: A) : A
 def unit : A
}
implicit object stringMonoid extends Monoid[String] {
 def op(x: String, y: String) = x + y
 def unit = ""
}
implicit object addMonoid extends Monoid[Int] {
 def op(x: Int, y: Int) = x + y
 def unit = 0
}

