
ZHAW/HSR Print date: 20.06.19 TSM_Alg

Marcel Meschenmoser Lecturer: Prof. Dr. C. Stamm & Mark Cieliebak Page 1 of 8

ALGORITHMS

1. Introduction to Computational Geometry

Geometry
Primitives

Point Line Segment Ray Plane Halfplane Triangle Polygon Circle Ellipse

sets: unordered, ordered

Polygon types simple Polygon (SP) general polygon
(=set of simple polygons)

monotone polygons

without intersection,

without whole
wholes allowed,

polygon in wholes allowed
any line perpendicular (rechtwinklig) to line

intersects with boundary 0,1 or 2 times

Boolean
operations

union 𝑃1 ∪ 𝑃2 intersection 𝑃1 ∩ 𝑃2 difference 𝑃1\𝑃2 complement ¬𝑃

Intersection
examples

intersect two lines intersect half plane with line intersect two simple polygons

2D:

𝐿1 ∩ 𝐿2
= {𝑃𝑜𝑖𝑛𝑡, 𝐿𝑖𝑛𝑒, ∅}

𝐻 ∩ 𝐿

= {
3𝐷: 𝑃𝑜𝑖𝑛𝑡, 𝐿𝑖𝑛𝑒, ∅, 𝑅𝑎𝑦

2𝐷: 𝐿𝑖𝑛𝑒, ∅, 𝑅𝑎𝑦
}

𝑆𝑃1 ∩ 𝑆𝑃2
= {𝑆𝑃, 𝑆𝑒𝑔𝑚𝑒𝑛𝑡, 𝑃𝑜𝑖𝑛𝑡, [𝑆𝑃], ∅}

Vector operations see Skalarprodukt_Vektorprodukt

Line intersection 𝐿𝑖𝑛𝑒1: (
𝑥1

𝑦1
) = 𝑝1 + 𝑠 ∗ 𝑣1⃗⃗⃗⃗

𝐿𝑖𝑛𝑒2: (
𝑥2

𝑦2
) = 𝑝2 + 𝑡 ∗ 𝑣2⃗⃗⃗⃗

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛: 𝐿𝑖𝑛𝑒1 = 𝐿𝑖𝑛𝑒2
main problem

precision model
Main problem is that when we store the intersection point in a double, and determine later if the
intersection point lies on the line, it gives ∅
solution 1: use data type rational instead of double -> needs more computation time
because rational is stored with two big integers
solution 2: draw circle around point which symbolise the point -> creates new problems

Problem and
Approach

Geometrical problems
- computational (compute all line intersections of a line set)
- decision (is a given point inside a polygon)
Standard Approach
transform problem and input to geometrical equivalent,
choose construction paradigm, choose data structure,
choose complexity analysis technique, solve problem
geometrical, transform solution to original problem domain

Linear Searching task: searching in a list

given: List L of numbers, |𝐿| = 𝑛
ask: is a given 𝑥 ∈ 𝐿?
worst case: 𝑇𝑤𝑐(𝑛) = max 𝑇(𝐼) 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝐼 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛

𝑥 ∈ 𝐿: 𝑇𝑤𝑐 = 𝑂(𝑛), 𝑥 ∉ 𝐿: 𝑇𝑤𝑐 = 𝑂(𝑛)
average case: 𝑇𝑎𝑣𝑔(𝑛) = ∑ 𝑃[𝐼] ∗ 𝑇[𝐼]𝐼 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝐼 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛

𝑥 ∈ 𝐿: 𝑃[𝑝𝑜𝑠] =
1

𝑛

𝑇𝑎𝑣𝑔(𝑛) = ∑𝑃[𝑖] ∗ 𝑇(𝑡𝑜 𝑓𝑖𝑛𝑑 𝑥 𝑎𝑡 𝑝𝑜𝑠 𝑖)

𝑛

𝑖=1

= ∑
1

𝑛
∗ 𝑂(𝑖)

𝑛

𝑖=1

= ∑
𝑖

𝑛

𝑛

𝑖=1

=
𝑛(𝑛 + 1)

2 ∗ 𝑛
=

𝑛 + 1

2
≈

𝑛

2

Complexity Theory -> see Big-O-Notation

library JavaGeom (Java, not supported anymore)
JTS Topology Suite (Java)
CGAL (C++): most professional
LEDA (C++): little bit old

http://www.meschenmoser.ch/tl_files/BSc/Skalarprodukt_Vektorprodukt.pdf

ZHAW/HSR Print date: 20.06.19 TSM_Alg

Marcel Meschenmoser Lecturer: Prof. Dr. C. Stamm & Mark Cieliebak Page 2 of 8

sort algorithms

Insertion sort
𝑂(𝑛2)

go from left to right throug the array
and move each element 'x' as far left as it has
to be

void insertSort(T[] a) {
 for (int i=1; i < a.length; i++) {
 int x = a[i];
 int j = i – 1;
 // shift previous values to the right
 while(j ≥ 0 && a[j] > x) {
 a[j + 1] = a[j];
 j--;
 }
 a[j + 1] = x; // insert on the left
 }
}

Mergesort
𝑂(𝑛 log𝑛)

// l=left, r=right (common in C++)
void mergeSort(T[] a,int l,int r){
 if (l < r) { // n>1
 // divide into two equal parts
 int m = l + (r – l)/2;
 // sort the two parts
 mergeSort(a, l, m);
 mergeSort(a, m + 1, r);
 // merge them two into one
 merge(a, l, m, r);
 }
}

void merge(T[] a, int l, int m, int r){
 T[] b; int i = l, j = m + 1, k = l;
 while (i <= m && j <= r) { // both have element
 if (a[i] <= a[j]) { b[k] = a[i]; i++;}
 else { b[k] = a[j]; j++; }
 k++;
 }
 if (i > m) { // add rest from right part
 for (int h=j; h <= r; h++) b[k+h–j] = a[h];
 } else { // add rest from left part
 for (int h=i; h <= m; h++) b[k+h–i] = a[h];
 }
 for (int h=l; h <= r; h++) a[h] = b[h];
}

Quicksort
𝑂(𝑛 log𝑛)

void quicksort(T[] a) {
 sort(a, 0, a.length – 1);
}

void sort(T[] a, int l, int r) {
 int i = l, j = r;
 T p = a[l]; // pivot element
 do {
 while(a[i] < p) i++; // from left
 while(p < a[j]) j--; // from right
 if (i ≤ j) { // exchange
 T tmp = a[i]; a[i] = a[j]; a[j] = tmp;
 i++; j--;
 }
 } while(i < j);
 if (j > l) sort(a, l, j); // smaller than pivot
 if (i < r) sort(a, i, r); // larger than pivot
}

Exercise 2 𝑇(1) = 𝑐1

𝑇(𝑛) = 2 ∗ 𝑇 (
𝑛

2
) + 𝑛

𝑇(𝑛) = 2𝑖 ∗ 𝑇 (
𝑛

2𝑖
) + 𝑖 ∗ 𝑛, 𝑖 ∈ ℕ

2𝑖 = 𝑛 → 𝑖 = log2 𝑛

𝑇(𝑛) = 𝑛 ∗ 𝑇 (
𝑛

𝑛
) + log2(𝑛) ∗ 𝑛

𝑇(𝑛) = 𝑛 ∗ 𝑐1 + 𝑛 log2(𝑛)
𝑇(𝑛) = 𝑛(log2 𝑛 + 𝑐1)

ZHAW/HSR Print date: 20.06.19 TSM_Alg

Marcel Meschenmoser Lecturer: Prof. Dr. C. Stamm & Mark Cieliebak Page 3 of 8

2.+3. Construction Paradigms

Constraints Are like halfplanes

Incremental
construction

a geometric structure is incrementally constructed, after each step a valid geometric structure is available.

Line arrangements Convex Hull (CH)

Input: n lines in 2D Input: n Points in 2D

Output: Arrangement = the lines
induce a subdivision of the plane that
consists of vertices, edges and faces

Output: Clockwise ordered list of points that are the vertices.

𝑛𝑉: vertex = where two lines cross
𝑛𝐸: edge = a segment or ray on a line
𝑛𝐹: face = plane between lines

finite set P with n points

Insert a new line 𝐼𝑖 → 𝑂(𝑖)
Total complexity 𝑂(𝑛2)

compute the convex hull → 𝑂(𝑛 log 𝑛)

Convex hull
algorithm 1

1. Sort all points by x -> 𝑂(𝑛 log 𝑛)
2. Compute upper hull from left to right: For all points: -> 𝑂(𝑛)

 while the last three points makes a "right turn" remove the second last point 𝑂(𝑛)
3. Compute lower hull from right to left in same way

Graham Scan
(for convex hull)

1. Find the point P with the lowest y-coordinate -> 𝑂(1)
2. Sort the points in increasing order of the angle they and P make with x-axis -> 𝑂(𝑛 log𝑛)
3. For all points: -> 𝑂(𝑛)

 while the last three points form a "right turn" remove the second last point 𝑂(𝑛)

Divide and
Conquer
(for convex hull)

1. Divide: points into 2 subsets
2. Conquer: find convex hull for each subset
3. Merge: with upper and lower tangent

𝑇(𝑛) ≤ 2 ∗ 𝑇 (
𝑛

2
) + 𝑂(𝑛) = 𝑂(𝑛 log 𝑛)

Plane Sweep move a line from one side to the other and handle points

Line Segment
Intersection

(LSI)

3 types of events (points): 'start', 'intersection' and 'end' event
as soon as two line segments become neighbours, check for intersection point (𝐼)
two datastructures: event queue Q (with m event points) and
 Status T (binary search tree)

𝑂((𝑛 + 𝐼) log 𝑛)

𝐼 ∈ 𝑂(𝑛) → 𝑂(𝑛 log 𝑛)
𝐼 ∈ 𝑂(𝑛2) → 𝑂(𝑛2 log 𝑛)

Use case: DEM
(digital elevation
model) ->
determine the
horizon

1. compute triangulation (Delaunay)
2. backface removal
3. cylindrical projection
4. computing the horizon (divide and conquer)

Closest Pair Given a set S of n points in the plane, find a pair of closest neighbors.
naive approach: 𝑂(𝑛2)
plane sweep paradigm or divide-and-conquer 𝑂(𝑛 log 𝑛)
1. lexicographically sorting points S → 𝑂(𝑛 log 𝑛)
2. empty ordered set D: 𝑂(1)
3. event handling (each points is added to D and removed from D once) 2 ∗ log 𝑛
4. query 𝐷(𝑝) → 𝑂(log 𝑛)
5. compute the distance and update closest pair → 𝑂(1)

Voronoi Diagram will come later

All-Nearest-
Neighbors

given a set S of n points in the plane, find a nearest neighbor of each
-> compute voronoi diagram in 𝑂(𝑛 log 𝑛) and extract solution in 𝑂(𝑛)
-> or use plane sweep paradigm to compute directly in 𝑂(𝑛 log𝑛)

ZHAW/HSR Print date: 20.06.19 TSM_Alg

Marcel Meschenmoser Lecturer: Prof. Dr. C. Stamm & Mark Cieliebak Page 4 of 8

4. Planar Subdivisions

see Graph Theory

Overlay of
Subdivision in
DCEL

Phase 1 (Vertices and Edges)
1. copy existing two subdivisions S1 and S2 to a new subdivision D (not a proper DCEL)
2. run a plane sweep algorithm and transform D to a correct DCEL for O(S1, S2)
(D is changed at intersection event points)
Phase 2 (Faces)
3. create a face record for each face f in O(S1, S2)
4. set OuterComponent(f) to a half-edge on the outer boundary of f
5. create a list InnerComponents(f) to half-edges on the boundaries of the holes inside f
6. set IncidentFace() for each half-edge on the boundary of f
7. label f with the names of the faces in S1 and S2 that contain it

𝑂(𝑛 log 𝑛 + 𝑘 ∗ log 𝑛)

Boundary Cylces of
the same Face

1. Create Graph G
2. a node represents one boundary cylce
2. draw an arc between two cycles if one of the
cycles is the boundary of a hole and the other
cycle has a half-edge immediately to the left of
the leftmost vertex of the hole cycle

Use Case: Boolean
Operations

1. Compute Overlay
2. iterate through all faces and filter them depending of the Boolean operation
3. Create polygons from boundary cylces

5. Polygon Triangulations

Types of
subdivisions of a
plane in triangles

Triangulation (no additional points)

Mesh (add additional points)

2D of a Planar Point Set
𝑃: set of 𝑛 points in the plane (not all collinear)
𝑘 Points on boundary = 6
𝑛 Points totally = 9
𝑚 number of triangles = 10

𝑛𝑣 − 𝑛𝑒 + 𝑛𝑣 = 2

𝑛 −
3𝑚 + 𝑘

2
+ (𝑚 + 1) = 2

2𝑛 − 3𝑚 − 𝑘 + 2𝑚 + 2 = 4
𝑚 = 2𝑛 − 𝑘 − 2
𝑛𝑒 = 3𝑛 − 3 − 𝑘

uniform

all edges looks the same

non-uniform

fine near the edges
coarse far away from
edges

3D Triangulation of Convex Polytope
𝑃: set of 𝑛 points in 3D (not all collinear)

𝑂(𝑛 log 𝑛)
number of facets is at most: 6𝑛 − 20

conforming

non-conforming

well-shaped
all angles between 45°
and 90°

respect the input
edges of the component
must be contained in the
union of mesh

ZHAW/HSR Print date: 20.06.19 TSM_Alg

Marcel Meschenmoser Lecturer: Prof. Dr. C. Stamm & Mark Cieliebak Page 5 of 8

orientable vs
non-orientable

orientable non-orientable

torus

klein bottle

möbius strip

2.5 Dimension
& Triangulation

2.5D: 2D Surface in a 3D space.
Each vertical line intersects it in exactly one or zero point.
e.g. Terrain

optimal
Triangulation

Small skinny triangles are bad,
because height interpolation is more error-prone
maximization of minimum angle of a triangulation

good bad

Delaunay
Triangulation

The Delaunay triangulation is the dual of
the voronoi diagram.
It does not contain illegal edges.
Can be computed in 𝑂(𝑛 log 𝑛).

Art Gallery
Problem

Problem: How many (360°) cameras do
we need to guard a given gallery and how
do we decide where to place them?
Complexity: NP-hard! if convex → 𝑂(1)
Upper Bounds: on every edge -> n
cameras
in every triangle of triangulation: n-2 cams

on every black vertex: ⌊
𝑛

3
⌋ cameras

3-Coloring of a Triangulation

Triangulation A decomposition of a polygon P into triangles by a maximal set of non-intersecting diagonals (line segments
between pairs of vertices)

Example
P: set of n points
k: points on
convex hull

1. calculate convex hull

𝑛 = 9
𝑘 = 6

𝑚 = 10
𝑛𝑒 = 18

→ 𝑚 = 2𝑛 − 𝑘 − 2
10 = 2 ∗ 9 − 6 − 2

2. point-to-sth polygon → 𝑛𝑒 = 3𝑛 − 3 − 𝑘
18 = 3 ∗ 9 − 3 − 6

→ 𝑛𝑒 =

3𝑚 + 𝑘

2

𝑛𝑒 =
3 ∗ 10 + 6

2
= 18

Triangulating a
simple polygon

1. Find a diagonal in P → 𝑂(𝑛)
- let v be the leftmost vertex P
- let u and w be the neighbors of v
- try to connect u with w
- if this fails we connect v to the vertex farthest from uw inside
the triangle defined by u,v and w
2. Triangulate the two resulting subpolygons recursively 𝑂(𝑛)

→ 𝑂(𝑛2)
Better approch A simple polygon with n vertices can be triangulatedinto y-monotone polygons in 𝑂(𝑛 log 𝑛) time with

sweep-line algorithm that uses 𝑂(𝑛) storage, and therefore triangulated in 𝑶(𝒏 𝐥𝐨𝐠 𝒏) time.

ZHAW/HSR Print date: 20.06.19 TSM_Alg

Marcel Meschenmoser Lecturer: Prof. Dr. C. Stamm & Mark Cieliebak Page 6 of 8

6. Orthogonal Range Searching

Searching and
Indexing

given: 𝑠𝑒𝑡 𝑆 = {𝑜𝑖|𝑖 = 1. . 𝑛}
find: 𝑠𝑢𝑏𝑠𝑒𝑡 𝑅 = {𝑜𝑖|𝑃(𝑜𝑖), 𝑖 = 1. . 𝑛}

assumption: S is incrementally updated
approach use a space partition tree

Binary Tree searching in a tree: 𝑂(log𝑛)

One dim. range
query/searching

Get elements between 4 and 9
1. search first element 𝑂(log𝑛)
2. search second element 𝑂(log 𝑛)
3. get elements between 𝑂(𝑘)
total 𝑂(𝑘 + log 𝑛)

MSE Mean Squared Error (at RGB example)

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑟𝑖 − 𝑟𝑖

′)2 + (𝑔𝑖 − 𝑔𝑖
′)2 + (𝑏𝑖 − 𝑏𝑖

′)2
𝑛

𝑖=1

Tree (General)

Binary Tree: each node has 0 (leaf) or
1,2 (inner node) following nodes
Search Tree: all nodes are sorted
from left (lowest) to the right
(highest)
Balanced Tree: each node has similar
number of following nodes
-> height as small as possible

Types of balanced
binary search

tree's

AVL-Tree (used in C++, 1962) Red-Black-Tree (used in JAVA, 1972)

Operations insertion/deletion: needs rebalancing (tree rotations) afterwards

Application Querying a Database 1-D Range Searching

Who has a salary between 3000 and 4000
and ist born in 1954.

Find all items with keys in interval [18: 77]
construction 𝑂(𝑛 log 𝑛), query 𝑂(𝑘 + log 𝑛) where
k = number of output nodes, storage 𝑂(𝑛)

8

3 10

1 5 9 12

1 3 5 8 9 10 12 14

ZHAW/HSR Print date: 20.06.19 TSM_Alg

Marcel Meschenmoser Lecturer: Prof. Dr. C. Stamm & Mark Cieliebak Page 7 of 8

Range Search Quadtree / Octree Kd-Tree Range Tree Layered Range Tree

dimension 𝑑 = 2 / 3 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑑 ≥ 2 𝑑 ≥ 2 𝑑 ≥ 2

storage 𝑂((ℎ + 1) ∗ 𝑛) 𝑂(𝑑 ∗ 𝑛) 𝑂(𝑛 ∗ log𝑑−1 𝑛) 𝑂(𝑛 ∗ log𝑑−1 𝑛)

build time 𝑂((ℎ + 1) ∗ 𝑛) 𝑂(𝑑 ∗ 𝑛 ∗ log 𝑛) 𝑂(𝑛 ∗ log𝑑−1 𝑛) 𝑂(𝑛 ∗ log𝑑−1 𝑛)

query time
𝑂 (𝑘 + 𝑛1−

1
𝑑) 𝑂(𝑘 + log𝑑 𝑛) 𝑂(𝑘 ∗ log𝑑−1 𝑛)

height
log

𝑠

𝑐
+

3

2

𝑐: 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑑𝑖𝑠𝑡
𝑠: 𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑞𝑢𝑎𝑟𝑒

nodes
balanced

𝑂((ℎ + 1) ∗ 𝑛)

𝑂(𝑚)

leaves 3 ∗ 𝑖𝑛𝑛𝑒𝑟 𝑛𝑜𝑑𝑒𝑠 + 1

usage triangulation, non-uniform mesh
generator, simulation finite
element method

nearest neighbor 𝑂(log 𝑛),
Image Compression, k-means
clustering, filter algorithm

Windowing in 2D
and 3D

Problem: reporting all objects fully contained in, or intersecting, a given window.
similar to range queries, but data are objects and search space is normally 2D or 3D.
Application: GIS: report all map objects intersecting a given window
 VR: report all triangles intersecting the viewing volume

simpler problem Problem: Windowing of axis-parallel line segments

4 different cases:
segments lying entirely in window
segments intersect the boundary once
segments intersect the boundary twice
segment (partially) overlap the boundary
segments with at least one endpoint inside window -> use range query
segments with both endpoints outside window -> use an interval tree

Interval tree Problem: report all horizontal line segments that intersect the left edge (or vertical the bottom edge)

construction Input: a set I of n closed intervals [𝑥𝑖: 𝑥𝑖
′]

Preprocessing: Sorting interval endpoints -> simplify median computation
Divide-and-Conquer:
- compute the median of I completely to the left of 𝑥𝑚𝑖𝑑
- build 3 subsets (𝐼𝑙𝑒𝑓𝑡 , 𝐼𝑟𝑖𝑔ℎ𝑡 , 𝐼𝑚𝑖𝑑)

- create node v and store 𝐼𝑚𝑖𝑑 with v
- create recursively interval tree with 𝐼𝑙𝑒𝑓𝑡 and store root as left child of v

- create recursively interval tree with 𝐼𝑟𝑖𝑔ℎ𝑡 and store root as right child of v

2 Sorted Lists
𝐿𝑙𝑒𝑓𝑡: contains all intervals of 𝐼𝑚𝑖𝑑 sorted on increasing left endpoints

𝐿𝑟𝑖𝑔ℎ𝑡: contains all intervals of 𝐼𝑚𝑖𝑑 sorted on decreasing right endpoints

Analysis storage 𝑂(𝑛), depth 𝑂(log 𝑛), construction 𝑂(𝑛 log𝑛), query 𝑂(𝑘 + log 𝑛)

Extension Replace two associated range tree 𝑇𝑙𝑒𝑓𝑡 and 𝑇𝑟𝑖𝑔ℎ𝑡

reporting all segments whose left endpoint lies in (−∞: 𝑞𝑥] × [𝑞𝑦: 𝑞𝑦
′]

reporting all segments whose right endpoint lies in [𝑞𝑥: ∞) × [𝑞𝑦: 𝑞𝑦
′]

storage 𝑂(𝑛 log 𝑛), construction 𝑂(𝑛 log 𝑛), intersection report 𝑂(𝑘 + log2 𝑛)
Priority Search
Tree

storing two associated range trees per node in an interval tree is overkill,
because the performed range queries are unbounded on one side

Idea replace range trees by two priority search trees (special x-y-ordered heaps)

construction 1. search for the most left (min x)
2. split by median of y
3. repeat

Analysis storage 𝑂(𝑛), built 𝑂(𝑛 log 𝑛), query 𝑂(𝑘 + log 𝑛)

ZHAW/HSR Print date: 20.06.19 TSM_Alg

Marcel Meschenmoser Lecturer: Prof. Dr. C. Stamm & Mark Cieliebak Page 8 of 8

7. Voronoi Diagrams

Voronoi Diagram Model where every point is assigned to the nearest site.
given: set of distinct points in the plane: 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛}
search: Voronoi diagram 𝑉𝑜𝑟(𝑃)
solution: sweep line algorithm 𝑂(𝑛 log 𝑛)

single Voronoi cell the bisector of two points 𝑝 and 𝑞 is the perpendicular bisector of the line

seqment 𝑝𝑞.
this bisector splits the plane into two half-planes ℎ(𝑝, 𝑞) containing 𝑝 and
ℎ(𝑞, 𝑝) containing 𝑞

Structure of the
Voronoi diagram

let 𝐶𝑝(𝑞) be the largest empty circle with q as its center that does not

contain any site of P in its interior.

if all sites are collinear, then 𝑉𝑜𝑟(𝑃) consists of 𝑛 − 1 parallel lines
otherwise 𝑉𝑜𝑟(𝑃) is connected and its edges are either segments or half-
lines (rays)

for 𝑛 ≥ 3:
the number of vertices in 𝑉𝑜𝑟(𝑃) is at most 2𝑛 − 5
the number of edges is at most 3𝑛 − 6

2 ∗ 4 − 5 = 3
3 ∗ 4 − 6 = 6

At point q is a vertex of 𝑉𝑜𝑟(𝑃) if and only if its largest empty circle 𝐶𝑝(𝑞)

contains three or more sites on its boundary

the bisector between sites 𝑝𝑖 and 𝑝𝑗 defines an edge of 𝑉𝑜𝑟(𝑃) if and

only if there is a point q on the bisector such that 𝐶𝑃(𝑞) contains both 𝑝𝑖
and 𝑝𝑗 on its boundary but no other site.

Quad-Edge struct is suitable to store voronoi diagram <-> delaunay-triangulation

 1. Range Tree (Endpoints)
2. Internal Tree (x-direction)
3. Internal Tree (y-direction)

8 Heuristics

-> see O-Notation
-> see Complexity Theory
-> see Graph Theory
-> see MetaHeuristics

Optimization
Problem

Minimize 𝑓(𝑠), subject to 𝑠 ∈ 𝑆
Where f is the objective function, s the solution and S the
set of all feasible solutions

Brodal Queue decrese 𝑂(1)
find min 𝑂(1)
delete min 𝑂(log 𝑛)

𝑝𝑖

𝑞𝑖

