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ALGORITHMS 

1. Introduction to Computational Geometry  

Geometry 
Primitives 

Point Line Segment Ray Plane Halfplane Triangle Polygon Circle Ellipse 

 
         

sets: unordered, ordered 

Polygon types simple Polygon (SP) general polygon 
(=set of simple polygons) 

monotone polygons 

   
without intersection, 

without whole 
wholes allowed, 

polygon in wholes allowed 
any line perpendicular (rechtwinklig) to line 

intersects with boundary 0,1 or 2 times 
 

Boolean 
operations 

union 𝑃1 ∪ 𝑃2 intersection 𝑃1 ∩ 𝑃2 difference 𝑃1\𝑃2 complement ¬𝑃 

    
 

Intersection 
examples 

intersect two lines intersect half plane with line intersect two simple polygons 

 
2D:   

𝐿1 ∩ 𝐿2 
= {𝑃𝑜𝑖𝑛𝑡, 𝐿𝑖𝑛𝑒, ∅} 

𝐻 ∩ 𝐿 

= {
3𝐷: 𝑃𝑜𝑖𝑛𝑡, 𝐿𝑖𝑛𝑒, ∅, 𝑅𝑎𝑦

2𝐷: 𝐿𝑖𝑛𝑒, ∅, 𝑅𝑎𝑦
} 

𝑆𝑃1 ∩ 𝑆𝑃2 
= {𝑆𝑃, 𝑆𝑒𝑔𝑚𝑒𝑛𝑡, 𝑃𝑜𝑖𝑛𝑡, [𝑆𝑃], ∅} 

 

Vector operations see Skalarprodukt_Vektorprodukt 

Line intersection 𝐿𝑖𝑛𝑒1: (
𝑥1

𝑦1
) = 𝑝1 + 𝑠 ∗ 𝑣1⃗⃗⃗⃗  

𝐿𝑖𝑛𝑒2: (
𝑥2

𝑦2
) = 𝑝2 + 𝑡 ∗ 𝑣2⃗⃗⃗⃗  

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛: 𝐿𝑖𝑛𝑒1 = 𝐿𝑖𝑛𝑒2  
main problem 

precision model 
Main problem is that when we store the intersection point in a double, and determine later if the 
intersection point lies on the line, it gives ∅ 
solution 1: use data type rational instead of double -> needs more computation time 
because rational is stored with two big integers 
solution 2: draw circle around point which symbolise the point -> creates new problems 

Problem and 
Approach 

Geometrical problems 
- computational (compute all line intersections of a line set) 
- decision (is a given point inside a polygon) 
Standard Approach 
transform problem and input to geometrical equivalent, 
choose construction paradigm, choose data structure, 
choose complexity analysis technique, solve problem 
geometrical, transform solution to original problem domain 

 
Linear Searching task: searching in a list 

given: List L of numbers, |𝐿| = 𝑛 
ask: is a given 𝑥 ∈ 𝐿? 
worst case: 𝑇𝑤𝑐(𝑛) = max 𝑇(𝐼)  𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝐼 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛 

𝑥 ∈ 𝐿: 𝑇𝑤𝑐 = 𝑂(𝑛),   𝑥 ∉ 𝐿: 𝑇𝑤𝑐 = 𝑂(𝑛) 
average case: 𝑇𝑎𝑣𝑔(𝑛) = ∑ 𝑃[𝐼] ∗ 𝑇[𝐼]𝐼  𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝐼 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛 

𝑥 ∈ 𝐿: 𝑃[𝑝𝑜𝑠] =
1

𝑛
 

𝑇𝑎𝑣𝑔(𝑛) = ∑𝑃[𝑖] ∗ 𝑇(𝑡𝑜 𝑓𝑖𝑛𝑑 𝑥 𝑎𝑡 𝑝𝑜𝑠 𝑖)

𝑛

𝑖=1

= ∑
1

𝑛
∗ 𝑂(𝑖)

𝑛

𝑖=1

= ∑
𝑖

𝑛

𝑛

𝑖=1

=
𝑛(𝑛 + 1)

2 ∗ 𝑛
=

𝑛 + 1

2
≈

𝑛

2
 

Complexity Theory -> see Big-O-Notation 

library JavaGeom (Java, not supported anymore) 
JTS Topology Suite (Java) 
CGAL (C++): most professional 
LEDA (C++): little bit old 

  

http://www.meschenmoser.ch/tl_files/BSc/Skalarprodukt_Vektorprodukt.pdf
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sort algorithms 

Insertion sort 
𝑂(𝑛2) 

go from left to right throug the array 
and move each element 'x' as far left as it has 
to be 

 

void insertSort(T[] a) { 
 for (int i=1; i < a.length; i++) { 
  int x = a[i]; 
  int j = i – 1; 
  // shift previous values to the right 
  while(j ≥ 0 && a[j] > x) { 
   a[j + 1] = a[j]; 
   j--; 
  } 
  a[j + 1] = x; // insert on the left 
 } 
} 

Mergesort 
𝑂(𝑛 log𝑛) 

// l=left, r=right (common in C++) 
void mergeSort(T[] a,int l,int r){ 
 if (l < r) { // n>1 
  // divide into two equal parts 
  int m = l + (r – l)/2; 
  // sort the two parts 
  mergeSort(a, l, m); 
  mergeSort(a, m + 1, r); 
  // merge them two into one 
  merge(a, l, m, r); 
 } 
} 

void merge(T[] a, int l, int m, int r){ 
 T[] b; int i = l, j = m + 1, k = l; 
 while (i <= m && j <= r) { // both have element 
  if (a[i] <= a[j]) { b[k] = a[i]; i++;} 
  else { b[k] = a[j]; j++; } 
  k++; 
 } 
 if (i > m) { // add rest from right part 
  for (int h=j; h <= r; h++) b[k+h–j] = a[h]; 
 } else { // add rest from left part 
  for (int h=i; h <= m; h++) b[k+h–i] = a[h]; 
 } 
 for (int h=l; h <= r; h++) a[h] = b[h]; 
} 

Quicksort 
𝑂(𝑛 log𝑛) 

void quicksort(T[] a) { 
 sort(a, 0, a.length – 1); 
} 

void sort(T[] a, int l, int r) { 
 int i = l, j = r; 
 T p = a[l]; // pivot element 
 do { 
  while(a[i] < p) i++; // from left 
  while(p < a[j]) j--; // from right 
  if (i ≤ j) { // exchange 
   T tmp = a[i]; a[i] = a[j]; a[j] = tmp; 
   i++; j--; 
  } 
 } while(i < j); 
 if (j > l) sort(a, l, j); // smaller than pivot 
 if (i < r) sort(a, i, r); // larger than pivot 
} 

Exercise 2 𝑇(1) = 𝑐1 

𝑇(𝑛) = 2 ∗ 𝑇 (
𝑛

2
) + 𝑛 

𝑇(𝑛) = 2𝑖 ∗ 𝑇 (
𝑛

2𝑖
) + 𝑖 ∗ 𝑛, 𝑖 ∈ ℕ 

2𝑖 = 𝑛 → 𝑖 = log2 𝑛 

𝑇(𝑛) = 𝑛 ∗ 𝑇 (
𝑛

𝑛
) + log2(𝑛) ∗ 𝑛 

𝑇(𝑛) = 𝑛 ∗ 𝑐1 + 𝑛 log2(𝑛) 
𝑇(𝑛) = 𝑛(log2 𝑛 + 𝑐1) 
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2.+3. Construction Paradigms 

Constraints Are like halfplanes 

Incremental 
construction 

a geometric structure is incrementally constructed, after each step a valid geometric structure is available. 

Line arrangements Convex Hull (CH) 

Input: n lines in 2D Input: n Points in 2D 

Output: Arrangement = the lines 
induce a subdivision of the plane that 
consists of vertices, edges and faces 

Output: Clockwise ordered list of points that are the vertices. 

  

𝑛𝑉: vertex = where two lines cross 
𝑛𝐸: edge = a segment or ray on a line 
𝑛𝐹: face = plane between lines 

finite set P with n points 

Insert a new line 𝐼𝑖 → 𝑂(𝑖) 
Total complexity 𝑂(𝑛2) 

compute the convex hull → 𝑂(𝑛 log 𝑛) 

  

Convex hull 
algorithm 1 

1. Sort all points by x -> 𝑂(𝑛 log 𝑛) 
2. Compute upper hull from left to right: For all points: -> 𝑂(𝑛) 

 while the last three points makes a "right turn" remove the second last point 𝑂(𝑛) 
3. Compute lower hull from right to left in same way 

Graham Scan 
(for convex hull) 

1. Find the point P with the lowest y-coordinate -> 𝑂(1) 
2. Sort the points in increasing order of the angle they and P make with x-axis -> 𝑂(𝑛 log𝑛) 
3. For all points: -> 𝑂(𝑛) 

 while the last three points form a "right turn" remove the second last point 𝑂(𝑛) 

Divide and 
Conquer 
(for convex hull) 

1. Divide: points into 2 subsets 
2. Conquer: find convex hull for each subset 
3. Merge: with upper and lower tangent 

𝑇(𝑛) ≤ 2 ∗ 𝑇 (
𝑛

2
) + 𝑂(𝑛) = 𝑂(𝑛 log 𝑛) 

 
Plane Sweep move a line from one side to the other and handle points 

Line Segment 
Intersection 

(LSI) 

3 types of events (points): 'start', 'intersection' and 'end' event 
as soon as two line segments become neighbours, check for intersection point (𝐼) 
two datastructures: event queue Q (with m event points) and 
 Status T (binary search tree) 

𝑂((𝑛 + 𝐼) log 𝑛) 

𝐼 ∈ 𝑂(𝑛) → 𝑂(𝑛 log 𝑛) 
𝐼 ∈ 𝑂(𝑛2) → 𝑂(𝑛2 log 𝑛) 

 
Use case: DEM 
(digital elevation 
model) -> 
determine the 
horizon 

1. compute triangulation (Delaunay) 
2. backface removal 
3. cylindrical projection 
4. computing the horizon (divide and conquer) 

 

Closest Pair Given a set S of n points in the plane, find a pair of closest neighbors. 
naive approach: 𝑂(𝑛2) 
plane sweep paradigm or divide-and-conquer 𝑂(𝑛 log 𝑛) 
1. lexicographically sorting points S → 𝑂(𝑛 log 𝑛) 
2. empty ordered set D: 𝑂(1) 
3. event handling (each points is added to D and removed from D once) 2 ∗ log 𝑛 
4. query 𝐷(𝑝) → 𝑂(log 𝑛) 
5. compute the distance and update closest pair → 𝑂(1) 

 

Voronoi Diagram will come later 

All-Nearest-
Neighbors 

given a set S of n points in the plane, find a nearest neighbor of each 
-> compute voronoi diagram in 𝑂(𝑛 log 𝑛) and extract solution in 𝑂(𝑛) 
-> or use plane sweep paradigm to compute directly in 𝑂(𝑛 log𝑛) 
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4. Planar Subdivisions  

see Graph Theory 
 

Overlay of 
Subdivision in 
DCEL 

Phase 1 (Vertices and Edges) 
1. copy existing two subdivisions S1 and S2 to a new subdivision D (not a proper DCEL) 
2. run a plane sweep algorithm and transform D to a correct DCEL for O(S1, S2) 
(D is changed at intersection event points) 
Phase 2 (Faces) 
3. create a face record for each face f in O(S1, S2) 
4. set OuterComponent(f) to a half-edge on the outer boundary of f 
5. create a list InnerComponents(f) to half-edges on the boundaries of the holes inside f 
6. set IncidentFace() for each half-edge on the boundary of f 
7. label f with the names of the faces in S1 and S2 that contain it 

𝑂(𝑛 log 𝑛 + 𝑘 ∗ log 𝑛) 

 

Boundary Cylces of 
the same Face 

1. Create Graph G 
2. a node represents one boundary cylce 
2. draw an arc between two cycles if one of the 
cycles is the boundary of a hole and the other 
cycle has a half-edge immediately to the left of 
the leftmost vertex of the hole cycle 

 

 
Use Case: Boolean 
Operations 

1. Compute Overlay 
2. iterate through all faces and filter them depending of the Boolean operation 
3. Create polygons from boundary cylces 

 
 

5. Polygon Triangulations 

Types of 
subdivisions of a 
plane in triangles 

Triangulation (no additional points) 

 

Mesh (add additional points) 
 

2D of a Planar Point Set 
𝑃: set of 𝑛 points in the plane (not all collinear) 
𝑘 Points on boundary = 6 
𝑛 Points totally = 9 
𝑚 number of triangles = 10 

𝑛𝑣 − 𝑛𝑒 + 𝑛𝑣 = 2 

𝑛 −
3𝑚 + 𝑘

2
+ (𝑚 + 1) = 2 

2𝑛 − 3𝑚 − 𝑘 + 2𝑚 + 2 = 4 
𝑚 = 2𝑛 − 𝑘 − 2 
𝑛𝑒 = 3𝑛 − 3 − 𝑘 

uniform 

 
all edges looks the same 

non-uniform 

 
fine near the edges 
coarse far away from 
edges 

3D Triangulation of Convex Polytope 
𝑃: set of 𝑛 points in 3D (not all collinear) 

𝑂(𝑛 log 𝑛) 
number of facets is at most: 6𝑛 − 20 

 

conforming 

 

non-conforming 

 
well-shaped 
all angles between 45° 
and 90° 

respect the input 
edges of the component 
must be contained in the 
union of mesh 
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orientable vs 
non-orientable 

orientable non-orientable 

 
torus 

 
klein bottle 

 
möbius strip 

 

2.5 Dimension 
& Triangulation 

2.5D: 2D Surface in a 3D space. 
Each vertical line intersects it in exactly one or zero point. 
e.g. Terrain 

  
 

optimal 
Triangulation 

Small skinny triangles are bad, 
because height interpolation is more error-prone 
maximization of minimum angle of a triangulation   

good bad 
 

Delaunay 
Triangulation 

The Delaunay triangulation is the dual of 
the voronoi diagram. 
It does not contain illegal edges. 
Can be computed in 𝑂(𝑛 log 𝑛). 

 
Art Gallery 
Problem 

Problem: How many (360°) cameras do 
we need to guard a given gallery and how 
do we decide where to place them? 
Complexity: NP-hard! if convex → 𝑂(1) 
Upper Bounds: on every edge -> n 
cameras 
in every triangle of triangulation: n-2 cams 

on every black vertex: ⌊
𝑛

3
⌋ cameras 

 
 

3-Coloring of a Triangulation 

Triangulation A decomposition of a polygon P into triangles by a maximal set of non-intersecting diagonals (line segments 
between pairs of vertices) 

Example 
P: set of n points 
k: points on 
convex hull 

1. calculate convex hull 

 

𝑛 = 9 
𝑘 = 6 

𝑚 = 10 
𝑛𝑒 = 18 

→ 𝑚 = 2𝑛 − 𝑘 − 2 
10 = 2 ∗ 9 − 6 − 2 

2. point-to-sth polygon → 𝑛𝑒 = 3𝑛 − 3 − 𝑘 
18 = 3 ∗ 9 − 3 − 6 

 
→ 𝑛𝑒 =

3𝑚 + 𝑘

2
 

𝑛𝑒 =
3 ∗ 10 + 6

2
= 18 

Triangulating a 
simple polygon 

1. Find a diagonal in P → 𝑂(𝑛) 
- let v be the leftmost vertex P 
- let u and w be the neighbors of v 
- try to connect u with w 
- if this fails we connect v to the vertex farthest from uw inside 
the triangle defined by u,v and w 
2. Triangulate the two resulting subpolygons recursively 𝑂(𝑛) 

→ 𝑂(𝑛2)   
Better approch A simple polygon with n vertices can be triangulatedinto y-monotone polygons in 𝑂(𝑛 log 𝑛) time with 

sweep-line algorithm that uses 𝑂(𝑛) storage, and therefore triangulated in 𝑶(𝒏 𝐥𝐨𝐠 𝒏) time. 
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6. Orthogonal Range Searching  

Searching and 
Indexing 

given: 𝑠𝑒𝑡 𝑆 = {𝑜𝑖|𝑖 = 1. . 𝑛} 
find: 𝑠𝑢𝑏𝑠𝑒𝑡 𝑅 = {𝑜𝑖|𝑃(𝑜𝑖), 𝑖 = 1. . 𝑛} 
 
assumption: S is incrementally updated 
approach use a space partition tree 

 
Binary Tree searching in a tree: 𝑂(log𝑛) 

One dim. range 
query/searching 

Get elements between 4 and 9 
1. search first element 𝑂(log𝑛) 
2. search second element 𝑂(log 𝑛) 
3. get elements between 𝑂(𝑘) 
total 𝑂(𝑘 + log 𝑛) 

 
MSE Mean Squared Error (at RGB example) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑟𝑖 − 𝑟𝑖

′)2 + (𝑔𝑖 − 𝑔𝑖
′)2 + (𝑏𝑖 − 𝑏𝑖

′)2
𝑛

𝑖=1
 

Tree (General) 

 

Binary Tree: each node has 0 (leaf) or 
1,2 (inner node) following nodes 
Search Tree: all nodes are sorted 
from left (lowest) to the right 
(highest) 
Balanced Tree: each node has similar 
number of following nodes 
-> height as small as possible 

Types of balanced 
binary search 

tree's 

AVL-Tree (used in C++, 1962) Red-Black-Tree (used in JAVA, 1972) 

  
 

Operations insertion/deletion: needs rebalancing (tree rotations) afterwards 

Application Querying a Database 1-D Range Searching 

Who has a salary between 3000 and 4000 
and ist born in 1954. 

Find all items with keys in interval [18: 77] 
construction 𝑂(𝑛 log 𝑛), query 𝑂(𝑘 + log 𝑛) where 
k = number of output nodes, storage 𝑂(𝑛) 

 
 

 

 
  

8 

3 10 

1 5 9 12 

1 3 5 8 9 10 12 14 
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Range Search Quadtree / Octree Kd-Tree Range Tree Layered Range Tree 

dimension 𝑑 = 2 / 3 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑑 ≥ 2 𝑑 ≥ 2 𝑑 ≥ 2 

storage 𝑂((ℎ + 1) ∗ 𝑛) 𝑂(𝑑 ∗ 𝑛) 𝑂(𝑛 ∗ log𝑑−1 𝑛) 𝑂(𝑛 ∗ log𝑑−1 𝑛) 

build time 𝑂((ℎ + 1) ∗ 𝑛) 𝑂(𝑑 ∗ 𝑛 ∗ log 𝑛) 𝑂(𝑛 ∗ log𝑑−1 𝑛) 𝑂(𝑛 ∗ log𝑑−1 𝑛) 

query time  
𝑂 (𝑘 + 𝑛1−

1
𝑑) 𝑂(𝑘 + log𝑑 𝑛) 𝑂(𝑘 ∗ log𝑑−1 𝑛) 

height 
log

𝑠

𝑐
+

3

2
 

𝑐: 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑑𝑖𝑠𝑡 
𝑠: 𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑞𝑢𝑎𝑟𝑒 

   

# nodes 
balanced 

𝑂((ℎ + 1) ∗ 𝑛) 

𝑂(𝑚) 

   

# leaves 3 ∗ 𝑖𝑛𝑛𝑒𝑟 𝑛𝑜𝑑𝑒𝑠 + 1    

 

 

   

 

usage triangulation, non-uniform mesh 
generator, simulation finite 
element method 

nearest neighbor 𝑂(log 𝑛), 
Image Compression, k-means 
clustering, filter algorithm 

  

 

Windowing in 2D 
and 3D 

Problem: reporting all objects fully contained in, or intersecting, a given window. 
similar to range queries, but data are objects and search space is normally 2D or 3D. 
Application: GIS: report all map objects intersecting a given window 
 VR: report all triangles intersecting the viewing volume 

simpler problem Problem: Windowing of axis-parallel line segments 

4 different cases: 
segments lying entirely in window 
segments intersect the boundary once 
segments intersect the boundary twice 
segment (partially) overlap the boundary 
segments with at least one endpoint inside window -> use range query 
segments with both endpoints outside window -> use an interval tree  

 

Interval tree Problem: report all horizontal line segments that intersect the left edge (or vertical the bottom edge) 

construction Input: a set I of n closed intervals [𝑥𝑖: 𝑥𝑖
′] 

Preprocessing: Sorting interval endpoints -> simplify median computation 
Divide-and-Conquer: 
- compute the median of I completely to the left of 𝑥𝑚𝑖𝑑  
- build 3 subsets (𝐼𝑙𝑒𝑓𝑡 , 𝐼𝑟𝑖𝑔ℎ𝑡 , 𝐼𝑚𝑖𝑑) 

- create node v and store 𝐼𝑚𝑖𝑑  with v 
- create recursively interval tree with 𝐼𝑙𝑒𝑓𝑡  and store root as left child of v 

- create recursively interval tree with 𝐼𝑟𝑖𝑔ℎ𝑡  and store root as right child of v 

2 Sorted Lists 
𝐿𝑙𝑒𝑓𝑡: contains all intervals of 𝐼𝑚𝑖𝑑  sorted on increasing left endpoints 

𝐿𝑟𝑖𝑔ℎ𝑡: contains all intervals of 𝐼𝑚𝑖𝑑  sorted on decreasing right endpoints 

 
 

 

Analysis storage 𝑂(𝑛), depth 𝑂(log 𝑛), construction 𝑂(𝑛 log𝑛), query 𝑂(𝑘 + log 𝑛) 

Extension Replace two associated range tree 𝑇𝑙𝑒𝑓𝑡  and 𝑇𝑟𝑖𝑔ℎ𝑡 

reporting all segments whose left endpoint lies in (−∞: 𝑞𝑥] × [𝑞𝑦: 𝑞𝑦
′ ] 

reporting all segments whose right endpoint lies in [𝑞𝑥: ∞) × [𝑞𝑦: 𝑞𝑦
′ ] 

storage 𝑂(𝑛 log 𝑛), construction 𝑂(𝑛 log 𝑛), intersection report 𝑂(𝑘 + log2 𝑛)  
Priority Search 
Tree 

storing two associated range trees per node in an interval tree is overkill, 
because the performed range queries are unbounded on one side 

 

Idea replace range trees by two priority search trees (special x-y-ordered heaps) 

construction 1. search for the most left (min x) 
2. split by median of y 
3. repeat 

Analysis storage 𝑂(𝑛), built 𝑂(𝑛 log 𝑛), query 𝑂(𝑘 + log 𝑛) 
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7. Voronoi Diagrams 

Voronoi Diagram Model where every point is assigned to the nearest site. 
given: set of distinct points in the plane: 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛} 
search: Voronoi diagram 𝑉𝑜𝑟(𝑃) 
solution: sweep line algorithm 𝑂(𝑛 log 𝑛) 

 
single Voronoi cell the bisector of two points 𝑝 and 𝑞 is the perpendicular bisector of the line 

seqment 𝑝𝑞. 
this bisector splits the plane into two half-planes ℎ(𝑝, 𝑞) containing 𝑝 and 
ℎ(𝑞, 𝑝) containing 𝑞 

 
Structure of the 
Voronoi diagram 

let 𝐶𝑝(𝑞) be the largest empty circle with q as its center that does not 

contain any site of P in its interior. 

 
if all sites are collinear, then 𝑉𝑜𝑟(𝑃) consists of 𝑛 − 1 parallel lines 
otherwise 𝑉𝑜𝑟(𝑃) is connected and its edges are either segments or half-
lines (rays) 

 
for 𝑛 ≥ 3: 
the number of vertices in 𝑉𝑜𝑟(𝑃) is at most 2𝑛 − 5 
the number of edges is at most 3𝑛 − 6  

 
2 ∗ 4 − 5 = 3 
3 ∗ 4 − 6 = 6 

At point q is a vertex of 𝑉𝑜𝑟(𝑃) if and only if its largest empty circle 𝐶𝑝(𝑞) 

contains three or more sites on its boundary 
 

 

the bisector between sites 𝑝𝑖  and 𝑝𝑗  defines an edge of 𝑉𝑜𝑟(𝑃) if and 

only if there is a point q on the bisector such that 𝐶𝑃(𝑞) contains both 𝑝𝑖  
and 𝑝𝑗  on its boundary but no other site.  

 

Quad-Edge struct is suitable to store voronoi diagram <-> delaunay-triangulation 

 

 1. Range Tree (Endpoints) 
2. Internal Tree (x-direction) 
3. Internal Tree (y-direction) 

 

 
 

8 Heuristics 

-> see O-Notation 
-> see Complexity Theory 
-> see Graph Theory 
-> see MetaHeuristics 
 

Optimization 
Problem 

Minimize 𝑓(𝑠), subject to 𝑠 ∈ 𝑆 
Where f is the objective function, s the solution and S the 
set of all feasible solutions 

 

Brodal Queue decrese 𝑂(1) 
find min 𝑂(1) 
delete min 𝑂(log 𝑛) 

 

 

𝑝𝑖 

𝑞𝑖 


