ALGORITHMS

sort algorithms

Insertion sort $O\left(n^{2}\right)$	
Mergesort $O(n \log n)$	
Quicksort $O(n \log n)$	
Exercise 2	$\begin{gathered} T(1)=c_{1} \\ T(n)=2 * T\left(\frac{n}{2}\right)+n \\ T(n)=2^{i} * T\left(\frac{n}{2^{i}}\right)+i * n, i \in \mathbb{N} \\ 2^{i}=n \rightarrow i=\log _{2} n \\ T(n)=n * T\left(\frac{n}{n}\right)+\log _{2}(n) * n \\ T(n)=n * c_{1}+n \log _{2}(n) \\ T(n)=n\left(\log _{2} n+c_{1}\right) \end{gathered}$

2.+3. Construction Paradigms

4. Planar Subdivisions

see Graph Theory

Overlay of Subdivision in DCEL	Phase 1 (Vertices and Edges) 1. copy existing two subdivisions $S 1$ and $S 2$ to a new subdivision D (not a proper DCEL) 2. run a plane sweep algorithm and transform D to a correct DCEL for O(S1, S2) (D is changed at intersection event points) Phase 2 (Faces) 3. create a face record for each face f in $O(S 1, S 2)$ 4. set OuterComponent(f) to a half-edge on the outer boundary of f 5. create a list InnerComponents(f) to half-edges on the boundaries of the holes inside f 6. set IncidentFace() for each half-edge on the boundary of f 7. label f with the names of the faces in S 1 and S 2 that contain it $O(n \log n+k * \log n)$		
Boundary Cylces of the same Face	1. Create Graph G 2. a node represents one boundary cylce 2. draw an arc between two cycles if one of the cycles is the boundary of a hole and the other cycle has a half-edge immediately to the left of the leftmost vertex of the hole cycle		
Use Case: Boolean Operations	1. Compute Overlay 2. iterate through all faces and filter them depe 3. Create polygons from boundary cylces	ing of the Boolean operation	

5. Polygon Triangulations

Types of subdivisions of a plane in triangles	Triangulation (no additional points) 2D of a Planar Point Set P : set of n points in the plane (not all collinear) k Points on boundary $=6$ n Points totally $=9$ m number of triangles $=10$ $\begin{gathered} n_{v}-n_{e}+n_{v}=2 \\ n-\frac{3 m+k}{2}+(m+1)=2 \\ 2 n-3 m-k+2 m+2=4 \\ m=2 n-k-2 \\ n_{e}=3 n-3-k \\ \hline \end{gathered}$	Mesh (add additional po uniform all edges looks the same	s) non-uniform fine near the edges coarse far away from edges
	3D Triangulation of Convex Polytope P : set of n points in 3D (not all collinear) $O(n \log n)$ number of facets is at most: $6 n-20$	conforming	non-conforming
		well-shaped all angles between 45° and 90°	respect the input edges of the component must be contained in the union of mesh

6. Orthogonal Range Searching

Range Search	Quadtree / Octree	Kd-Tree	Range Tree	Layered Range Tree
dimension	$d=2 / 3$ or more	$d \geq 2$	$d \geq 2$	$d \geq 2$
storage	$O((h+1) * n)$	$O(d * n)$	$O\left(n * \log ^{d-1} n\right)$	$O\left(n * \log ^{d-1} n\right)$
build time	$O((h+1) * n)$	$O(d * n * \log n)$	$O\left(n * \log ^{d-1} n\right)$	$O\left(n * \log ^{d-1} n\right)$
query time		$O\left(k+n^{1-\frac{1}{d}}\right)$	$O\left(k+\log ^{d} n\right)$	$O\left(k * \log ^{d-1} n\right)$
height	$\begin{gathered} \log \frac{s}{c}+\frac{3}{2} \\ \text { c: smallest dist } \\ \text { s: length square } \end{gathered}$			
\# nodes balanced	$\begin{gathered} O((h+1) * n) \\ O(m) \end{gathered}$			
\# leaves	3 * inner nodes +1			
usage	triangulation, non-uniform mesh generator, simulation finite element method	nearest neighbor $O(\log n)$, Image Compression, k-means clustering, filter algorithm		

Windowing in 2D and 3D	Problem: reporting all objects fully contained in, or intersecting, a given window. similar to range queries, but data are objects and search space is normally 2D or 3D. Application: GIS: report all map objects intersecting a given window VR: report all triangles intersecting the viewing volume	
simpler problem	Problem: Windowing of axis-parallel line segments	
	```4 different cases: segments lying entirely in window segments intersect the boundary once segments intersect the boundary twice segment (partially) overlap the boundary segments with at least one endpoint inside window -> use range query segments with both endpoints outside window -> use an interval tree```	
Interval tree	Problem: report all horizontal line segments that intersect the left edge (or vertical the bottom edge)	
construction	Input: a set I of n closed intervals $\left[x_{i}: x_{i}^{\prime}\right]$   Preprocessing: Sorting interval endpoints $->$ simplify median computation Divide-and-Conquer:   - compute the median of I completely to the left of $x_{\text {mid }}$   - build 3 subsets ( $I_{\text {left }}, I_{\text {right }}, I_{\text {mid }}$ )   - create node $v$ and store $I_{\text {mid }}$ with $v$   - create recursively interval tree with $I_{\text {left }}$ and store root as left child of $v$   - create recursively interval tree with $I_{\text {right }}$ and store root as right child of $v$   2 Sorted Lists   $L_{\text {left }}$ : contains all intervals of $I_{\text {mid }}$ sorted on increasing left endpoints   $L_{\text {right }}$ : contains all intervals of $I_{\text {mid }}$ sorted on decreasing right endpoints	
Analysis	storage $O(n)$, depth $O(\log n)$, construction $O(n \log n)$, query $O(k+\log n)$	
Extension	Replace two associated range tree $T_{\text {left }}$ and $T_{\text {right }}$   reporting all segments whose left endpoint lies in $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$   reporting all segments whose right endpoint lies in $\left[q_{x}: \infty\right) \times\left[q_{y}: q_{y}^{\prime}\right]$   storage $O(n \log n)$, construction $O(n \log n)$, intersection report $O\left(k+\log ^{2} n\right)$	
Priority Search Tree	storing two associated range trees per node in an interval tree is overkill, because the performed range queries are unbounded on one side	
Idea	replace range trees by two priority search trees (special $x$-y-ordered heaps)	
construction	1. search for the most left $(\min x)$   2. split by median of $y$   3. repeat	
Analysis	storage $O(n)$, built $O(n \log n)$, query $O(k+\log n)$	

7. Voronoi Diagrams

Voronoi Diagram	Model where every point is assigned to the nearest site.   given: set of distinct points in the plane: $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$   search: Voronoi diagram $\operatorname{Vor}(P)$   solution: sweep line algorithm $O(n \log n)$	
single Voronoi cell	the bisector of two points $p$ and $q$ is the perpendicular bisector of the line seqment $p q$.   this bisector splits the plane into two half-planes $h(p, q)$ containing $p$ and $h(q, p)$ containing $q$	
Structure of the Voronoi diagram	let $C_{p}(q)$ be the largest empty circle with q as its center that does not contain any site of $P$ in its interior.	
	if all sites are collinear, then $\operatorname{Vor}(P)$ consists of $n-1$ parallel lines otherwise $\operatorname{Vor}(P)$ is connected and its edges are either segments or halflines (rays)	$\bigcirc$
	for $n \geq 3$ :   the number of vertices in $\operatorname{Vor}(P)$ is at most $2 n-5$ the number of edges is at most $3 n-6$	
	At point $\mathbf{q}$ is a vertex of $\operatorname{Vor}(P)$ if and only if its largest empty circle $C_{p}(q)$ contains three or more sites on its boundary	
	the bisector between sites $p_{i}$ and $p_{j}$ defines an edge of $\operatorname{Vor}(P)$ if and only if there is a point $q$ on the bisector such that $C_{P}(q)$ contains both $p_{i}$ and $p_{i}$ on its boundary but no other site.	
	Quad-Edge struct is suitable to store voronoi diagram <-> delaunay-triangulation	


	1. Range Tree (Endpoints)   2. Internal Tree (x-direction)   3. Internal Tree (y-direction)	

## 8 Heuristics

-> see O-Notation
-> see Complexity Theory
-> see Graph Theory
-> see MetaHeuristics

Optimization   Problem	Minimize $f(s)$, subject to $s \in S$   Where $f$ is the objective function, s the solution and $S$ the   set of all feasible solutions	
Brodal Queue	decrese $O(1)$   find $\min O(1)$   delete $\min O(\log n)$	

