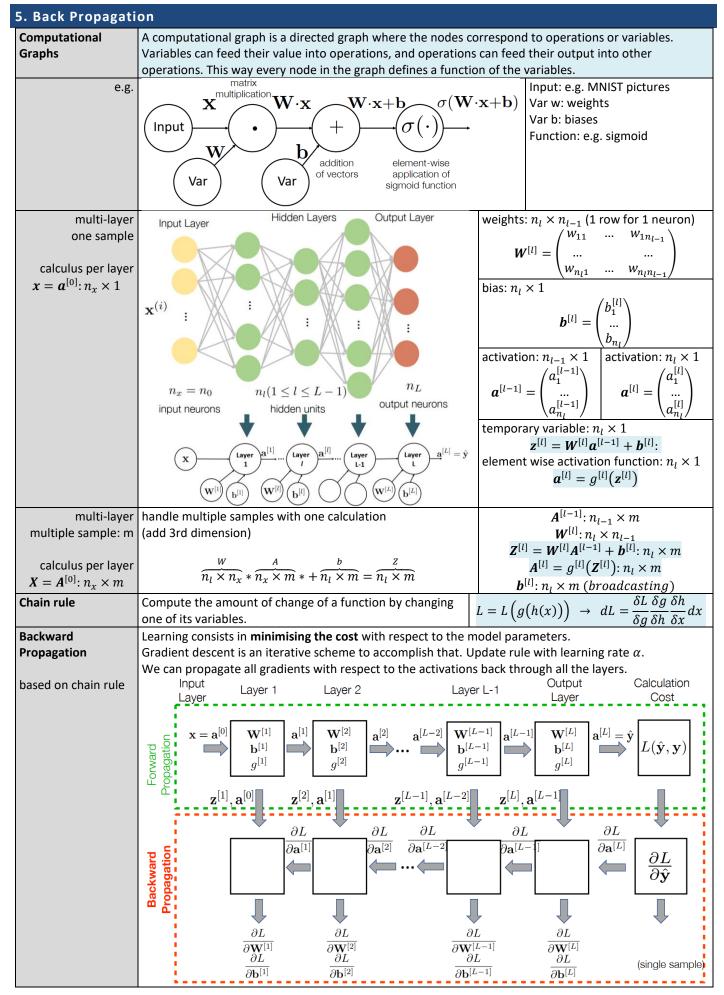
DEEP LEARNING (DL)

1. Introduction								
Fields of application	Computer Vision (e.g. self-driving cars, object detection, medical diagnosis, image tagging/generation,							
	caption generation, lip reading, lip synch from Audio)							
	Image synthesis (generation of scenes in games)							
	Signal processing (denoising signals, images)							
	Natural Language Processing [NLP] (e.g. translation, speech recognition and synthesis, Q&A-bots)							
Machine Learning	Machine learning consists computer methods that analyse observation data to automatically detect							
(ML)	patterns, and then use the uncovered patterns to perform tasks based on new unobserved data.							
convergence	Mathematics (probability theory, statistics, regression,)							
	Signal processing (filtering, feature extraction, time series, fft,)							
	Software Engineering (very large DB, intensive CPU, distributed programming,)							
	Application domain (finance, medicine, energy, biometrics,)							
	Algorithmic							
tasks								
	Predicting: Predict numerical value (response), e.g. predicting house prices in given location and size							
	Clustering: Arrange set of entities into groups, e.g. group patients/clients for similar 'treatment'							
	Robotic Tasks: e.g. robot conducting certain tasks (walking, cutting the lawn, cleaning, washing dishes)							
process	Machine Learning							
	Deep Learning							
	Training							
	Raw Data Cleaner Data Meaningful Features Models Scores Decision							
	Stores Deusion							
	"Sheldon"							
	Testing							
	Test set							
Paradigms	With supervised learning , the goal is to extract some relevant features x from raw observation data o							
-	and to learn a mapping from inputs x to outputs y given a set of example data called the training set.							
	Labelled data. Applications: Recognition, Planning, Diagnosis, Robot Control, Prediction							
	With unsupervised learning, the goal is to discover interesting structures from inputs x given a set of							
	data called the training set. Unlabelled data.							
	Applications: Market Segmentation, Astronomical and Solar Data Analysis, Social Network Analysis.							
	With reinforcement learning , we learn the behaviour in an environment that provides suitable rewards .							
	Applications: Learn to play games, solve tasks							
Deep Learning (DL)	A sub-branch of machine learning. Neuronal architecture with many layers and neurons.							
convergence	Larger quantities of data (text, audio, images, videos,) -> scalability of learning on very large data sets							
	New algorithms (DBN, RBM, CNN,) -> ability to learn feature extraction in unsupervised mode and							
	classification in supervised mode							
Machine Learning	Better computer performance (GPU, distributed computing,) -> train complex mapping functions							
Machine Learning vs Deep Learning	Machine Learning typically requires significant hand-engineering of features .							
vs Deep Learning	Deep Learning requires less feature engineering than standard machine learning. In DL, the machines find the features automatically as part of learning.							
	DL has more flexible and powerful models but are more difficult and need more learn data.							
	DL has more nextble and powerful models but are more difficult and need more learn data.							
supervised learning	1. We need large quantities of human validated examples! and this is costly to build.							
-	2. Because of the variabilities, we will need even more data and complex mapping functions .							
	3. We spend a lot of time to hand-craft interesting compact features, so called feature engineering .							
Deep learning	1. Let's use all the labelled data and unlabelled data							
	2. Let's use deep neural networks							
	3. Let's learn the feature extraction in unsupervised learning mode.							

	· · · · · · · · · · · · · · · · · · ·	
1. Perceptron		
Biological Neural Syste	ems	
Biological Neurons	composed of: cell body depdrites avon	7
biological Neurons	composed of tell body, dendrites, axon composed in a network by synaptic terminals electrical impulses ' signals ' are sent via synapsis if a neuron receives enough signals, it fires its own signal 'activation'	K
Biological Neural Nets	The connectivity in biological neural systems is huge. neurons in the brain: $\sim 10^{11}$ connections per neuron: $\sim 10^4$ $\rightarrow \sim 10^{15}$ synapses Mitochondrion Dendrite	
Neuro-Science and	Inspired by the biological brain. Reverse-engineering the computational principles behind the brain.	
Artificial Neural Networks	Deep Learning goes beyond the neuro-scientific perspective and appeals to a more general principle of learning with multiple levels of composition. No claim to model the biological function directly.	ſ
	Artificial Neural Nets are composed of Artificial Neurons The network is trained to perform the task from training data by applying a learning algorithm that adjusts the networks parameters.	output
Artificial Neuron		
McCulloch-Pitts Neuron (1943)	First artificial neuron as a model for the activation of a neuron.Number of NeuronsnInput signal $x_k = 0, 1 \ 1 \le k \le n$ Weighted $w_k = \begin{cases} +1 \ (excitatory) \\ -1 \ (inhibitory) \end{cases}$ Sum of all input signals $c = \sum^n w w$	
	Sum of all input signals $S = \sum_{k=1}^{m} w_k x_k$ $w_3 = -1$ Output signal $y = \begin{cases} +1 & (S \ge \Theta) \\ 0 & (S < \Theta) \end{cases}$ $w_3 = -1$	
Examples	AND: $y = H(x_1 + x_2 - 2)$ Heaviside-function	
Rosenblatt's Perceptron (1958) = LTU (Linear Threshold Unit)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ut
Example with 2D Input Data	Decision Boundary $H_{w,b} = w * x = 0$ $H_{w,b}$ $1^{1,2}$ $+$	
	$ \begin{array}{c} H_{w,b} = w * x = 0 \\ \Rightarrow \text{ dot product is 0 when orthogonal} \\ H_{w,b} = w_1 * x_1 + w_2 * x_2 + b = 0 \end{array} \qquad \qquad$	
	$x_2 = \frac{-b - w_1 * x_1}{w_1 + w_2}$	1.2 b v
Perceptron Learning Algorithm	The learning rule searches for a weights vector that defines a hyperplane that separates the points associated with the two classes. This is only possible for linearly separable input sets. The solutions are not unique and not optimal. The optimal solution is called SVM (support vector machine)	
Perceptron Convergence	Perceptron Learning Algorithm converges to a weights vector and bias that separates the two classes – provided that the two classes are linearly separable .	-

ZHAW/HSR		ISIM_Delean					
Artificial Neural Nets							
XOR Problem	Serious weakness of perceptron's: Incapable of solving some rather simple Problems These limitations can be overcome by stacking mu perceptron's so called MLP.						
Multi-Layer Perceptron (MLP)	An MLP is composed of: Input Layer: Inputs passed through Hidden Layers: One or more layers of LTUs Output layer: Final layer of LTU Input and hidden layers include a bias ($x_0 = 1$) ne fully connected to the next layer.	euron and are					
Usage	typically, in areas where it is easy for humans and	difficult for computers.					
2. Learning and O	ptimisation						
MNIST Dataset	contains a lot of handwritten digits for testing and 2 versions: Original (70'000 28x28pixel images), Li Binary Classification problem (is it a e.g. 5 or not),	ghtweight (1'800 8x8 pixel images, faster)					
Data Preparation							
Training and Testing	Training set: Used for learning the task. Test Set: Used for testing how well the learned mo Split in test and train data -> randomly shuffle dat split ratio depends on available data (large set: 99	aset before splitting					
Data Normalisation (Feature Scaling)	 Bring your values to similar scales (range and importance) Scaling: improves convergence speed and Centring: improves the robustness of the 	d accuracy of the learning algorithm					
2 schemas	Shifting and rescaling the data so that a zero mean and a unit-variance is obtained $x'_{k}{}^{(i)} = \frac{x^{(i)}_{k} - \mu_{k}}{\sigma_{k}}$	Min-Max Rescaling $x_{k}^{\prime(i)} = \frac{x_{k}^{(i)} - \min_{j}\left(x_{k}^{(j)}\right)}{\max_{j}\left(x_{k}^{(j)}\right) - \min_{j}\left(x_{k}^{(j)}\right)} \rightarrow [0,1]$ Min-Max Normalisation $x_{k}^{\prime(i)} = 2 * \frac{x_{k}^{(i)} - \min_{j}\left(x_{k}^{(j)}\right)}{\max_{j}\left(x_{k}^{(j)}\right) - \min_{j}\left(x_{k}^{(j)}\right)} - 1 \rightarrow [-1,1]$ calculate min/max on training set					
Notations	mnumber of samples in the input datas n_x number of input features, dimension x input feature vector of dimension n_x x_k k-th component of the input feature vector of the input feature vector of the i-th training $x^{(i)}$ input feature vector of the i-th training $x^{(i)}$ k-th component of the input feature vector of the input feature vector of the input feature vector y y scalar output variable, also called target vector (or target output vector y_k k-th component of the output vector y_k k-th component of the output vector \hat{y} predicted output, as computed by the \hat{y} predicted output vector, as computed (x, y) input sample (pair of input feature vector) $(x^{(i)}, y^{(i)})$ i-th input sample of the input dataset	of the input feature vector vector $(1 \le k \le n_x)$ ng sample $(1 \le i \le m)$ vector of the i-th training sample get output or label or) of dimension n_y vector (or target output vector) $(1 \le k \le n_y)$ e mapping function d by the mapping function ector and corresponding label vector)					
Model and Cost	(x , y) i trimput sumple of the input dataset						
Model and Cost Generalised from Rosenblatt's Perceptron	$\mathbf{x} \rightarrow \begin{array}{c} \mathbf{Model} \\ h_{\theta}(\mathbf{x}) \rightarrow \begin{array}{c} \hat{y} = h_{\theta}(\mathbf{x}) \\ \downarrow \\ \mathbf{x} \rightarrow \begin{array}{c} \mathbf{x} \end{pmatrix} \\ \hat{y} = h_{\theta}(\mathbf{x}) \\ \downarrow \\ \mathbf{x} \rightarrow \begin{array}{c} \mathbf{x} \end{pmatrix} \\ \hat{y} = h_{\theta}(\mathbf{x}) \\ \downarrow \\ \mathbf{x} \rightarrow \begin{array}{c} \mathbf{x} \end{pmatrix} \\ \hat{y} = h_{\theta}(\mathbf{x}) \\ \downarrow \\ \mathbf{x} \rightarrow \begin{array}{c} \mathbf{x} \end{pmatrix} \\ \hat{y} = h_{\theta}(\mathbf{x}) \\ \downarrow \\ \mathbf{x} \rightarrow \begin{array}{c} \mathbf{x} \end{pmatrix} \\ \hat{y} = h_{\theta}(\mathbf{x}) \\ \downarrow \\ \mathbf{x} \rightarrow \begin{array}{c} \mathbf{x} \end{pmatrix} \\ \hat{y} = h_{\theta}(\mathbf{x}) \\ \downarrow \\ \mathbf{x} \rightarrow \begin{array}{c} \mathbf{x} \end{pmatrix} \\ \hat{y} = h_{\theta}(\mathbf{x}) \\ \downarrow \\ \mathbf{x} \rightarrow \begin{array}{c} \mathbf{x} \end{pmatrix} \\ \hat{y} = h_{\theta}(\mathbf{x}) \\ \downarrow \\ \mathbf{x} \rightarrow \begin{array}{c} \mathbf{x} \end{pmatrix} \\ \hat{y} = h_{\theta}(\mathbf{x}) \\ \downarrow \\ \mathbf{x} \rightarrow \begin{array}{c} \mathbf{x} \end{pmatrix} \\ \hat{y} = h_{\theta}(\mathbf{x}) \\ \downarrow \\ \hat{y} = h_{\theta}(\mathbf{x}) \\ \downarrow \\ \hat{y} = h_{\theta}(\mathbf{x}) \\ \hat$	1) Smooth activation function: Sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$ 2) Gradient Descent Optimization Algorithm - widely used in practice - gives the direction of the steepest ascent - works 'locally' and finds local wells (gradient=0) -> not designed to find global minima					
Learning Rate α	Determines the learning speed. Needs to be tuned						
$\alpha > 0$	f too large, it is not guaranteed to converge. If too small -> slow convergence of cost and error rate						

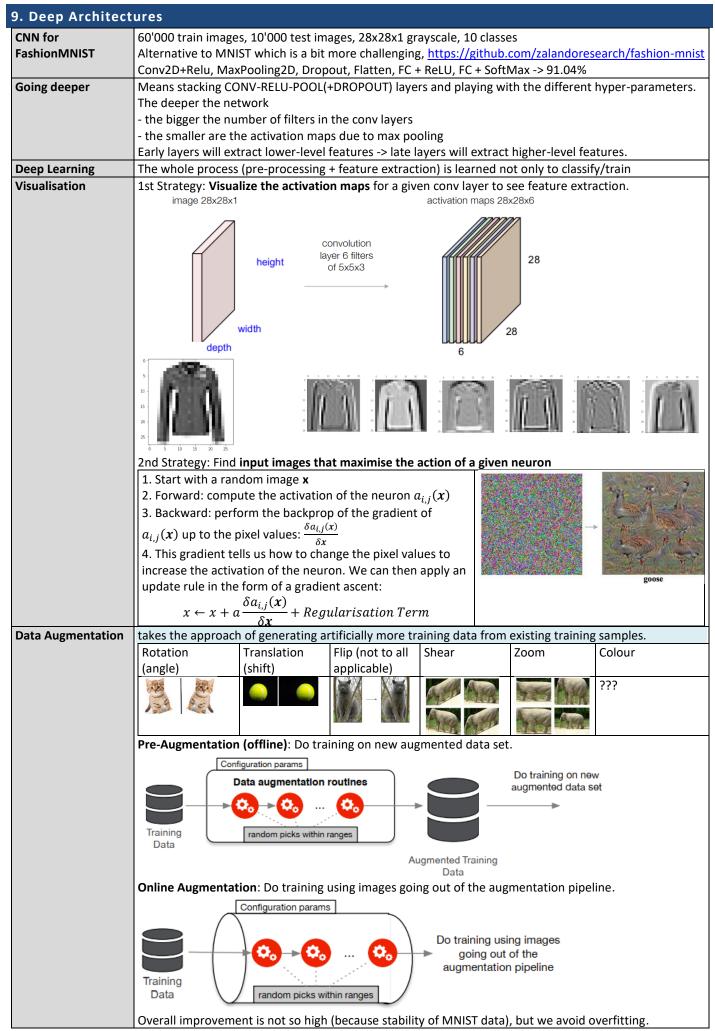

ZHAW/HSR

Epochs	Iterations run until the bottom of the valley reached.						
	If too small -> not optimal values. If too big -> overfitting.						
Probabilistic	$p(y = 1 \mathbf{x}, \theta) = h_{\theta}(\mathbf{x})$						
interpretation	$p(y=0 \mathbf{x},\theta)$	$() = 1 - h_{\theta}(\mathbf{x})$					
Cost functions	Mean Square Error Cost Function	Cross-Entropy Cost Function					
	$J_{MSE}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$	$J_{CE}(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \log\left(p(y^{(i)} \boldsymbol{x}^{(i)}, \theta)\right)$					
	Square to get positiv result. Training can get stuck.	Cross Entropy in generalised perceptron					
		$\nabla J_{CE}(\theta) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}) {\binom{\boldsymbol{x}^{(i)}}{1}}$					
		For classification tasks. Probabilistic consideration.					
	Cross-Entropy Loss Function for binary classification	n problem					
	$\mathcal{L}(\hat{y}, y) = -(y \log(\hat{y}))$	$+(1-y)\log(1-\hat{y}))$					
	Cross-Entropy Cost Function for binary classification						
	$J_{CE}(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right)$ Partial Derivative of Function $J(\theta) = J(\theta_1, \dots, \theta_n)$						
Mathematical	Partial Derivative of Function $J(\theta) = J(\theta_1,, \theta_n)$						
Formulation		$\theta_k, \dots, \theta_n) - J(\theta_1, \dots, \theta_k, \dots, \theta_n) \Big)$					
	$\left(\frac{\delta J}{\delta J}\right)$	General Gradient Descent Update-Rules					
	Gradient $\nabla_{\theta}J = \frac{\delta J}{\delta \theta} = \begin{pmatrix} \overline{\delta \theta_1} \\ \cdots \\ \delta J \end{pmatrix}$	vector notation: $\theta \leftarrow \theta - \alpha \nabla_{\theta} J(\theta)$					
	$V_{\theta J} = \frac{\delta \theta}{\delta \theta} = \left(\frac{\delta J}{\delta \theta_n}\right)$	coordinates: $\theta_k \leftarrow \theta_k - \alpha \frac{\delta J(\theta)}{\delta \theta_k}$					
		Update rules for generalised perceptron					
		$w \leftarrow w - \frac{\alpha}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}) x^{(i)}$					
		$w \leftarrow w - \frac{\alpha}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}) x^{(i)}$ $b \leftarrow b - \frac{\alpha}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})$					

3. Shallow Netwo	rks (MLP with a single hidden layer)
SoftMax for Multi- Class	$h_{\theta,l}(\mathbf{x}) = \frac{\exp(z_l)}{\sum_{j=1} \exp(z_j)}, \text{ where } z_j = \mathbf{w}_j * \mathbf{x} + b$ It peaks at the largest z_l and smoothly approximates $\max\{z_1, \dots, z_{k-1}\}$ if one element is much larger than all the others. Typically, as final layer. m inputs and m outputs.
Training	Gradient $\frac{\delta}{\delta w_{j}} J_{CE}(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left(\delta_{j,y^{(i)}} - h_{\theta,j}(\mathbf{x}^{(i)}) \right) \mathbf{x}^{(i)}$ $\frac{\delta}{\delta b_{j}} J_{CE}(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left(\delta_{j,y^{(i)}} - h_{\theta,j}(\mathbf{x}^{(i)}) \right)$ $W_{j} \leftarrow W_{j} - \alpha \frac{\delta}{\delta w_{j}} J_{CE}(\theta)$ $b_{j} \leftarrow b_{j} - \alpha \frac{\delta}{\delta b_{j}} J_{CE}(\theta)$
	Update rules $ \begin{array}{c} w_{j} \leftarrow w_{j} - \alpha \frac{\delta}{\delta w_{j}} J_{CE}(\theta) \\ b_{j} \leftarrow b_{j} - \alpha \frac{\delta}{\delta b_{j}} J_{CE}(\theta) \end{array} $
Adding Hidden Layers	One additional layer with n neurons, sigmoid activation function. Can improve the performance. But in MNIST one layer already capture the correlation between pixels. How do the formulas look like when applying gradient descent networks with hidden layers?
Role of activation function	Non linearities in the mapping between input and output of a neural network are crucial for gaining enough power for learning a task with enough accuracy. The choice of activation functions has an impact of robustness and performance.
Universal Approximation Theorem	A feedforward network with a linear output layer and at least one hidden layer with a non-linear ("squashing") activation function (e.g. sigmoid) can approximate a large class of functions with arbitrary accuracy - provided that the network is given a sufficient number of hidden units and the parameters are suitably chosen.
e.g. problem	combine 2 sigmoid to generate a step function -> with this we can approximate a large class of functions with a shallow network, any function can be represented, but with problems:
	 for improving accuracy, more and more neurons are needed (exponentially growing number) with more dimensions (e.g. image or audio) more sampled data is needed -> curse of dimensionality if we just use the available data and interpolate with step-functions between data points -> we overfit

 Count 			
Overfitting	Underfitting - High Bias: Strong bias in the way the data deviate from the linear model.	Good Fit - "Just Right": Model seems to capture just right the underlying structure in the dat	
example $h_{\theta}(x) =$	$ \begin{array}{c} $	$ \begin{array}{c} $	$ \begin{array}{c} $
		$(0_3 x_1 + 0_4 x_2 + 0_5 x_1 x_2)$	$= \left(\begin{array}{c} 3 \\ 0 \\ 4 \\ x_1 \\ x_2 \\ + \\ \cdots \end{array} \right)$
		•	
Definition	fails to generalise to new example		ts the training data set very well - but
can occur when	 the training set is too noisy its size is too small in comparisor 	with the dimensionality of the	innut data
	- the number of parameters of the	-	-
examine overfitting	Underfitting Good Fit	Overfitting Over	fitting occurs when the learned
	inoder with a	Model captures	othesis (trained model) fits the training
	capacity leads	in training data but data not representative	set very well - but fails to generalise
		for task to model to ne	ew examples.
	berformance for the second		Generalisation
	gerfo	test error	Error, Variance
	1 tso. Large	Small training error.	
	b training error	Large difference Errol between training	Training Error,
		and test error	Bias
	model complexity or training	, -	↓ ↓
4. Model Selectio		, -	<u>↓ ↓</u>
4. Model Selectio Goal	n Process	ng epochs —	tce.
Goal		mg epochs	
Goal	n Process Select from a family of models the To achieve this goal, we need to e	mg epochs model with the best performan valuate the performance for diff	
Goal Problem	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the tes Split the original training set into t	mg epochs model with the best performan valuate the performance for diff t set we must not use information raining set and validation set.	ferent models. on from the test set to tune params.
Goal Problem Solution Hyper-Parameter	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the test Split the original training set into t Hyper-Parameters specify higher I	mg epochs model with the best performan valuate the performance for diff t set we must not use information raining set and validation set. evel properties of the mapping	erent models.
Goal Problem Solution	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the test Split the original training set into t Hyper-Parameters specify higher I process. These parameters are op	mg epochs model with the best performan valuate the performance for diff t set we must not use information raining set and validation set. evel properties of the mapping f timised on the validation set.	erent models. on from the test set to tune params. function (model) and/or the learning
Goal Problem Solution Hyper-Parameter Tuning	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the tes Split the original training set into t Hyper-Parameters specify higher I process. These parameters are op e.g. learning rate, batch size, num	model with the best performant valuate the performance for different t set we must not use information raining set and validation set. evel properties of the mapping for timised on the validation set. ber of hidden layers, number of	Ferent models. on from the test set to tune params. function (model) and/or the learning neurons in a layer
Goal Problem Solution Hyper-Parameter Tuning	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the tes Split the original training set into t Hyper-Parameters specify higher I process. These parameters are op e.g. learning rate, batch size, num With more training data it gets mo	model with the best performant valuate the performance for diff t set we must not use information raining set and validation set. evel properties of the mapping of timised on the validation set. ber of hidden layers, number of pore difficult to perfectly fit a mode	Ferent models. on from the test set to tune params. function (model) and/or the learning neurons in a layer del
Goal Problem Solution Hyper-Parameter Tuning learning curves	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the tes Split the original training set into t Hyper-Parameters specify higher I process. These parameters are op e.g. learning rate, batch size, num With more training data it gets mo the model trained with more data	model with the best performant valuate the performance for different t set we must not use information raining set and validation set. evel properties of the mapping of timised on the validation set. ber of hidden layers, number of ore difficult to perfectly fit a mode captures more details about the	Ferent models. on from the test set to tune params. function (model) and/or the learning neurons in a layer del
Goal Problem Solution Hyper-Parameter Tuning	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the tes Split the original training set into t Hyper-Parameters specify higher I process. These parameters are op e.g. learning rate, batch size, num With more training data it gets mo the model trained with more data Split data set in different junks (fo	model with the best performant valuate the performance for different t set we must not use information raining set and validation set. evel properties of the mapping for timised on the validation set. ber of hidden layers, number of ore difficult to perfectly fit a mode captures more details about the late 5-10 with Test Set	Ferent models. on from the test set to tune params. function (model) and/or the learning neurons in a layer del
Goal Problem Solution Hyper-Parameter Tuning learning curves	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the tes Split the original training set into t Hyper-Parameters specify higher I process. These parameters are op e.g. learning rate, batch size, num With more training data it gets mo the model trained with more data Split data set in different junks (fo equal size.	model with the best performance valuate the performance for diff t set we must not use information raining set and validation set. evel properties of the mapping of timised on the validation set. ber of hidden layers, number of ore difficult to perfectly fit a mode captures more details about the lds, 5-10) with	Ferent models. on from the test set to tune params. function (model) and/or the learning neurons in a layer del e underlying problem.
Goal Problem Solution Hyper-Parameter Tuning learning curves	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the tes Split the original training set into t Hyper-Parameters specify higher I process. These parameters are op e.g. learning rate, batch size, num With more training data it gets mo the model trained with more data Split data set in different junks (fo	model with the best performant valuate the performance for different tast we must not use information raining set and validation set. evel properties of the mapping for timised on the validation set. ber of hidden layers, number of ore difficult to perfectly fit a mode captures more details about the lds, 5-10) with rses	Ferent models. on from the test set to tune params. function (model) and/or the learning neurons in a layer del e underlying problem. It Data Training/Validation Set
Goal Problem Solution Hyper-Parameter Tuning learning curves	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the tes Split the original training set into t Hyper-Parameters specify higher I process. These parameters are op e.g. learning rate, batch size, num With more training data it gets mo the model trained with more data Split data set in different junks (fo equal size.	model with the best performant valuate the performance for different tast we must not use information raining set and validation set. evel properties of the mapping for timised on the validation set. ber of hidden layers, number of ore difficult to perfectly fit a mode captures more details about the lds, 5-10) with rses	Ferent models. on from the test set to tune params. function (model) and/or the learning neurons in a layer del e underlying problem. It Data Training/Validation Set
Goal Problem Solution Hyper-Parameter Tuning learning curves	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the tes Split the original training set into t Hyper-Parameters specify higher I process. These parameters are op e.g. learning rate, batch size, num With more training data it gets mo the model trained with more data Split data set in different junks (fo equal size.	model with the best performant valuate the performance for different t set we must not use information raining set and validation set. evel properties of the mapping of timised on the validation set. ber of hidden layers, number of pre difficult to perfectly fit a mode captures more details about the lds, 5-10) with rses	ferent models. on from the test set to tune params. function (model) and/or the learning neurons in a layer del e underlying problem. it Data Training/Validation Set Data alisation Possibly More Data?
Goal Problem Solution Hyper-Parameter Tuning learning curves	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the tes Split the original training set into t Hyper-Parameters specify higher I process. These parameters are op e.g. learning rate, batch size, num With more training data it gets mo the model trained with more data Split data set in different junks (fo equal size.	model with the best performant valuate the performance for different tast we must not use information raining set and validation set. evel properties of the mapping for timised on the validation set. ber of hidden layers, number of ore difficult to perfectly fit a mode captures more details about the lds, 5-10) with rses	Ferent models. on from the test set to tune params. Function (model) and/or the learning neurons in a layer del e underlying problem. it Data Training/Validation Set Data alisation Model Selection
Goal Problem Solution Hyper-Parameter Tuning learning curves	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the tes Split the original training set into t Hyper-Parameters specify higher I process. These parameters are op e.g. learning rate, batch size, num With more training data it gets mo the model trained with more data Split data set in different junks (fo equal size.	model with the best performant valuate the performance for different tast we must not use information raining set and validation set. evel properties of the mapping for timised on the validation set. ber of hidden layers, number of ore difficult to perfectly fit a mode captures more details about the lds, 5-10) with rses	ferent models. on from the test set to tune params. function (model) and/or the learning neurons in a layer del e underlying problem. it Data Training/Validation Set Data Model Selection, Cross-
Goal Problem Solution Hyper-Parameter Tuning learning curves	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the tes Split the original training set into t Hyper-Parameters specify higher I process. These parameters are op e.g. learning rate, batch size, num With more training data it gets mo the model trained with more data Split data set in different junks (fo equal size.	model with the best performance valuate the performance for diff t set we must not use information raining set and validation set. evel properties of the mapping of timised on the validation set. ber of hidden layers, number of ore difficult to perfectly fit a mode captures more details about the lds, 5-10) with rses	ferent models. on from the test set to tune params. function (model) and/or the learning neurons in a layer del e underlying problem. it Data Training/Validation Set Data alisation Model Selection, Validation Model More Data?
Goal Problem Solution Hyper-Parameter Tuning learning curves	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the tes Split the original training set into t Hyper-Parameters specify higher I process. These parameters are op e.g. learning rate, batch size, num With more training data it gets mo the model trained with more data Split data set in different junks (fo equal size.	model with the best performance valuate the performance for different valuate the performance for different valuate the performance for different valuate the performance for different valuation set. evel properties of the mapping for the validation set. ber of hidden layers, number of the validation set. ber of hidden layers, number of the validation set. ore difficult to perfectly fit a mode captures more details about the lds, 5-10) with the validation set. wall validation set. validation set. validatio	ferent models. on from the test set to tune params. function (model) and/or the learning neurons in a layer del e underlying problem. it Data Training/Validation Set Data Model Selection, Cross-
Goal Problem Solution Hyper-Parameter Tuning learning curves	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the tes Split the original training set into t Hyper-Parameters specify higher I process. These parameters are op e.g. learning rate, batch size, num With more training data it gets mo the model trained with more data Split data set in different junks (fo equal size.	model with the best performance valuate the performance for different valuate the performance for different valuate the performance for different valuate the performance for different valuation set. evel properties of the mapping for the validation set. ber of hidden layers, number of the validation set. ber of hidden layers, number of the validation set. ore difficult to perfectly fit a mode captures more details about the lds, 5-10) with the validation set. wall validation set. validation set. validatio	rerent models. on from the test set to tune params. function (model) and/or the learning neurons in a layer del e underlying problem. it Data Training/Validation Set Data lalisation Model Selection, Cross- Validation todel Validation Validation Vessibly More Data?
Goal Problem Solution Hyper-Parameter Tuning learning curves	n Process Select from a family of models the To achieve this goal, we need to e But to avoid overfitting on the tes Split the original training set into t Hyper-Parameters specify higher I process. These parameters are op e.g. learning rate, batch size, num With more training data it gets mo the model trained with more data Split data set in different junks (fo equal size.	model with the best performance valuate the performance for different valuate the performance for different valuate the performance for different valuate the performance for different valuation set. evel properties of the mapping for the valuation set. ber of hidden layers, number of or difficult to perfectly fit a mode captures more details about the lds, 5-10) with rest Set Set Norm training set. validation s	ferent models. on from the test set to tune params. function (model) and/or the learning neurons in a layer del e underlying problem. It Data Training/Validation Set Data Model Selection, Cross- Validation Model Selection, Validation Model Selection, Validation Model Selection, Validation Model Selection, Validation Model Selection, Validation Model Selection, Validation Model Selection, Validation Training/Validation Set Data?

ZHAW/HSR			print d	ate: 31.01.19		TSM_DeLear		
Performance Measur	es							
Confusion Matrix		Given a classification system, a confusion matrix evaluates the				Confusion Matrix Example		
	performance of such system through an $m \times m$ matrix, where m							
	is the number of classes. It shows how many of class "a" were					a b c d		
				e "confusion mat		a 120 21 7 8		
				of errors the syste				
				confusion_ma				
			•	y_actual, y_		class c 12 30 80 11		
					,			
		Over		nal elements		$\frac{120 + 131 + 80 + 40}{570} = \frac{371}{570} = 65\%$		
		Accu		amples		570 570		
			ror rate = 1 -	•		1 - 0.65 = 35%		
Confusion Table				e the classification	n	Confustion Table Example (digit 5)		
	performa	ance of a tw	o-class system.		1	Predicted		
				dicted		P N Total		
			Positive	Negative	Total	Actual P 809 112 921		
	Actual	Positive	True Positive	False Negative	(TP+FN)	N 128 8951 9079		
	Actual	Negative	False Positive	True Negative	(FP+TN)	Total 937 9063 10'000		
		Total	(TP+FP)	(FN+TN)	N			
		CI	~~~~~~~~~~~	TP + TN		809 + 8951		
			ass accuracy =	#sample		$=\frac{10^{10}}{10'000}=97.6\%$		
	correct c	classification	considering a gi	iven class against	the other	s.		
		Pocall -	– class consiti	- 809 - 97.8404				
	$Recall = class \ sensitivity = \frac{TP}{TP + FN}$					$=\frac{309}{809+112}=87.84\%$		
	correct classification for a given class					000		
	$class\ precision = \frac{TP}{TP + FP}$					$=\frac{809}{809+128}=86.34\%$		
	TP + FP				809 + 128			
	correct classification in the predicted outputs for a given class 2 * precision * recall					2 * 0.8634 * 0.8784		
	$F - Score = \frac{2 * precision * recall}{precision + recall}$					$=\frac{2*0.8034*0.8784}{0.8634+0.8784}=87.08\%$		
	$F - Score = \frac{2 * precision * recall}{precision + recall}$					0051		
	$specificity = \frac{TN}{TN + FP}$					$\frac{8951}{8951 + 128} = 98.59\%$		
General Rule for	Plot curv				ted 🖪			
Model Selection	Plot curves with these performance measures computed on the training and the validation set, to avoid overfitting,					Stop somewhere here		
	look at the performance on the validation set.					gross val set		
		•		a a a a a a a				
	ц. ц.					Training and		
Dimensionality	This is her					Training set k: error rate		
Dimensionality,				y parameters we	need	· · · · · · ·		
Curse of		-	Figure to the rig	-		3		
Dimensionality		-	ave, say 100 poir					
			$00^2 = 10'000 \mathrm{p}$	00				
			$00^3 = 1'000'00$	3 0.8				
	 Real world application: an image with 300 dpi of 2400x2400 in RGB (3 channels) = 17'280'000 params. 					3		
				0.0 0.2 0.4 0.6 0.8 1.0 °**				
		-	-	your training dat		x		
		•		res our data has,		$m \propto N^d$		
				have. A solution		m: Number of samples needed		
			sionality reduction	: Number of points along each dimension				
Footune Venistian				nalysis are used.		Number of parameters of the model		
Feature Variation,				ure variation and				
Levels of Hierarchy				e idea and solution		perit		
			-	e a machine learr	-			
			-	all the parameter				
				ds similar feature				
			-	example, have sin				
				ns, different pose	2,			
	moustaches and beards, etc. So, we would build a hierarchy of features as: edges, contours, objects.							
	1	· · ·	1					



ZHAW/HSR	print date: 31.01.19 TSM_DeLear						
6. Regularisation	and Optimisation						
Problem	When learning with backprop, we observe that:						
	- learning is slower in earlier layers (~length of gradients)						
	- learning becomes even slower when having more layers						
	But small gradients here don't imply that we are close to the minimum. Generally, the gradients in deep						
	neural networks are unstable, tending to either vanish (prevalent = dominant) or explode in earlier						
	layers.						
Reason	- Multiplicative Structure -> consequence of the chain rule						
	- Product Term						
	- Coordinating Updates -> updates of the weights in different layers are highly coupled.						
Solution	The problem cannot be completely solved -> but alleviated						
	- Parameter initialisation -> proper initialization of the weights so that the logit z does not grow too						
	large in magnitude.						
	 randomly initialise weights -> to break symmetries at start of learning 						
	• put initial weights at proper weights -> normalize z-values in different layer (Xavier)						
	- Batch Normalisation, Gradient Clipping: Make sure that the weights do not grow too large in						
	magnitude also during training						
	Normalise the input to each layer per mini-batch by adding an operation in the model just						
	before the activation function of each layer: zero-centre and scale the inputs by estimating						
	mean and stdev from the current mini-batch.						
	Normalisation $\begin{pmatrix} \chi_{norm}^{\{r\},[l]} \\ \eta_{norm}^{\{r\},[l]} \\ \kappa_{k}^{\{r\},[l]} \\ \sigma_{k}^{\{r\},[l]} + \epsilon \end{pmatrix} \qquad \qquad \mu_{k}^{\{r\},[l]} = \frac{1}{N_{B}} \sum_{i=1}^{N_{B}} Z_{k,i}^{\{r\},[l]} \\ \sigma_{k}^{\{r\},[l]} = \frac{1}{N_{B}} \sum_{i=1}^{N_{B}} \left(Z_{k,i}^{\{r\},[l]} - \mu_{k}^{\{r\},[l]} \right)^{2} \end{pmatrix}$						
	$\begin{bmatrix} z_{k,i}^{(r),(l)} & - \frac{Z_{k,i}^{(r),(l)} - \mu_k^{(r),(l)}}{1 \sum_{k=1}^{N_B} (z_{k,i}^{(r)} - z_{k,i}^{(r),(l)} - z_{k,i}^{(r),(l)} \end{bmatrix} = \frac{1}{1 \sum_{k=1}^{N_B} (z_{k,i}^{(r)} - z_{k,i}^{(r),(l)} - z_{k,i}^{($						
	$\left[\left(\frac{Z_{norm}}{k_i} - \frac{\sigma_k^{\{r\},[l]} + \epsilon}{\sigma_k^{\{r\},[l]} + \epsilon} \right) \sigma_k^{\{r\},[l]} - \frac{1}{N} \right] = \left(\frac{Z_{k,i}^{\{r\},[l]} - \mu_k^{\{r\},[l]}}{\sigma_k^{\{r\},[l]} - \mu_k^{\{r\},[l]}} \right)^{-1}$						
	Then let the model learn the optimal scale and mean of the inputs for each layer.						
	Scaling and Shifting						
	$\hat{Z}_{k,i}^{\{r\},[l]} = \gamma_k^{[l]} \left(Z_{norm}^{\{r\},[l]} \right)_{k,i} + \beta_k^{[l]} \qquad \gamma_k^{[l]} \text{ and } \beta_k^{[l]} \text{ have to be learned}$						
	-> can be applied to any input or hidden layer in a network.						
	Or clip the gradient in length during backprop so that they never exceed some threshold. Possue neural networks or resurrent networks often have an extremely steep sliff structure						
	Because neural networks or recurrent networks often have an extremely steep cliff structure.						
	- Suitable Activation Functions: Use activation functions that cannot saturate.						
	use ReLU, LeakyRELU or ELU						
	• ReLU suffers the dying unit's problem: During training, if a neuron's weight gets updated such						
	that the weighted sum of the neuron's inputs is negative, it is outputting 0. Since the gradient at						
	z < 0 is 0, there is no weight update for this neuron and the neuron is likely to stay dead.						
_	With the leaky ReLU (or its smooth version, the ELU) this problem cannot occur.						
Regularisation	Problem: Deep neural networks typically have many parameters to fit a huge variety of complex						
	datasets. But bear the risk to overfitting the training set.						
	"Regularisation is any modification to a learning algorithm that is intended to reduce its generalisation						
	error but not its training error."						
• •	Add constraints to the parameters to give preference to simple models - restriction in the length of the						
(Weights Penalties)	parameter vector or in number of parameters (sparsity).						
	$J = I_{1} + I_{data}$: Performance term: on the data, how far are we from the ground truth						
	$J = J_{data} + J_{reg}$ J_{reg} : Regularisation term: we should not let our model become too complex						
	J_0 : original loss function (e.g. RMS loss)						
	$J = J_0 + \lambda \Omega(\mathbf{W})$ $\Omega(\mathbf{W})$: penalty term that favours models with smaller weights						
	λ : regularisation parameter						
	Two forms of penalties are common						
	Penalty term Gradient for the regularised loss function:						
	$\ ^{-1} \Omega(\mathbf{W}) = \ W \ _{1} = \sum W_{ki} = 000000000000000000000000000000000$						
	$\frac{1}{L_2} \Omega(\mathbf{W}) = \ \mathbf{W}\ _2^2 = \sum W_{k_i}^{[l]} ^2 \qquad \nabla \left(I_2(\mathbf{W}) + \frac{\lambda}{2} \ \mathbf{W}\ _2^2 \right) = \nabla I_2(\mathbf{W}) + \lambda \mathbf{W}$						
	$ \begin{bmatrix} L_1 \\ \Omega(\mathbf{W}) = \ W\ _1 = \sum_{l,k,j} W_{kj}^{[l]} \nabla(J_0(\mathbf{W}) + \lambda \ \mathbf{W}\ _1) = \nabla J_0(\mathbf{W}) + \lambda sign(\mathbf{W}) \\ \frac{L_2 \\ \Omega(\mathbf{W}) = \ W\ _2^2 = \sum_{l,k,j} W_{kj}^{[l]} ^2 \nabla\left(J_0(\mathbf{W}) + \frac{\lambda}{2} \ \mathbf{W}\ _2^2\right) = \nabla J_0(\mathbf{W}) + \lambda W $						
	$\frac{L_2}{L_2} \Omega(\mathbf{W}) = \ W\ _2^2 = \sum_{l,k,j} W_{kj}^{[l]} ^2 \qquad \nabla \left(J_0(\mathbf{W}) + \frac{\lambda}{2} \ W\ _2^2 \right) = \nabla J_0(\mathbf{W}) + \lambda W$ update rule for gradient descent $W \leftarrow W - \alpha \nabla J(W)$						

ZHAW/HSR	print date: 31.01.19 TSM_								
Dropout	Randomly drop neurons during training steps to make the solution less dependent on individual neurons								
	Popular, successful, imply simpler models, more robust, cheap computation at training, very versatile								
	(=vielfältig), can be combined, need to be bit larger								
	At every training step, every neuron (input by 20%, hidden by 50%) has a probability p of being								
	temporarily -> masked activations. Hyper-parameter p is called dropout rate.								
	Correct weights after training, because they have been tuned with dropout rate.								
Early Stopping									
	Often, the training error monotonica	ally decreases while	e the va	lid	ation error begins to increase after a				
	certain number of epochs. A behaviour that can only be observed when training large models with								
	sufficient representational capacity so that overfitting is possible.								
	- Run optimisation algorithm to trai	n the model -			Good Fit				
	simultaneously compute the validat	tion set error.			1.				
	- Store a copy of the model parame	ters as long as the		8					
	validation set error improves.			cost, performance					
	- Iterate until validation set error sto	ops improving (e.g.	for k	perfo	STOP HERE test error				
	steps)			cost					
	- Return the parameters where the	smallest validation	set		training error				
	error is observed.				training epochs				
	efficient, non-intrusive (aufdringlich)), parallelizable, cor	mbinab	le					
Data Augmentation	Generate more training data to intro	oduce additional ch	aracter	isti	ic features (e.g. symmetries) the				
	solution should have.								
	Reduce model complexity.								
	Increase the amount of training dat	a (realistic).							
	Model is forced to be more tolerant	t to position, orient	tation,						
	size, contrast, etc.			and the second se					
	Typically used for classification task	S.							
	Be careful with flips and 180° rotation	on (d-b <i>,</i> 9-6)							
	May be considered rather as pre-pr	ocessing step.							
	But can be applied on the fly. Reduc	ce network bandwi	dth						
Advanced	Gradient Descent								
Optimisation	+ works for convex function -> but co		-						
Methods	- can get stuck in a local minimum or saddle point -> hard to find in high dimensional spaces.								
	 - can get very slow -> faster optimise 								
Momentum,	Allows to surpass flat regions or sade	dle points - like a ba	all that	ke	eps on rolling down if it has an initial				
Nesterov	speed when entering flat regions.								
	Compute an exponentially decay me								
	of past gradients and move in the d	P		_					
	moving average. 'Momentum' hype which controls the decay and the fr		×	×					
	Momentum $m \leftarrow \beta_1 m + \alpha \nabla J(\theta)$								
	Nesterov $\mathbf{m} \leftarrow \beta_1 \mathbf{m} + \alpha \nabla J(\theta)$ $\mathbf{m} \leftarrow \beta_1 \mathbf{m} + \alpha \nabla J(\theta)$			_					
	$\theta \leftarrow \theta - m$	$+ p_1 \mathbf{n}$		_					
	good beta: $\beta_1 = 0.9$								
RMS Prop		to incorporate diffe	erences	in	the steepness along different directions				
NWS 110p	in parameter space.				the steephess doing different directions				
	Increase learning rate in direction o	f slow progress							
	and decrease in direction of fast pro	/	x	_	Large component of				
	$s \leftarrow \beta_2 s + (1 - \beta_2) \nabla J(\theta) \Theta$		^	_	gradient, smaller learning rate desirable.				
					· · · ·				
	$\theta \leftarrow \theta - \frac{\alpha}{\sqrt{s+\epsilon}} \odot \nabla J($	8)		•					
	⊙elementwise operat	tion			omponent of gradient,				
A -1 -	Combination of Manageture (NL)		spe	eau	p, large learning rate desirable.				
Adam	Combination of Momentum / Nester		г	<i>c</i> :	0.001				
(state of the art)	$\boldsymbol{m} \leftarrow \beta_1 \boldsymbol{m} + (1 + \beta_1) \nabla J(\theta)$	Learning Rate		α	0.001				
	$s \leftarrow \beta_2 s + (1 - \beta_2) \nabla J(\theta) \odot \nabla J(\theta)$ m	Momentum		$\frac{\beta_1}{\rho}$	0.9				
	$\widehat{\boldsymbol{m}} = \frac{\boldsymbol{m}}{1 - \beta_1} \text{ (init with 0)}$	RMS Decay							
	s^{μ_1}	Numerical Stabilis	sation	ϵ	1.0E-08				
	$s = \frac{1}{1 - \beta_2} (\text{init with } 0)$	Learning rate		α	(reduce after epochs)				
	$\hat{\mathbf{s}} = \frac{\mathbf{s}^{-1}}{1 - \beta_2} (init \text{ with } 0)$ $\theta \leftarrow \theta - \alpha \frac{\hat{\mathbf{m}}}{\sqrt{s + \epsilon}} \odot \nabla J(\theta)$								
	$\theta \leftarrow \theta - \alpha \frac{1}{\sqrt{s+\epsilon}} \odot V J(\theta)$								
	VD I C								

7. DL-frameworks							
CPU vs GPU	Central Processing Unit: Few cores (~10), fast (~4GHz), lots of cache, few parallel processes Graphical Processing Unit: Many cores (~1'000), slow (~1.5GHz), few caches, many parallel processes GPU is suitable for matrix multiplication -> because it's highly parallelizable.						
TPU						to perform matrix and convo	olution operations
GPU	OpenC	- for NVIDIA only - low L - like CUDA but runs	on anything - usu	ally slo	ower	r on NVIDIA hardware	
	HIP - W	/rite code once in HIP	C++ and port on N	IVIDIA	or A	AMD	
Forward		2					
Backward Node	X	-12					
principles			🦳 q 🖸)			
	w	3 8	(x)			\sim z ² \sim	f 4
add = distributor			4			(+)→→(^2)	
max = router		4			-		
mul = switcher	b •	4				4	
		4					
	\rightarrow	x = 2	q = x * w =	2 * 3		z = q + b = 6 + (-4)	$f = z^2 = 2^2$
		w = 3 $b = -4$	q = 6			z = 2	f = 4
	←	$\frac{\delta q}{\delta x}\frac{\delta z}{\delta q} = 3 * 4 = 12$	$\frac{\delta z}{\delta q} \frac{\delta f}{\delta z} = 1 *$	4 = 4		$\frac{\delta f}{\delta z} \frac{\delta f}{\delta f} = 2z * 1 = 4$	$\frac{\delta f}{\delta f} = 1$
		$\frac{\delta q}{\delta w}\frac{\delta z}{\delta q} = 2 * 4 = 8$	$\frac{\delta z}{\delta b} \frac{\delta f}{\delta z} = 1 *$	4 = 4			
Node composition	-	graph composed of no				\cap	$ \rightarrow $
or factorisation		emented in a single no				\rightarrow (*-1) \rightarrow (exp) \rightarrow ($+1 \rightarrow (1/x) \rightarrow$
		te an analytic form of mplex learning archite	-	δα			
		sed from atomic node		δ	Z	$z (\sigma(z))$	\hat{y}
		te complex global grac					
		s function can be seen	n as extra nodes.				
A zoo of frameworks						npanies	
		o - U Montreal				isorFlow (based on Theano, s orch (based on Torch, dynam	
		- IDIAP/NYU/ - UC Berkeley			-	fe2 - Facebook	IIC)- FACEDOOK
		et - CMU, MIT, U Wash	, HK UST			Net - Amazon, Intel	
	DeepLearning4J - Skymind						
						FK - Microsoft	
A.I					Pad	ldlePaddle - Baidu	
Advantages		build big computation compute losses and g	• •	Itation	1 ar-	unhs for undato rulos	
		-	-		-	ations and optimisations	
		h easily from cpu to gp	-				
Problem		s is not going down ->		ot exe	cute	ed	
	-> add	-> add dummy graph node that depends on the update					

ZHAW/HSR	print date: 31.01.19 ISM_Delear
8. Keras + CNN	
Keras	is a high-level open-source neural networks API written in Python and capable of running on top of
Keras	TensorFlow, CNTK, Theano. It was developed with a focus on enabling fast experimentation.
	- minimalistic, straight forward, extensive, python, simple, good documentation, large community
	https://keras.io
pipeline	Define 📄 Compile 📄 Fit 📄 Evaluate 📄 Use
Models	A model in keras is the way to organise the layers of neurons: sequential or graph
	The sequential model corresponds to a regular stack of layers (1 layer = 1 object that feeds to the next)
	The graph model is used for non sequential architectures (diverge or merge networks)
CNN - Convolutional	General idea: let's define new type of layers and connections that will bring
Neural Networks	- preservation of spatial (=räumlich) structure
	- hierarchical feature detection - objects are composed of features that are themselves composed of
	other features
	- robustness to object variablilities such as viewpoint, occlusion (=Verdeckung), etc
Convolution layers	have the property to preserve the spatial structure and discover the local connectivity.
feature extracting!	A given filter is translated on receptive fields of the input and produces as output an activation map .
	convolution filter results in an activation map several filters producing several activation maps
convolve (=falten)	image 32x32x3 activation map 28x28x1 image 32x32x3 activation maps 28x28x6
	5x5x3 filter convolution
	28 28 are height
	J2 Horgin of 5x5x3
	32 width 28 32 width 28
	3 depth 1 3 depth 6
stride s	The stride specifies a step size when moving the
	filter across the signal. Larger stride means less
	overlap and reduction of the output volume. some $S = 2$
	s might be incompatible.
padding p	is the size of a zeroed frame added around the input.
	$P_{W} = \frac{w-1}{P_{W}}$: padding in width $P_{H} = 2$
	$P_W = \frac{1}{2}$ $P_H: \text{ padding in height}$ $P_H = \frac{1}{2}$ $P_H: padding in height$
	$P_H = \frac{h-1}{2}$ h: height of filter
	$0.0 = \frac{(W - W + 2T_W)}{1 + 1} + 1$ H: height of image
	W: width of image
	$o_H = \frac{(H-h+2P_H)}{0} + 1$ $o_W: \text{ output width}$ $0 = 0$
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	(C = # of channels + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	$N_{param} = D\left(\underbrace{whC}_{weight} + \underbrace{1}_{bias}\right) \qquad D = \# \text{ of filters} \\ N \qquad : \# \text{ of params} \qquad \qquad$
	weight bias/ N_{param} : # of params $P_W = 2_{36}$
Max pooling layer	Reduce the spatial size of the representation. Applies independently to every depth.
	Defined by a stride S and a padding P.
	Most significant activations are kept, reduce the amount of computation and control overfitting.
	224x224x64 Single depth slice
	112x112x64
	pool x 1 1 2 4 max pool with 2x2 filters
	5 6 7 8 and stride 2 6 8
	224 downsampling 112 y
	112
Dense layers	224 regular fully connected layers usually used as the last layers in the architecture to take classification
Delise layers	decisions

ZHAW/HSR

ZHAW/HSR		13	M_Delearn					
Convolutional layer	Common form:							
patterns	INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC							
	$0 \le N \le 3, \qquad 0 \le M, \qquad 0 \le K \le 3$							
	ILSVRC: Image	Net Lar	ge Scale Visual Recognition -> Challenge	T	, , , , , , , , , , , , , , , , , , ,			
famous				accuracy	layers			
	LeNet-5	1998	CONV-POOL-CONV-POOL-FC-FC		shallow			
	AlexNet	2012	the "boot" of deep architectures	16.4%	8			
	ZFNet	2013	AlexNet with Hyper parameter tuning	11.7%	8			
	VGGNet	2014	going deeper with simpler filter	7.3%	19			
	GoogLeNet	2014	Network in the Network (Inception), no FC, only 5M param	6.7%	22			
	ResNet	2015	way deeper. more difficult to optimize -> "fall back" layers	3.57%	152			
			to go deeper than 50 -> use bottleneck layers					
	Shao et al	2016		3%	152			
	SENet	2017		2.3%	152			
fall back layers	Hypothesis: [eeper r	nodels are more difficult to optimize $H(x) = F(x) + x$	t relu				
	Ideas: Deepe	layers	should be able to "fall back" to H(x)	F(x) + x (+)				
	identity mapp	ing if di	fficulties to converge.	Ť				
	Easier to mod	el a "de	Ita" from one layer to the other conv	conv) x			
	than a full fea	ture.	relu F(x)	relu	identity			
	Solution: Use	k layers to fit a residual(=Rest)	conv					
	mapping inste	ead of d	irectly trying to fit a desired	j				
	underlying ma	apping.	g. X X "Plain" layers Residual block					
bottleneck layers	Use bottlened	k layers	1x1x64 to reduce the number of operations and parameters					

10. CNN3 Keras	Functional API, Transfer Learning, Autoencoders				
Keras Model types	The sequential model corresponds to a regular stack of layers. Keras Sequential Model - a sequence of layers Connection type - connection type - do units - w/wo bias - activation type 				
	<pre>add1 = Adder(1) // callsinit andcall add1(2) // callscall definit(self,x=0): selfmemory = x defcall(self,x): selfmemory += x return self</pre>				
Functional API	<pre>visible = Input(shape=(28,28,1)) conv1 = Conv2D(32, kernel_size=3, activation='relu')(visible) pool1 = MaxPooling2D(pool_size=(2,2))(conv1)</pre>				
	<pre>conv1 = Conv2D(32, kernel_size=3, activation='relu')(visible) conv2 = Conv2D(32, kernel_size=5, activation='relu')(visible)</pre>				
merge	<pre>merge = concatenate([conv1, conv2]) e.g. multiple images of one object, stereo speech recording, different parameters of acquisition device</pre>				
callbacks	Callback are functions to be applied at given stages of the training procedure. To get a view on internal states and statistics. Declare them in fit() function. checkpoint = ModelCheckPoint('model-(epoch:03d}.h5', verbose=1, monitor='val_acc', save_best_only=True, mode='auto') log = model5.fit(, calbacks=[checkpoint])				
Best practices	Use Consistent Variable Names . Use same variable name for input (visible) and output layers (output), hidden layers (hidden1, hidden2). It will help to connect things together correctly. Review Layer Summary . Always print the model summary and review the layer outputs to ensure that the model was connected as you expected. Review Graph Plots . Create a plot of the model graph and review it to ensure that everything was put together as you intended. Name the layers . You can assign names to layers that are used when reviewing summaries and plots of the model graph. For example: Dense(1, name='hidden1'). Use Callbacks . You should use callbacks to save the (best) models from epochs to epochs as a safety against interrupt and overfitting				

	pi	int date: 31.01.19	TSIVI_DeLearn	
Transfer learning	is about using knowledge learned f	rom tasks for which a lot of labelled data	is available in settings where	
	only little labelled data is available.	-> Re-use the feature extraction part. No	ot to different.	
workflow	image 1. Train on image	2. Small dataset: feature extractor	3. Medium dataset: finetuning	
	come 64 maxpool maxpool maxpool come 128 come 12 come 128 come 12 maxpool maxpool maxpool	a maxpool a conv-128 a conv-128	more data = retrain more of the network (or all of it)	
	conv-256 conv-25 conv-256 conv-25 maxpool maxpool conv-512 conv-51 conv-512 conv-51 maxpool maxpool	Freeze these conv-256 maxpool conv-512 conv-512	Freeze these	
	com-\$12 com-\$1 com-\$12 com-\$1 maxpool maxpool FC-4096 FC-409 FC-4096 FC-409 FC-1000 FC-100 softmax softmax	2 conv-512 maxpool 6 FC-4096 FC-4096 FC-1000	Train this	
Best practice	 Freeze reused components and train new layers (classification part). Many pre-trained models for image recognition available in Keras. 			
Code		bilenet_v2 import MobileNetV2		
		='imagenet', include_top=False	, input shape=())	
bottleneck layers	To reduce number of operations, 1			
Bayes Law		Elect as winning category the one having	ng the largest a posteriori	
Dayes Law		probability. Doing so we guaranteed to maximise the accuracy.		
	$P(C_k \mathbf{x}) = \frac{p(\mathbf{x} C_k)P(C_k)}{p(\mathbf{x})}$	$P(C_k x)$: a posteriori probability, probability of class j given observation x		
	$P(c_k \mathbf{x}) = \frac{p(\mathbf{x})}{p(\mathbf{x})}$		nying y givon class i	
		$p(x C_k)$: likelihood, probability of observing x given class j		
		$P(C_k)$: a priori probability, probability of class j		
		p(x): evidence = probabilty of x,unc		
Auto-encoders				
		ce. The simples form is a feedforward, no		
"diabolo"	Encoding Decoding	The mapping function $h_{ heta}(x)$ is trained to	o reconstruct its own inputs,	
network	w _i w _i	instead of predicting a target value. Usage:		
		Data compression / dimensionality redu	iction	
		Use encoder to obtain features		
		De-noising images \rightarrow		
	$\mathbf{z} = E_{\theta_E}(\mathbf{x}) \qquad \widehat{\mathbf{x}} = D_{\theta_D}(\mathbf{z})$	Image in-painting		
	$\boldsymbol{z} = \boldsymbol{u}_{\boldsymbol{\theta}_E}(\boldsymbol{x}) \qquad \boldsymbol{x} = \boldsymbol{v}_{\boldsymbol{\theta}_D}(\boldsymbol{z})$	Initialise deep network for supervised le	earning	
	$\hat{\mathbf{x}} = h(\mathbf{x})$	Loss function		
	$\widehat{\boldsymbol{x}} = h_{\theta}(\boldsymbol{x})$	$J(\theta) = J(\theta_E, \theta_D) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\theta}(\mathbf{x}_n))$	$(-x_n)^2 = \frac{1}{2N} \sum_{n=1}^{N} (\hat{x}_n - x_n)^2$	

	ent Neural Networks (R	-	av ho important to de	w conclusions on			
RNN	RNNs learn to memorise co		lay be important to dra	aw conclusions on			
Applications	observations made later on. RNN helps wherever we need context from the previous input.						
		1	•	()			
		Input sequence $x = (x_1)$	(x_{T_x}) Output sec	puence $y = (y_1 \dots y_{T_y})$			
	Speech recognition	1 1 1					
	Assistants (Siri, Alexa,)			he weather on Rigi			
	Video captioning		above t	he fog is beautiful.			
	Transcription to text						
	Sentiment classification Classification of text	Today, the weather o	n Rigi				
	Emojification	above the fog is beautiful.					
	Machine translation	Today, the weather o	n Pigi Houto ist d	as Wetter auf der Rigi			
	DeepL, Google Translate	above the fog is beau	$- \rightarrow$	es Nebels schön.			
	Captioning, Subtitling		ului. Obernaib u				
	images,						
	YouTube videos	the state of the s	\rightarrow Sun shini	ng above the clouds.			
		State of the state					
	Chatbots, Q/A	Without	1				
	Siri, Alexa	How Can I have	→ t	ask, answer			
	Named entity recognition	Today, the weathe	r above the fog or	n Riai is beautiful.			
	(NER)	0 0 0	0 0 0 0	0 1 0 0			
	flag names in sentences		0 0 0 0				
	Music generation		<u>.</u>				
	Magenta		\rightarrow				
	DeepJazz	keywords	suggestion	s score			
	Word generation	air mix		v.rmix.com			
		or domain name		airmeex.com 50% v.airnix.com 45%			
		airmix.com					
	time sequence			JA JA			
	modelling, prediction			some med			
			Why Ad	N N			
Approaches	One-to-many	Many-to-one	many-to-many	many-to-many			
TPP C C C C C C C C C C	image tagging,	sentiment analysis	named entity	language translation,			
	music generation		recognition	speech recognition,			
				chatbots			
	X -> YYY	XXX -> Y	XXX -> YYY	XX -> YYYY			
	$T_x = 1$	$T_x \ge 1$	$T_x \ge 1, T_y \ge 1$	$T_x \ge 1, T_y \ge 1$			
	$T_{v} \geq 1$	$T_{y}^{n} = 1$	$T_x = T_y$	$T_x \neq T_y$			
Simple RNNs	un-rolled, un-folded						
•	0 0	0 1	0				
e.g. $T_x = T_y$	(h) (h)	\mathbf{b}	6	(h _t)			
like for NER	initial		cell	Ă			
	state						
	$h_{-1} \rightarrow A \rightarrow $						
			suitable vector				
	(\times) representation (W_h, W_x, b_h)						
	↑ ↑ ↑ ↑ of words						
	the weather on Rigi beautiful						
	110 11004	State h is update through a succession of steps. The state memorises (part of) the "history". Init with 0.					
		a succession of stens. The					
	State h is update through a						
co	State h is update through $h_t = g(W_x)$	$*x_t + W_h * h_{t-1} + b_h) - $					
со	State h is update through a	$x_t + W_h * h_{t-1} + b_h) - mport SimpleRNN$					
со	State h is update through $h_t = g(\boldsymbol{W}_x)$ de from keras.layers in	$\frac{x_t + W_h * h_{t-1} + b_h) - w_h}{port SimpleRNN}$	W and b are the same				

print date: 31.01.19

ZHAW/HSR		print da	ate: 31.01.19	TSM_DeLea	
Generative RNNs	RNNs A generative system is a system able to generate new consistent data from a seed. By consist mean respecting temporal or spatial "structure" that have been learned from the input space				
example	SEED "Once upon a time"	Text generation system	OUTPUT "Once upon a time a princess kissed a frog.	domain name suggestion Shakespeare sonnets (poetic verse form) C code generation	
Approaches	Many to one		Man	y to many	
		$f_{W} \rightarrow h_{2} \rightarrow f_{W} \rightarrow h_{3}$ $x_{2} \qquad x_{3}$ mputed from 1 or		y_1 y_2 y_3 y_1 y_2 y_3 y_1 y_1 y_2 y_3 y_4	
back propagation					
Long Term Dependencies	 run forward and backward through chunks of the sequence instead of whole sequence. Simple RNN's fail if a wider context is needed and the gap between the words grows too large. Long-range dependencies are hard to learn due to vanishing and exploding gradients problem. 				
Problem					
Suitable Initialisation of Weights	CNNs: mean=0	y initialise weight and suitably scale ormalisation		g random numbers (uniform or normal) with	
	RNNs: with 'vanilla' recurrent units - IRNN: identity matrix - 67.0 % accuracy - highly sensitive to parameters - np-RNN: normalized-positive definite matrix - 75.2% accuracy - low sensitive to parameters				
	both - Use non-saturating activation functions (ReLU or LeakyReLU) to alleviate (=mindern) the vanishing gradients problem - Clipping gradients				
Long-Short-Term	ort-Term - LSTM 78.5% accuracy - low sensitive to parameters				
Memory (LSTM)					
Cells or					
Gated Recurrent Units (GRU)	LSTM Cell	(ht		ry is updated through Gates (marked with 😣) v the information flows between short-term ong-term state	
	$c_{t-1} \rightarrow \overbrace{c_{t-1}}^{1}$		2: Input Gate: $i_t = \tilde{c}_t = ta$ 3: Output Gate: o The gates are imp - affine transform	ation of inputs	
	short-term: $h_t = o_t * tanh(c_t)$ - element-wise multiplication				
	backprop: "Super-H			c_{t-1}	
	Gated Recurrent U	nit (GRU)	most popular vari No separate long- forget gate and in		
			Relevance Gate: 7 Candidate State: 7 Update Gate: u_t = Update: $h_t = (1 - 1)$	$\begin{split} \hat{h}_{t} &= \sigma(W_{rh} * h_{t-1} + W_{rx} * x_{t} + b_{r}) \\ \tilde{h}_{t} &= \tanh(W_{ch} * r_{t} * h_{t-1}) + W_{cx} * x_{t} + b_{c}) \\ &= \sigma(W_{uh} * h_{t-1} + W_{ux} * x_{t} + b_{u}) \\ &- u_{t}) * h_{t-1} + u_{t} * \tilde{h}_{t} \\ \text{since only 3 weight matrices } (n_{h} \times (n_{h} + n_{x})) \end{split}$	
Word Embedding	i.e. a mapping of a s space that is of low	space where each er dimensionality		nension to a orange banana rice milk	
	contextual similarity are near. Bag of Wo	y or words, i.e. wo ords eat-apple, dr		hmon context	
	Continuous Bag of V	word: Eat an ev	very day (apple) -> se	e google search train	