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DEEP LEARNING (DL) 

1. Introduction 

Fields of application Computer Vision (e.g. self-driving cars, object detection, medical diagnosis, image tagging/generation, 
caption generation, lip reading, lip synch from Audio) 
Image synthesis (generation of scenes in games) 
Signal processing (denoising signals, images) 
Natural Language Processing [NLP] (e.g. translation, speech recognition and synthesis, Q&A-bots) 

Machine Learning 
(ML) 

Machine learning consists computer methods that analyse observation data to automatically detect 
patterns, and then use the uncovered patterns to perform tasks based on new unobserved data. 

convergence Mathematics (probability theory, statistics, regression, ...) 
Signal processing (filtering, feature extraction, time series, fft, ...) 
Software Engineering (very large DB, intensive CPU, distributed programming, ...) 
Application domain (finance, medicine, energy, biometrics, ...) 
Algorithmic 

tasks Classifying: Predict label of n mutually exclusive classes, e.g. classifying mails as spam or ham 
Predicting: Predict numerical value (response), e.g. predicting house prices in given location and size 
Clustering: Arrange set of entities into groups, e.g. group patients/clients for similar 'treatment' 
Robotic Tasks: e.g. robot conducting certain tasks (walking, cutting the lawn, cleaning, washing dishes) 

process 

 
Paradigms With supervised learning, the goal is to extract some relevant features x from raw observation data o 

and to learn a mapping from inputs x to outputs y given a set of example data called the training set. 
Labelled data. Applications: Recognition, Planning, Diagnosis, Robot Control, Prediction 

With unsupervised learning, the goal is to discover interesting structures from inputs x given a set of 
data called the training set. Unlabelled data. 
Applications: Market Segmentation, Astronomical and Solar Data Analysis, Social Network Analysis. 

With reinforcement learning, we learn the behaviour in an environment that provides suitable rewards. 
Applications: Learn to play games, solve tasks 

Deep Learning (DL) A sub-branch of machine learning. Neuronal architecture with many layers and neurons. 

convergence Larger quantities of data (text, audio, images, videos, ...) -> scalability of learning on very large data sets 
New algorithms (DBN, RBM, CNN, ...) -> ability to learn feature extraction in unsupervised mode and 
classification in supervised mode 
Better computer performance (GPU, distributed computing, ...) -> train complex mapping functions 

Machine Learning  
vs Deep Learning 

Machine Learning typically requires significant hand-engineering of features. 
Deep Learning requires less feature engineering than standard machine learning. 
In DL, the machines find the features automatically as part of learning. 
DL has more flexible and powerful models but are more difficult and need more learn data. 
DL solves the problems in supervised learning. 

supervised learning 
problems 

1. We need large quantities of human validated examples! ... and this is costly to build. 
2. Because of the variabilities, we will need even more data and complex mapping functions. 
3. We spend a lot of time to hand-craft interesting compact features, so called feature engineering. 

Deep learning 
answers 

1. Let's use all the labelled data and unlabelled data 
2. Let's use deep neural networks 
3. Let's learn the feature extraction in unsupervised learning mode. 

 
  

Training 

Testing 

"Sheldon" 

Machine Learning 

Deep Learning 
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1. Perceptron 

Biological Neural Systems 

Biological Neurons composed of: cell body, dendrites, axon 
composed in a network by synaptic terminals 
electrical impulses 'signals' are sent via synapsis 
if a neuron receives enough signals, it fires its own 
signal 'activation' 

 

Biological Neural 
Nets 

The connectivity in biological neural systems is huge. 
neurons in the brain: ~1011 
connections per neuron: ~104 
→ ~1015 synapses 

Neuro-Science and 
Artificial Neural 
Networks 

Inspired by the biological brain. Reverse-engineering the computational principles behind the brain. 
Deep Learning goes beyond the neuro-scientific perspective and appeals to a more general principle of 
learning with multiple levels of composition. No claim to model the biological function directly. 

Artificial Neural Nets are composed of Artificial Neurons 
The network is trained to perform the task from training 
data by applying a learning algorithm that adjusts the 
networks parameters. 

 
 Artificial Neuron 

McCulloch-Pitts 
Neuron (1943) 

First artificial neuron as a model for the activation of a neuron. 

Number of Neurons 𝑛 

 

Input signal 𝑥𝑘 = 0,1 1 ≤ 𝑘 ≤ 𝑛 

Weighted 
𝑤𝑘 = {

+1 (𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑜𝑟𝑦)

−1 (𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑦)
  

Sum of all input signals 
𝑆 =∑ 𝑤𝑘𝑥𝑘

𝑛

𝑘=1
 

Output signal 
𝑦 = {

+1 (𝑆 ≥ Θ)

0 (𝑆 < Θ)
 

 

Examples 𝐴𝑁𝐷: 𝑦 = 𝐻(𝑥1 + 𝑥2 − 2)

𝑂𝑅: 𝑦 = 𝐻(𝑥1 + 𝑥2 − 1)

𝑋𝑂𝑅: 𝑦 = 𝐻(𝐻(𝑥1 + 𝑥2 − 0.5) + 𝐻(1.5 − 𝑥1 − 𝑥2) − 1.5)
 

Heaviside-function 

𝐻(𝑧) = {
1 (𝑧 ≥ 0)

0 (𝑧 < 0)
 

Rosenblatt's 
Perceptron (1958) 
= LTU (Linear 
Threshold Unit) 

for linearly separable binary classification problems  
1 = 𝑦𝑒𝑠, 0 = 𝑛𝑜 

0. initialize parameters (zero or random) 

1. pick sample (𝒙(𝑖), 𝑦(𝑖)) 

2. compute predicted value: 𝑦̂(𝑖) = 𝐻(𝒘 ∗ 𝒙(𝑖) + 𝑏) 

3. Parameter update rule: 

𝒘 ← 𝒘− 𝛼 ∗ (𝑦̂(𝑖) − 𝑦(𝑖)) ∗ 𝒙(𝑖) 

𝑏 ← 𝑏 − 𝛼 ∗ (𝑦̂(𝑖) − 𝑦(𝑖))⏟        
0 𝑜𝑟 1

 

𝑦 = 𝐻 (∑ 𝑤𝑘𝑥𝑘 + 𝑏
𝑛

𝑘=1
) , 𝑥𝑘 , 𝑤𝑘 , 𝑏 ∈ ℝ 

 
Example with 2D 
Input Data 

Decision Boundary 
𝐻𝑤,𝑏 = 𝑤 ∗ 𝑥 = 0 

→ dot product is 0 when orthogonal 
 

𝐻𝑤,𝑏 = 𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + 𝑏 = 0 

 

𝑥2 =
−𝑏 − 𝑤1 ∗ 𝑥1

𝑤2
 

𝑠 = −
𝑤1
𝑤2

 

 

 
Perceptron Learning 
Algorithm 

The learning rule searches for a weights vector that defines a hyperplane 
that separates the points associated with the two classes. This is only 
possible for linearly separable input sets. The solutions are not unique and 
not optimal. The optimal solution is called SVM (support vector machine) 

 
Perceptron 
Convergence 

Perceptron Learning Algorithm converges to a weights vector and bias that separates the two classes – 
provided that the two classes are linearly separable. 
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Artificial Neural Nets 

XOR Problem Serious weakness of perceptron's: 
Incapable of solving some rather simple Problems 
These limitations can be overcome by stacking multiple 
perceptron's so called MLP. 

 
Multi-Layer 
Perceptron (MLP) 

An MLP is composed of: 
Input Layer: Inputs passed through 
Hidden Layers: One or more layers of LTUs 
Output layer: Final layer of LTU 
 
Input and hidden layers include a bias (𝒙𝟎 = 𝟏) neuron and are 
fully connected to the next layer. 

 
Usage typically, in areas where it is easy for humans and difficult for computers. 

2. Learning and Optimisation 

MNIST Dataset contains a lot of handwritten digits for testing and illustration -> identify which digit they are 
2 versions: Original (70'000 28x28pixel images), Lightweight (1'800 8x8 pixel images, faster) 
Binary Classification problem (is it a e.g. 5 or not), use model-function 𝑦̂ = ℎ(𝑥) 

Data Preparation 

Training and Testing Training set: Used for learning the task. 
Test Set: Used for testing how well the learned model performs. 
Split in test and train data -> randomly shuffle dataset before splitting 
split ratio depends on available data (large set: 99% to train, small set: 70% to train) 

Data Normalisation 
(Feature Scaling) 

Bring your values to similar scales (range and importance). Apply to input and output data. 
1. Scaling: improves convergence speed and accuracy of the learning algorithm 
2. Centring: improves the robustness of the learning algorithm 

2 schemas Z-Normalisation 
Shifting and rescaling the data so that a zero 
mean and a unit-variance is obtained 

𝑥𝑘
′ (𝑖) =

𝑥𝑘
(𝑖) − 𝜇𝑘
𝜎𝑘

 

compute on training set: 

𝜇𝑘 =
𝑖

𝑁
∑ 𝑥𝑘

(𝑖)𝑁
𝑘=1 → mean deviation 

𝜎𝑘
2 =

𝑖

𝑁
∑ (𝑥𝑘

(𝑖) − 𝜇𝑘)
2

𝑁
𝑘=1 → standard deviation 

Min-Max Rescaling 

𝑥𝑘
′(𝑖) =

𝑥𝑘
(𝑖) −𝑚𝑖𝑛𝑗 (𝑥𝑘

(𝑗)
)  

𝑚𝑎𝑥𝑗 (𝑥𝑘
(𝑗)
) − 𝑚𝑖𝑛𝑗 (𝑥𝑘

(𝑗)
)
   → [0,1] 

Min-Max Normalisation 

𝑥𝑘
′(𝑖) = 2 ∗

𝑥𝑘
(𝑖) −𝑚𝑖𝑛𝑗 (𝑥𝑘

(𝑗)
)  

𝑚𝑎𝑥𝑗 (𝑥𝑘
(𝑗)
) − 𝑚𝑖𝑛𝑗 (𝑥𝑘

(𝑗)
)
− 1   → [−1,1] 

calculate min/max on training set 

Notations 𝑚 number of samples in the input dataset 

𝑛𝑥 number of input features, dimension of the input feature vector 

𝒙 input feature vector of dimension 𝑛𝑥 

𝑥𝑘  k-th component of the input feature vector (1 ≤ 𝑘 ≤ 𝑛𝑥) 

𝒙(𝑖) input feature vector of the i-th training sample (1 ≤ 𝑖 ≤ 𝑚) 

𝑥𝑘
(𝑖) k-th component of the input feature vector of the i-th training sample 

𝑦 scalar output variable, also called target output or label 

𝒚 output vector (or target output vector) of dimension 𝑛𝑦 vector 

𝑦𝑘  k-th component of the output vector (or target output vector) (1 ≤ 𝑘 ≤ 𝑛𝑦) 

𝑦̂ predicted output, as computed by the mapping function 

𝒚̂ predicted output vector, as computed by the mapping function 
(𝒙, 𝒚) input sample (pair of input feature vector and corresponding label vector) 

(𝒙(𝑖), 𝒚(𝑖)) i-th input sample of the input dataset (1 ≤ 𝑖 ≤ 𝑚) 
 

Model and Cost 

Generalised from 
Rosenblatt's 
Perceptron 

 

1) Smooth activation function: Sigmoid 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

2) Gradient Descent Optimization Algorithm 
- widely used in practice 
- gives the direction of the steepest ascent 
- works 'locally' and finds local wells (gradient=0) 
-> not designed to find global minima 

Learning Rate 𝜶 
𝛼 > 0 

Determines the learning speed. Needs to be tuned to a given problem.  
If too large, it is not guaranteed to converge. If too small -> slow convergence of cost and error rate 
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Epochs Iterations run until the bottom of the valley reached. 
If too small -> not optimal values. If too big -> overfitting. 

Probabilistic 
interpretation 

𝑝(𝑦 = 1|𝒙, 𝜃) = ℎ𝜃(𝒙) 
𝑝(𝑦 = 0|𝒙, 𝜃) = 1 − ℎ𝜃(𝒙) 

Cost functions Mean Square Error Cost Function 

𝐽𝑀𝑆𝐸(𝜃) =
1

2𝑚
∑ (𝑦̂

(𝑖) − 𝑦(𝑖))
2𝑚

𝑖=1
 

Square to get positiv result. Training can get stuck. 

Cross-Entropy Cost Function 

𝐽𝐶𝐸(𝜃) = −
1

𝑚
∑ log (𝑝(𝑦(𝑖)|𝒙(𝑖), 𝜃))

𝑚

𝑖=1
 

Cross Entropy in generalised perceptron 

∇𝐽𝐶𝐸(𝜃) =
1

𝑚
∑(𝑦̂(𝑖) − 𝑦(𝑖)) (𝒙

(𝑖)

1
)

𝑚

𝑖=1

 

For classification tasks. Probabilistic consideration. 

Cross-Entropy Loss Function for binary classification problem 
ℒ(𝑦̂, 𝑦) = −(𝑦 log(𝑦̂) + (1 − 𝑦) log(1 − 𝑦̂)) 

Cross-Entropy Cost Function for binary classification problem 

𝐽𝐶𝐸(𝜃) = −
1

𝑚
∑ (𝑦(𝑖) log(𝑦̂

(𝑖)) + (1 − 𝑦(𝑖)) log(1 − 𝑦̂
(𝑖)))

𝑚

𝑖=1
 

Mathematical 
Formulation 

Partial Derivative of Function 𝐽(𝜃) = 𝐽(𝜃1, … , 𝜃𝑛) 
𝛿𝐽

𝛿𝜃𝑘
= lim

𝜖→0

1

∆θk
(𝐽(𝜃1, … , 𝜃𝑘 + ∆𝜃𝑘 , … , 𝜃𝑛) − 𝐽(𝜃1, … , 𝜃𝑘 , … , 𝜃𝑛)) 

Gradient ∇𝜃𝐽 =
𝛿𝐽

𝛿𝜃
= (

𝛿𝐽

𝛿𝜃1
…
𝛿𝐽

𝛿𝜃𝑛

) 

General Gradient Descent Update-Rules 
vector notation: 𝜃 ← 𝜃 − 𝛼∇𝜃𝐽(𝜃) 

coordinates:  𝜃𝑘 ← 𝜃𝑘 − 𝛼
𝛿𝐽(𝜃)

𝛿𝜃𝑘
 

Update rules for generalised perceptron 

𝑤 ← 𝑤 −
𝛼

𝑚
∑ (𝑦̂(𝑖) − 𝑦(𝑖)) 𝒙(𝑖)

𝑚

𝑖=1
 

𝑏 ← 𝑏 −
𝛼

𝑚
∑ (𝑦̂(𝑖) − 𝑦(𝑖))

𝑚

𝑖=1
 

 

3. Shallow Networks (MLP with a single hidden layer)  

SoftMax for Multi-
Class 

ℎ𝜃,𝑙(𝒙) =
exp(𝑧𝑙)

∑ exp(𝑧𝑗)𝑗=1

, 𝑤ℎ𝑒𝑟𝑒 𝑧𝑗 = 𝒘𝑗 ∗ 𝒙 + 𝑏 

It peaks at the largest 𝑧𝑙 and smoothly approximates 
max{𝑧1, … , 𝑧𝑘−1} if one element is much larger than all the 
others. Typically, as final layer. m inputs and m outputs.  

Training 

Gradient 

𝛿

𝛿𝒘𝑗
𝐽𝐶𝐸(𝜃) = −

1

𝑚
∑ (𝛿𝑗,𝑦(𝑖) − ℎ𝜃,𝑗(𝒙

(𝑖))) 𝒙(𝑖)
𝑚

𝑖=1
 

𝛿

𝛿𝑏𝑗
𝐽𝐶𝐸(𝜃) = −

1

𝑚
∑ (𝛿𝑗,𝑦(𝑖) − ℎ𝜃,𝑗(𝒙

(𝑖)))
𝑚

𝑖=1
 

Update 
rules 

𝒘𝑗 ← 𝒘𝑗 − 𝛼
𝛿

𝛿𝒘𝑗
𝐽𝐶𝐸(𝜃) 

𝑏𝑗 ← 𝑏𝑗 − 𝛼
𝛿

𝛿𝑏𝑗
𝐽𝐶𝐸(𝜃) 

 

Adding Hidden 
Layers 

One additional layer with n neurons, sigmoid activation function. 
Can improve the performance. But in MNIST one layer already capture the correlation between pixels. 
How do the formulas look like when applying gradient descent networks with hidden layers? 

Role of activation 
function 

Non linearities in the mapping between input and output of a neural network are crucial for gaining 
enough power for learning a task with enough accuracy. 
The choice of activation functions has an impact of robustness and performance. 

Universal 
Approximation 
Theorem 

A feedforward network with a linear output layer and at least one hidden layer with a non-linear 
(“squashing”) activation function (e.g. sigmoid) can approximate a large class of functions with arbitrary 
accuracy - provided that the network is given a sufficient number of hidden units and the parameters 
are suitably chosen. 

e.g. combine 2 sigmoid to generate a step function -> with this we can approximate a large class of functions 

problem with a shallow network, any function can be represented, but with problems: 
- for improving accuracy, more and more neurons are needed (exponentially growing number) 
- with more dimensions (e.g. image or audio) more sampled data is needed -> curse of dimensionality 
- if we just use the available data and interpolate with step-functions between data points -> we overfit 
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Overfitting 

Overfitting Underfitting - High Bias: Strong 
bias in the way the data deviate 
from the linear model. 

Good Fit - "Just Right": Model 
seems to capture just right the 
underlying structure in the data. 

Overfitting - "High Variance": 
Model matches samples perfectly: 
too well given the number of 
samples. seems to capture also 
statistical fluctuations 

example 
 
 
 
 
 
 
 
 
 

ℎ𝜃(𝑥) = 
 

𝑔(θ0 + θ1𝑥1 + θ2𝑥2) 

 

𝑔 (
θ0 + θ1𝑥1 + θ2𝑥2 +

θ3𝑥1
2 + θ4𝑥2

2 + 𝜃5𝑥1𝑥2
) 

 

𝑔 (
θ0 + θ1𝑥1 + θ2𝑥1

2 + 𝜃3𝑥1
2𝑥2

θ4𝑥1
2𝑥2

2 + θ5𝑥1
2𝑥2

3 + 𝜃6𝑥1
3𝑥2

+⋯

) 

Occam's Razor "Among competing hypothesis, the simplest is the best." William of Ockham (1285-1347) 

Definition Overfitting occurs when the learned hypothesis (trained model) fits the training data set very well - but 
fails to generalise to new examples. 

can occur when - the training set is too noisy 
- its size is too small in comparison with the dimensionality of the input data 
- the number of parameters of the model is too large, i.e. the model is too "flexible" 

examine overfitting 

 

Overfitting occurs when the learned 
hypothesis (trained model) fits the training 
data set very well - but fails to generalise 
to new examples. 

 

4. Model Selection Process 

Goal Select from a family of models the model with the best performance. 

Problem To achieve this goal, we need to evaluate the performance for different models. 
But to avoid overfitting on the test set we must not use information from the test set to tune params. 

Solution Split the original training set into training set and validation set. 

Hyper-Parameter 
Tuning 

Hyper-Parameters specify higher level properties of the mapping function (model) and/or the learning 
process. These parameters are optimised on the validation set. 
e.g. learning rate, batch size, number of hidden layers, number of neurons in a layer 

learning curves With more training data it gets more difficult to perfectly fit a model 
the model trained with more data captures more details about the underlying problem. 

Cross-Validation Split data set in different junks (folds, 5-10) with 
equal size. 
-> not that important, see ML courses 
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Performance Measures 

Confusion Matrix Given a classification system, a confusion matrix evaluates the 
performance of such system through an 𝑚 ×𝑚 matrix, where 𝑚 
is the number of classes. It shows how many of class "a" were 
confused as class "b", hence its name "confusion matrix". 
Very useful to understand the type of errors the system is doing. 
from sklearn.metrics import confusion_matrix 
confmat = confusion_matrix(y_actual, y_pred) 

Confusion Matrix Example 

  predicted class 

  a b c d 

actual 
class 

a 120 21 7 8 

b 8 131 63 19 

c 12 30 80 11 

d 1 11 8 40 
 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
Σ𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

#𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

120 + 131 + 80 + 40

570
=
371

570
= 65% 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 1 − 0.65 = 35% 
Confusion Table A Confusion Table is used to measure the classification 

performance of a two-class system. 

  Predicted  

  Positive Negative Total 

Actual 
Positive True Positive False Negative (TP+FN) 

Negative False Positive True Negative (FP+TN) 

 Total (TP+FP) (FN+TN) N 
 

Confustion Table Example (digit 5) 

  Predicted  

  P N Total 

Actual 
P 809 112 921 

N 128 8951 9079 

 Total 937 9063 10'000 
 

𝐶𝑙𝑎𝑠𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

#𝑠𝑎𝑚𝑝𝑙𝑒
 

correct classification considering a given class against the others. 

=
809 + 8951

10′000
= 97.6% 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑐𝑙𝑎𝑠𝑠 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

correct classification for a given class 

=
809

809 + 112
= 87.84% 

𝑐𝑙𝑎𝑠𝑠 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

correct classification in the predicted outputs for a given class 

=
809

809 + 128
= 86.34% 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 =

2 ∗ 0.8634 ∗ 0.8784

0.8634 + 0.8784
= 87.08% 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

8951

8951 + 128
= 98.59% 

General Rule for 
Model Selection 

Plot curves with these performance measures computed 
on the training and the validation set, to avoid overfitting, 
look at the performance on the validation set. 

x: error rate 

Dimensionality, 
Curse of 
Dimensionality 

This is best understood by how many parameters we need 
for each point in the Figure to the right.  

• In 1D we only have, say 100 points. 

• In 2D we have 1002 = 10′000 points 

• In 3D we have 1003 = 1′000′000 points 

• Real world application: an image with 300 dpi of 
2400x2400 in RGB (3 channels) = 17'280'000 params. 
And that's just ONE image from your training data. 

In machine learning, the more features our data has, the 
higher dimensionality problem we'll have. A solution for 
this is called "dimensionality reduction", and different 
methods like Principal Component Analysis are used. 

 
𝑚 ∝ 𝑁𝑑 

𝑚: Number of samples needed 
𝑁: Number of points along each dimension 
𝑑: Number of parameters of the model 

Feature Variation, 
Levels of Hierarchy 

This brings us to the concept of feature variation and levels 
of hierarchy. In Feature variation, the idea and solution to 
the Curse of Dimensionality, is to use a machine learning 
method that does not really "learn" all the parameters, but 
instead is robust to variation and finds similar features 
across the data. images, as the best example, have similar 
features, and variations from rotations, different pose, 
moustaches and beards, etc. So, we would build a 
hierarchy of features as: edges, contours, objects.  
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5. Back Propagation 

Computational 
Graphs 

A computational graph is a directed graph where the nodes correspond to operations or variables. 
Variables can feed their value into operations, and operations can feed their output into other 
operations. This way every node in the graph defines a function of the variables. 

e.g. 

 

Input: e.g. MNIST pictures 
Var w: weights 
Var b: biases 
Function: e.g. sigmoid 

multi-layer 
one sample 

 
calculus per layer 

𝒙 = 𝒂[0]: 𝑛𝑥 × 1 

 

weights: 𝑛𝑙 × 𝑛𝑙−1 (1 row for 1 neuron) 

𝑾[𝑙] = (

𝑤11 … 𝑤1𝑛𝑙−1
… …
𝑤𝑛𝑙1 … 𝑤𝑛𝑙𝑛𝑙−1

) 

bias: 𝑛𝑙 × 1 

𝒃[𝑙] = (
𝑏1
[𝑙]

…
𝑏𝑛𝑙

) 

activation: 𝑛𝑙−1 × 1 

𝒂[𝑙−1] = (
𝑎1
[𝑙−1]

…

𝑎𝑛𝑙
[𝑙−1]

) 

activation: 𝑛𝑙 × 1 

𝒂[𝑙] = (
𝑎1
[𝑙]

…

𝑎𝑛𝑙
[𝑙]
) 

temporary variable: 𝑛𝑙 × 1 

𝒛[𝑙] = 𝑾[𝑙]𝒂[𝑙−1] + 𝒃[𝑙]:  
element wise activation function: 𝑛𝑙 × 1 

𝒂[𝑙] = 𝑔[𝑙](𝒛[𝑙]) 

multi-layer 
multiple sample: m 

 
calculus per layer 

𝑿 = 𝑨[0]: 𝑛𝑥 ×𝑚 

handle multiple samples with one calculation 
(add 3rd dimension) 
 

𝑛𝑙 × 𝑛𝑥⏞    
𝑊

∗ 𝑛𝑥 ×𝑚⏞    
𝐴

∗ +𝑛𝑙 ×𝑚⏞    
𝑏

= 𝑛𝑙 ×𝑚⏞    
𝑍

 

𝑨[𝑙−1]: 𝑛𝑙−1 ×𝑚 

𝑾[𝑙]: 𝑛𝑙 × 𝑛𝑙−1 

𝒁[𝑙] = 𝑾[𝑙]𝑨[𝑙−1] + 𝒃[𝑙]: 𝑛𝑙 ×𝑚 

𝑨[𝑙] = 𝑔[𝑙](𝒁[𝑙]): 𝑛𝑙 ×𝑚 

𝒃[𝑙]: 𝑛𝑙 ×𝑚 (𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑖𝑛𝑔) 
Chain rule Compute the amount of change of a function by changing 

one of its variables. 
𝐿 = 𝐿 (𝑔(ℎ(𝑥)))   →   𝑑𝐿 =

𝛿𝐿

𝛿𝑔

𝛿𝑔

𝛿ℎ 

𝛿ℎ

𝛿𝑥
𝑑𝑥  

Backward 
Propagation 
 
based on chain rule 

Learning consists in minimising the cost with respect to the model parameters. 
Gradient descent is an iterative scheme to accomplish that. Update rule with learning rate 𝛼. 
We can propagate all gradients with respect to the activations back through all the layers. 
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6. Regularisation and Optimisation  

Problem When learning with backprop, we observe that: 
- learning is slower in earlier layers (~length of gradients) 
- learning becomes even slower when having more layers 
But small gradients here don't imply that we are close to the minimum. Generally, the gradients in deep 
neural networks are unstable, tending to either vanish (prevalent = dominant) or explode in earlier 
layers. 

Reason - Multiplicative Structure -> consequence of the chain rule 
- Product Term 
- Coordinating Updates -> updates of the weights in different layers are highly coupled. 

Solution The problem cannot be completely solved -> but alleviated 
- Parameter initialisation -> proper initialization of the weights so that the logit z does not grow too 
large in magnitude. 

• randomly initialise weights -> to break symmetries at start of learning 

• put initial weights at proper weights -> normalize z-values in different layer (Xavier) 
- Batch Normalisation, Gradient Clipping: Make sure that the weights do not grow too large in 
magnitude also during training 

• Normalise the input to each layer per mini-batch by adding an operation in the model just 
before the activation function of each layer: zero-centre and scale the inputs by estimating 
mean and stdev from the current mini-batch. 

Normalisation 

(𝑍𝑛𝑜𝑟𝑚
{𝑟},[𝑙])

𝑘,𝑖
=
𝑍𝑘,𝑖
{𝑟},[𝑙] − 𝜇𝑘

{𝑟},[𝑙]

𝜎𝑘
{𝑟},[𝑙] + 𝜖

 

𝜇𝑘
{𝑟},[𝑙] =

1

𝑁𝐵
∑ 𝑍𝑘,𝑖

{𝑟},[𝑙]
𝑁𝐵

𝑖=1
 

𝜎𝑘
{𝑟},[𝑙] =

1

𝑁𝐵
∑ (𝑍𝑘,𝑖

{𝑟},[𝑙] − 𝜇𝑘
{𝑟},[𝑙])

2𝑁𝐵

𝑖=1
 

• Then let the model learn the optimal scale and mean of the inputs for each layer. 

Scaling and Shifting 

𝑍̂𝑘,𝑖
{𝑟},[𝑙] = 𝛾𝑘

[𝑙](𝑍𝑛𝑜𝑟𝑚
{𝑟},[𝑙])

𝑘,𝑖
+ 𝛽𝑘

[𝑙] 𝛾𝑘
[𝑙] 𝑎𝑛𝑑 𝛽𝑘

[𝑙]have to be learned 

-> can be applied to any input or hidden layer in a network. 

• Or clip the gradient in length during backprop so that they never exceed some threshold. 
Because neural networks or recurrent networks often have an extremely steep cliff structure. 

- Suitable Activation Functions: Use activation functions that cannot saturate. 

• use ReLU, LeakyRELU or ELU 

• ReLU suffers the dying unit's problem: During training, if a neuron's weight gets updated such 
that the weighted sum of the neuron's inputs is negative, it is outputting 0. Since the gradient at 
𝑧 < 0 is 0, there is no weight update for this neuron and the neuron is likely to stay dead. 

• With the leaky ReLU (or its smooth version, the ELU) this problem cannot occur. 

Regularisation Problem: Deep neural networks typically have many parameters to fit a huge variety of complex 
datasets. But bear the risk to overfitting the training set. 
"Regularisation is any modification to a learning algorithm that is intended to reduce its generalisation 
error but not its training error." 

Weight Decay 
(Weights Penalties) 

Add constraints to the parameters to give preference to simple models - restriction in the length of the 
parameter vector or in number of parameters (sparsity). 

𝐽 = 𝐽𝑑𝑎𝑡𝑎 + 𝐽𝑟𝑒𝑔 
𝐽𝑑𝑎𝑡𝑎: Performance term: on the data, how far are we from the ground truth 
𝐽𝑟𝑒𝑔: Regularisation term: we should not let our model become too complex 

𝐽 = 𝐽0 + 𝜆Ω(𝐖) 
𝐽0: original loss function (e.g. RMS loss) 
Ω(𝑾): penalty term that favours models with smaller weights 
𝜆: regularisation parameter 

Two forms of penalties are common 

 Penalty term Gradient for the regularised loss function: 

𝐿1 Ω(𝑾) = ‖𝑊‖1 =∑|𝑊𝑘𝑗
[𝑙]|

𝑙,𝑘,𝑗

 ∇(𝐽0(𝑾) + 𝜆‖𝑾‖1) = ∇𝐽0(𝑾) + 𝜆𝑠𝑖𝑔𝑛(𝑾) 

𝐿2 
Ω(𝑾) = ‖𝑊‖2

2 =∑|𝑊𝑘𝑗
[𝑙]|

2

𝑙,𝑘,𝑗

 ∇(𝐽0(𝑾) +
𝜆

2
‖𝑾‖2

2) = ∇𝐽0(𝑾) + 𝜆𝑾 

update rule for gradient descent 
𝑾 ←𝑾− 𝛼∇𝐽(𝑾) 
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Dropout Randomly drop neurons during training steps to make the solution less dependent on individual neurons 
Popular, successful, imply simpler models, more robust, cheap computation at training, very versatile 
(=vielfältig), can be combined, need to be bit larger 
At every training step, every neuron (input by 20%, hidden by 50%) has a probability p of being 
temporarily -> masked activations. Hyper-parameter p is called dropout rate. 
Correct weights after training, because they have been tuned with dropout rate. 

Early Stopping Stop training at the minimum of the cost function on the validation set to avoid overfitting. 
Often, the training error monotonically decreases while the validation error begins to increase after a 
certain number of epochs. A behaviour that can only be observed when training large models with 
sufficient representational capacity so that overfitting is possible. 

- Run optimisation algorithm to train the model - 
simultaneously compute the validation set error. 
- Store a copy of the model parameters as long as the 
validation set error improves. 
- Iterate until validation set error stops improving (e.g. for k 
steps) 
- Return the parameters where the smallest validation set 
error is observed.  

efficient, non-intrusive (aufdringlich), parallelizable, combinable 

Data Augmentation Generate more training data to introduce additional characteristic features (e.g. symmetries) the 
solution should have. 

Reduce model complexity. 
Increase the amount of training data (realistic). 
Model is forced to be more tolerant to position, orientation, 
size, contrast, etc. 
Typically used for classification tasks. 
Be careful with flips and 180° rotation (d-b, 9-6) 
May be considered rather as pre-processing step. 
But can be applied on the fly. Reduce network bandwidth  

 

Advanced 
Optimisation 
Methods 

Gradient Descent 
+ works for convex function -> but cost function in deep neural networks are typically non-convex. 
- can get stuck in a local minimum or saddle point -> hard to find in high dimensional spaces. 
- can get very slow -> faster optimisers desirable 

Momentum, 
Nesterov 

Allows to surpass flat regions or saddle points - like a ball that keeps on rolling down if it has an initial 
speed when entering flat regions. 

Compute an exponentially decay moving average 
of past gradients and move in the direction of the 
moving average. 'Momentum' hyper parameter 
which controls the decay and the friction. 
Momentum 𝒎 ← 𝛽1𝒎+ 𝛼∇𝐽(𝜃) 
Nesterov 𝒎 ← 𝛽1𝒎+ 𝛼∇𝐽(𝜃 + 𝛽1𝒎) 

𝜃 ← 𝜃 −𝑚 
good beta: 𝛽1 = 0.9 

 
 

RMS Prop Adaptively adjusts the learning rate to incorporate differences in the steepness along different directions 
in parameter space. 

Increase learning rate in direction of slow progress 
and decrease in direction of fast progress. 

𝑠 ← 𝛽2𝑠 + (1 − 𝛽2)∇𝐽(𝜃)⨀∇𝐽(𝜃) 

𝜃 ← 𝜃 −
𝛼

√𝑠 + 𝜖
⨀𝛻𝐽(𝜃) 

⨀𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑤𝑖𝑠𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 
 

 

Adam 
(state of the art) 

Combination of Momentum / Nesterov and RMSprop 

𝒎 ← 𝛽1𝒎+ (1 + 𝛽1)∇𝐽(𝜃) 
𝑠 ← 𝛽2𝑠 + (1 − 𝛽2)∇𝐽(𝜃)⨀∇𝐽(𝜃) 

𝒎̂ =
𝒎

1 − 𝛽1
 (𝑖𝑛𝑖𝑡 𝑤𝑖𝑡ℎ 0) 

𝒔̂ =
𝒔

1 − 𝛽2
 (𝑖𝑛𝑖𝑡 𝑤𝑖𝑡ℎ 0) 

𝜃 ← 𝜃 − 𝛼
𝒎̂

√𝑠 + 𝜖
⨀𝛻𝐽(𝜃) 

Learning Rate 𝛼 0.001 

Momentum 𝛽1 0.9 

RMS Decay 𝛽2 0.999 

Numerical Stabilisation 𝜖 1.0E-08 

Learning rate 𝛼 (reduce after epochs) 
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7. DL-frameworks 

CPU vs 
GPU 
 
TPU 

Central Processing Unit: Few cores (~10), fast (~4GHz), lots of cache, few parallel processes 
Graphical Processing Unit: Many cores (~1'000), slow (~1.5GHz), few caches, many parallel processes 
GPU is suitable for matrix multiplication -> because it's highly parallelizable. 
Tensor Processing Unit: even more specialised hardware to perform matrix and convolution operations 

GPU CUDA - for NVIDIA only - low level API for programming GPU 
OpenCL - like CUDA but runs on anything - usually slower on NVIDIA hardware 
HIP - Write code once in HIP C++ and port on NVIDIA or AMD 

Forward 
Backward 
Node 
principles 
 
 
add = distributor 
max = router 
mul = switcher 

 
→ 𝑥 = 2 

𝑤 = 3 
𝑏 = −4 

𝑞 = 𝑥 ∗ 𝑤 = 2 ∗ 3 
𝑞 = 6 

𝑧 = 𝑞 + 𝑏 = 6 + (−4) 
𝑧 = 2 

𝑓 = 𝑧2 = 22 
𝑓 = 4 

← 𝛿𝑞

𝛿𝑥

𝛿𝑧

𝛿𝑞
= 3 ∗ 4 = 12 

𝛿𝑞

𝛿𝑤

𝛿𝑧

𝛿𝑞
= 2 ∗ 4 = 8 

𝛿𝑧

𝛿𝑞

𝛿𝑓

𝛿𝑧
= 1 ∗ 4 = 4 

𝛿𝑧

𝛿𝑏

𝛿𝑓

𝛿𝑧
= 1 ∗ 4 = 4 

𝛿𝑓

𝛿𝑧

𝛿𝑓

𝛿𝑓
= 2𝑧 ∗ 1 = 4 

𝛿𝑓

𝛿𝑓
= 1 

 

Node composition 
or factorisation 

A sub-graph composed of nodes can be 
reimplemented in a single node if we can 
compute an analytic form of the gradients. 
Any complex learning architecture can be 
composed from atomic nodes. No need to 
compute complex global gradients. 
The loss function can be seen as extra nodes. 

𝛿𝜎

𝛿𝑧
 

 

A zoo of frameworks Academia Companies 

Theano - U Montreal 
Torch - IDIAP/NYU/... 
Caffe - UC Berkeley 
MXNet - CMU, MIT, U Wash, HK UST 

TensorFlow (based on Theano, static)- Google 
Pytorch (based on Torch, dynamic)- Facebook 
Caffe2 - Facebook 
MXNet - Amazon, Intel 
DeepLearning4J - Skymind 
CNTK - Microsoft 
PaddlePaddle - Baidu 

 

Advantages - Easily build big computational graphs 
- Easily compute losses and gradients in computation graphs for update rules 
- Have at hand all the state-of-art strategies for regularisations and optimisations 
- Switch easily from cpu to gpu when needed. 

Problem The loss is not going down -> assign calls are not executed 
-> add dummy graph node that depends on the update 

 
  



ZHAW/HSR print date: 31.01.19 TSM_DeLearn 

Marcel Meschenmoser Lecturer: Jean Hennebert, Martin Melchior Page 11 of 17 

8. Keras + CNN 

Keras 

 

is a high-level open-source neural networks API written in Python and capable of running on top of 
TensorFlow, CNTK, Theano. It was developed with a focus on enabling fast experimentation. 
- minimalistic, straight forward, extensive, python, simple, good documentation, large community 
https://keras.io 

pipeline 

 
Models A model in keras is the way to organise the layers of neurons: sequential or graph 

The sequential model corresponds to a regular stack of layers (1 layer = 1 object that feeds to the next) 
The graph model is used for non sequential architectures (diverge or merge networks) 

CNN - Convolutional 
Neural Networks 

General idea: let's define new type of layers and connections that will bring 
- preservation of spatial (=räumlich) structure 
- hierarchical feature detection - objects are composed of features that are themselves composed of 
other features 
- robustness to object variablilities such as viewpoint, occlusion (=Verdeckung), etc 

Convolution layers 
feature extracting! 
 
convolve (=falten) 

have the property to preserve the spatial structure and discover the local connectivity. 
A given filter is translated on receptive fields of the input and produces as output an activation map. 

convolution filter results in an activation map.  several filters producing several activation maps 

  
 

stride s The stride specifies a step size when moving the 
filter across the signal. Larger stride means less 
overlap and reduction of the output volume. some 
s might be incompatible. 

 
padding p is the size of a zeroed frame added around the input. 

𝑃𝑊 =
𝑤 − 1

2
 

𝑃𝑊: padding in width 
𝑃𝐻: padding in height 
ℎ: height of filter 
𝑤: width of filter 
𝐻: height of image 
𝑊: width of image 
𝑜𝑊: output width 
𝑜𝐻: output height 
C = # of channels 
D = # of filters 
𝑁𝑝𝑎𝑟𝑎𝑚: # of params 

𝑃𝐻 =
ℎ − 1

2
 

𝑜𝑊 =
(𝑊 − 𝑤 + 2𝑃𝑊)

𝑠𝑤
+ 1 

𝑜𝐻 =
(𝐻 − ℎ + 2𝑃𝐻)

𝑠ℎ
+ 1 

𝑁𝑝𝑎𝑟𝑎𝑚 = 𝐷 ( 𝑤ℎ𝐶⏟
𝑤𝑒𝑖𝑔ℎ𝑡

+ 1⏟
𝑏𝑖𝑎𝑠

) 

 

 
Max pooling layer Reduce the spatial size of the representation. Applies independently to every depth. 

Defined by a stride S and a padding P. 
Most significant activations are kept, reduce the amount of computation and control overfitting. 

 
Dense layers regular fully connected layers usually used as the last layers in the architecture to take classification 

decisions 

 
  

Define Compile Fit Evaluate Use

https://keras.io/
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9. Deep Architectures  

CNN for 
FashionMNIST 

60'000 train images, 10'000 test images, 28x28x1 grayscale, 10 classes 
Alternative to MNIST which is a bit more challenging, https://github.com/zalandoresearch/fashion-mnist 
Conv2D+Relu, MaxPooling2D, Dropout, Flatten, FC + ReLU, FC + SoftMax -> 91.04% 

Going deeper Means stacking CONV-RELU-POOL(+DROPOUT) layers and playing with the different hyper-parameters. 
The deeper the network 
- the bigger the number of filters in the conv layers 
- the smaller are the activation maps due to max pooling 
Early layers will extract lower-level features -> late layers will extract higher-level features. 

Deep Learning The whole process (pre-processing + feature extraction) is learned not only to classify/train 

Visualisation 1st Strategy: Visualize the activation maps for a given conv layer to see feature extraction. 

 
2nd Strategy: Find input images that maximise the action of a given neuron 

1. Start with a random image x 
2. Forward: compute the activation of the neuron 𝑎𝑖,𝑗(𝒙) 

3. Backward: perform the backprop of the gradient of 

𝑎𝑖,𝑗(𝒙) up to the pixel values: 
𝛿𝑎𝑖,𝑗(𝒙)

𝛿𝒙
 

4. This gradient tells us how to change the pixel values to 
increase the activation of the neuron. We can then apply an 
update rule in the form of a gradient ascent: 

𝑥 ← 𝑥 + 𝑎
𝛿𝑎𝑖,𝑗(𝒙)

𝛿𝒙
+ 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑟𝑚 

 

 

Data Augmentation takes the approach of generating artificially more training data from existing training samples. 

Rotation 
(angle) 

Translation 
(shift) 

Flip (not to all 
applicable)  

Shear Zoom Colour 

 
 

 
  

??? 

Pre-Augmentation (offline): Do training on new augmented data set. 

 
Online Augmentation: Do training using images going out of the augmentation pipeline. 

 
Overall improvement is not so high (because stability of MNIST data), but we avoid overfitting. 

https://github.com/zalandoresearch/fashion-mnist
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Convolutional layer 
patterns 

Common form: 
INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC 

0 ≤ 𝑁 ≤ 3, 0 ≤ 𝑀, 0 ≤ 𝐾 ≤ 3 
ILSVRC: ImageNet Large Scale Visual Recognition -> Challenge 

famous    accuracy layers 

LeNet-5 1998 CONV-POOL-CONV-POOL-FC-FC  shallow 

AlexNet 2012 the "boot" of deep architectures 16.4% 8 

ZFNet 2013 AlexNet with Hyper parameter tuning 11.7% 8 

VGGNet 2014 going deeper with simpler filter 7.3% 19 

GoogLeNet 2014 Network in the Network (Inception), no FC, only 5M param 6.7% 22 

ResNet 2015 way deeper. more difficult to optimize -> "fall back" layers 
to go deeper than 50 -> use bottleneck layers 

3.57% 152 

Shao et al 2016  3% 152 

SENet 2017  2.3% 152 
 

fall back layers Hypothesis: Deeper models are more difficult to optimize 
Ideas: Deeper layers should be able to "fall back" to 
identity mapping if difficulties to converge. 
Easier to model a "delta" from one layer to the other 
than a full feature. 
Solution: Use network layers to fit a residual(=Rest) 
mapping instead of directly trying to fit a desired 
underlying mapping. 

 
bottleneck layers Use bottleneck layers 1x1x64 to reduce the number of operations and parameters 
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10. CNN3 Keras Functional API, Transfer Learning, Autoencoders  

Keras Model 
types 

The sequential model corresponds to a regular stack of 
layers. 

 

The functional API is used for non-sequential 
architectures (multiple paths/inputs/outputs). 

 
python callable 

syntax 

add1 = Adder(1) // calls __init__ and __call__ 
add1(2) // calls __call__ 

def __init__(self,x=0): 
 self.__memory = x 
def __call__(self,x): 
 self.__memory += x 
 return self 

Functional API visible = Input(shape=(28,28,1)) 
conv1 = Conv2D(32, kernel_size=3, activation='relu')(visible) 
pool1 = MaxPooling2D(pool_size=(2,2))(conv1) 

split (multiple 
path) 

conv1 = Conv2D(32, kernel_size=3, activation='relu')(visible) 
conv2 = Conv2D(32, kernel_size=5, activation='relu')(visible) 

merge merge = concatenate([conv1, conv2]) 
e.g. multiple images of one object, stereo speech recording, different parameters of acquisition device 

callbacks Callback are functions to be applied at given stages of the training procedure. 
To get a view on internal states and statistics. Declare them in fit() function. 
checkpoint = ModelCheckPoint('model-(epoch:03d}.h5', verbose=1, 
monitor='val_acc', save_best_only=True, mode='auto') 
log = model5.fit(...., calbacks=[checkpoint]) 

Best practices Use Consistent Variable Names. Use same variable name for input (visible) and output layers (output), 
hidden layers (hidden1, hidden2). It will help to connect things together correctly. 
Review Layer Summary. Always print the model summary and review the layer outputs to ensure that the 
model was connected as you expected. 
Review Graph Plots. Create a plot of the model graph and review it to ensure that everything was put 
together as you intended. 
Name the layers. You can assign names to layers that are used when reviewing summaries and plots of the 
model graph. For example: Dense(1, name=’hidden1′). 
Use Callbacks. You should use callbacks to save the (best) models from epochs to epochs as a safety against 
interrupt and overfitting 
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Transfer learning is about using knowledge learned from tasks for which a lot of labelled data is available in settings where 
only little labelled data is available. -> Re-use the feature extraction part. Not to different. 

workflow 

 
Best practice Freeze reused components and train new layers (classification part). 

Many pre-trained models for image recognition available in Keras. 

Code from keras.applications.mobilenet_v2 import MobileNetV2 
model = MobilNetV2(weights='imagenet', include_top=False, input_shape=(...)) 

bottleneck layers To reduce number of operations, 1x1 conv-layer are used. 

Bayes Law 

𝑃(𝐶𝑘|𝒙) =
𝑝(𝒙|𝐶𝑘)𝑃(𝐶𝑘)

𝑝(𝒙)
 

Elect as winning category the one having the largest a posteriori 
probability. Doing so we guaranteed to maximise the accuracy. 
𝑃(𝐶𝑘|𝑥): a posteriori probability, probability of class j given 
observation x 
𝑝(𝑥|𝐶𝑘): likelihood, probability of observing x given class j 
𝑃(𝐶𝑘): a priori probability, probability of class j 
𝑝(𝑥): evidence = probabilty of x, ...unconditional to any class... 

Auto-encoders An autoencoder is a neural network trained to reproduce its input and able to discover "structures" and 
"efficient coding's" of the input space. The simples form is a feedforward, non-recurrent neural network. 

"diabolo" 
network 

Encoding Decoding 

 
𝒛 = 𝐸𝜃𝐸(𝒙) 𝒙 = 𝐷𝜃𝐷(𝒛) 

 
𝒙 = ℎ𝜃(𝒙) 

The mapping function ℎ𝜃(𝒙) is trained to reconstruct its own inputs, 
instead of predicting a target value. 
Usage: 
Data compression / dimensionality reduction 
Use encoder to obtain features 

De-noising images  
 
→ 

 

Image in-painting  
 

Initialise deep network for supervised learning 
Loss function 

𝐽(𝜃) = 𝐽(𝜃𝐸 , 𝜃𝐷) =
1

2𝑁
∑(ℎ𝜃(𝒙𝑛) − 𝒙𝑛)

2

𝑁

𝑛=1

=
1

2𝑁
∑(𝒙𝑛 − 𝒙𝑛)

2

𝑁

𝑛=1
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11.+12. Recurrent Neural Networks (RNN) 

RNN RNNs learn to memorise context information that may be important to draw conclusions on 
observations made later on. 
RNN helps wherever we need context from the previous input. 

Applications  Input sequence 𝑥 = (𝑥1. . 𝑥𝑇𝑥)  Output sequence 𝑦 = (𝑦1 . . 𝑦𝑇𝑦) 

Speech recognition 
Assistants (Siri, Alexa, ...) 
Video captioning 
Transcription to text  

→ 
Today, the weather on Rigi 
above the fog is beautiful. 

Sentiment classification 
Classification of text 
Emojification 

Today, the weather on Rigi 
above the fog is beautiful. 

→ 
 

Machine translation 
DeepL, Google Translate 

Today, the weather on Rigi 
above the fog is beautiful. 

→ 
Heute ist das Wetter auf der Rigi 
oberhalb des Nebels schön. 

Captioning, Subtitling 
images, 
YouTube videos 

 

→ Sun shining above the clouds. 

Chatbots, Q/A 
Siri, Alexa 

 

→ task, answer 

Named entity recognition 
(NER) 
flag names in sentences  

Music generation 
Magenta 
DeepJazz 

 → 
 

Word generation 

 

→ 

 
time sequence 
modelling, prediction   

 
 

Approaches One-to-many Many-to-one many-to-many many-to-many 

image tagging, 
music generation 

sentiment analysis named entity 
recognition 

language translation, 
speech recognition, 
chatbots 

X -> YYY XXX -> Y XXX -> YYY XX -> YYYY 

𝑇𝑥 = 1 
𝑇𝑦 ≥ 1 

𝑇𝑥 ≥ 1 
𝑇𝑦 = 1 

𝑇𝑥 ≥ 1, 𝑇𝑦 ≥ 1 

𝑻𝒙 = 𝑻𝒚 

𝑇𝑥 ≥ 1, 𝑇𝑦 ≥ 1 

𝑻𝒙 ≠ 𝑻𝒚 
 

Simple RNNs 
 
e.g. 𝑇𝑥 = 𝑇𝑦 

like for NER 

un-rolled, un-folded rolled, folded 

 
 

State h is update through a succession of steps. The state memorises (part of) the "history". Init with 0. 
ℎ𝑡 = 𝑔(𝑾𝒙 ∗ 𝑥𝑡 +𝑾𝒉 ∗ ℎ𝑡−1 + 𝑏ℎ) →W and b are the same for all time step 

code from keras.layers import SimpleRNN 
model = Sequential() 
model.add(SimpleRNN(units=..., input_shape=..., ...) 

Example Predict gender / home country from first name  
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Generative RNNs A generative system is a system able to generate new consistent data from a seed. By consistent, we 
mean respecting temporal or spatial "structure" that have been learned from the input space. 

example 

 

domain name suggestion 
Shakespeare sonnets (poetic verse form) 
C code generation 

Approaches Many to one Many to many 

 
loss is computed from 1 output 

 
loss is computed from all the outputs 

The difference is mainly at training time where the RNN cells are emitting an output at each step. 

back propagation run forward and backward through chunks of the sequence instead of whole sequence. 

Long Term 
Dependencies 
Problem 

Simple RNN's fail if a wider context is needed and the gap between the words grows too large. 
Long-range dependencies are hard to learn due to vanishing and exploding gradients problem. 

Suitable Initialisation 
of Weights 

MLPs/ 
CNNs: 

- Properly initialise weights (Xavier/He) by using random numbers (uniform or normal) with 
mean=0 and suitably scaled stdev. 
- Batch normalisation 

RNNs: with 'vanilla' recurrent units 
- IRNN: identity matrix - 67.0 % accuracy - highly sensitive to parameters 
- np-RNN: normalized-positive definite matrix - 75.2% accuracy - low sensitive to parameters 

both - Use non-saturating activation functions (ReLU or LeakyReLU) to alleviate (=mindern) the 
vanishing gradients problem 
- Clipping gradients 

 

Long-Short-Term 
Memory (LSTM) 

Cells or 
Gated Recurrent 

Units (GRU) 

 - LSTM 78.5% accuracy - low sensitive to parameters 
LSTM network have the same general structure of cyclically updated cells. It is designed to keep a long-
term memory that is kept as additional state variable 𝒄𝒕 to be updated. 

LSTM Cell 

 
long-term: 𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝐼 − 𝑇 ∗ 𝑐̃𝑡 
short-term: ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡) 

Long-term memory is updated through Gates (marked with ). 
Gates control how the information flows between short-term 
state, input and long-term state 

1: Forget Gate: 𝑓𝑡 = 𝜎(𝑾𝑓,𝑥 ∗ 𝑥𝑡 +𝑾𝑓,ℎ ∗ ℎ𝑡−1 + 𝒃𝑓) 

2: Input Gate: 𝑖𝑡 = 𝜎(𝑾𝑖,𝑥 ∗ 𝑥𝑡 +𝑾𝑖,ℎ ∗ ℎ𝑡−1 + 𝒃𝑖) 

𝑐̃𝑡 = tanh(𝑾𝑐,𝑥 ∗ 𝑥𝑡 +𝑾𝑐,ℎ ∗ ℎ𝑡−1 + 𝒃𝑐) 

3: Output Gate: 𝑜𝑡 = 𝜎(𝑾𝑜,𝑥 ∗ 𝑥𝑡 +𝑾𝑜,ℎ ∗ ℎ𝑡−1 + 𝒃𝑜) 

The gates are implemented by 
- affine transformation of inputs 
- activation function 
- element-wise multiplication 

backprop: "Super-Highway for Backprop":  

Gated Recurrent Unit (GRU) 

 

most popular variation of LSTM. 
No separate long-term memory 
forget gate and input gate merged, new relevance gate 
 
Relevance Gate: 𝑟𝑡 = 𝜎(𝑊𝑟ℎ ∗ ℎ𝑡−1 +𝑊𝑟𝑥 ∗ 𝑥𝑡 + 𝑏𝑟) 

Candidate State: ℎ̃𝑡 = tanh(𝑊𝑐ℎ ∗ 𝑟𝑡 ∗ ℎ𝑡−1) +𝑊𝑐𝑥 ∗ 𝑥𝑡 + 𝑏𝑐) 
Update Gate: 𝑢𝑡 = 𝜎(𝑊𝑢ℎ ∗ ℎ𝑡−1 +𝑊𝑢𝑥 ∗ 𝑥𝑡 + 𝑏𝑢) 

Update: ℎ𝑡 = (1 − 𝑢𝑡) ∗ ℎ𝑡−1 + 𝑢𝑡 ∗ ℎ̃𝑡 

less parameters, since only 3 weight matrices (𝑛ℎ × (𝑛ℎ + 𝑛𝑥)) 
 

Word Embedding Word embedding is a projection of a word into vectors of real numbers, 
i.e. a mapping of a space where each word has its own dimension to a 
space that is of lower dimensionality. 
word2vec relates to models producing word embedding into space with 
contextual similarity or words, i.e. words that share a common context 
are near. Bag of Words eat-apple, driving-car 
Continuous Bag of Word: Eat an ... every day (apple) -> see google search  

 


