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PARALLEL COMPUTING AND ALGORITHMS 

Motivation 

Concurrent 
computing 

a form of computing in which programs are designed as collections of interacting computational processes  

• sequentially on a single processor by interleaving the execution steps of each computational process 

• in parallel by assigning each computational process to one of a set of processors that may be close 
or distributed across a network 

challenges: ensure the correct sequencing, coordinate access to shared resources 
tools: Threads, Mutex, Semaphores 

Cloud 
computing 

Cloud computing is a type of Internet-based computing that provides shared computer processing resources 
and data to computers and other devices on demand.  

Parallel 
computing 

a form of computation in which many calculations are carried out simultaneously 
tools: no Mutex nor Semaphores (we could, but we don't want to) 

is the dominant paradigm in computer architecture nowadays, since power consumption became a concern 
challenges: more difficult to write, higher fault tolerance, larger amount of memory needed 
Pro: usually faster computation (n computers are not n times faster), Con: communication, synchronization 

levels: 
 

bit-level: all bits of a word are computed in parallel 
instructions level: several instructions are computed parallel 
data parallelism: the same operations is computed on several data in parallel 
task parallelism: several tasks work together in parallel 

examples: 
weather forecast 
DNA structures 
astronom. model 

FLOPS Floating 
operations /sec 

MFLOP = Mega 106 GFLOP = Giga 109 
-> normal computer 

TFLOP=Tera 1012 PFLOP=Peta 1015 
-> good parallel computing 

HPC High Performance Computing 

hint first use the right algorithms, than start programming parallel 

Architectures of parallel infrastructures  

Implicit 
Parallelism 

processors have multiple functional units and execute multiple instructions in the same cycle 
by pipelining, superscalar execution, very long instruction word processors 

Explicite 
Parallelism 

must specify concurrency and interaction between concurrent subtasks -> this is what we want 
try to minimize concurrency and synchronization 

Programming 
Models Process based models 

multiple process 
private data, shared memory (synch)  

Lightweight processes and Threads 
one process with multiple threads 
all data is global (faster synch) 

PRAM 
Parallel Random 
Access Machine 

• extension of the RAM 

• multiple processors share clock, 
but exec different instruction 

• global memory of unbounded size 

Handling memory access 

• EREW (Exclusive-read, exclusive-write) 

• CREW (Concurrent-read, exclusive-write) -> good 

• ERCW (Exclusive-read, concurrent-write) 

• CRCW (Concurrent-read, concurrent-write) -> very good 

Concurrent write Common: write only if all values are identical (5,5) → 5  
Arbitrary: write the data from a randomly selected processor (5,7) → 5 𝑜𝑟 7 
Priority: follow a predetermined priority order (5 ℎ𝑖𝑔ℎ 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦, 7 𝑙𝑜𝑤 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦) → 5 
Sum: Write the sum of all data items (5,7) → 12 

Chunking determining the amount of data to assign to each task (chunk or grain size) 

Granularity the size of a chunk, depends on algorithm and used hardware 
fine-grained parallelism: low arithmetic intensity, more communication, better splitting / load balance 
coarse-grained parallelism: high arithm. intensity, less communication, difficult to load balance efficiently 

Control Structure SIMD (Single Instruction Multiple Data), 
called SSE on Intel, e.g. vector operation 

MIMD (Multiple Instruction Multiple Data) 
simple MIMD: SPMD = Single Program Multiple Data 

 a single control unit dispatches 
the same instruction to various processors 
that work on different data 

each processor has its own control unit 
each processor can execute different instructions 
on different data items 

Pro / Con less HW, less memory 
needs regular structure, selectively turn off opera. 

high performance workstation at low cost 
use existing software, processors can be added 

implementations GPU (Graphic Processing Unit) 
DSP (Digital Signal Processors) 

SPARC servers, multiprocessor PCs, 
NASA Beowulf inspired workstation clusters 

Communication 
Models 

Shared-Address-Space Platforms (Multiprocessors) Message Passing Platforms (Multicomputers) 

part of the memory is accessible to all processors 
processors interact by modifing data objects 

own exclusive memory 
using sending messages 

Task

Process Threads
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Interconnection 
Network for HPC 

Infiniband (very high throughput and very low latency, scalable, direct or switched interconnection) 
PCI Express 4 (high-speed serial bus standard, external cabling over Thunderbolt) 
NVIDIA NVLink (high-bandwidth, energy-efficient) 

Switching Hub 

 

forwarding per MAC, 
non blocking 
 
spanning tree 
protocol: shortes 
path bridging 

store-and-foreward 
buffers until complete, 
error checking before forwarding 

cut-through 
forward imediately, buffer when port is busy, 
no error checking 

evaluation • Diameter -> the distance between the farthest two nodes 

• Channel Bandwidth -> number of bits that can be communicated simultaneously over a link 

• Cross-Section Bandwidth -> the min number of wires one must cut to divide into two equals parts 

• Cost -> number of links/switches, length of wires 

Message passing 
costs 

𝑡𝑠 Startup time: spent at sending and receiving nodes 
𝑡ℎ Per-hop time: number of hops (includes switch latencies, delays) 
𝑡𝑤 Per-word transfer time: includes overheads from message length 
𝑚 number of messages 

cut-through cost: 
𝑡𝑐𝑜𝑚𝑚 = 𝑡𝑠 + 𝑙 ∗ 𝑡ℎ + 𝑡𝑤 ∗ 𝑚 
𝑡ℎ ≪ 𝑡𝑤 → 𝑣𝑖𝑒𝑙 𝑘𝑙𝑒𝑖𝑛𝑒𝑟 𝑎𝑙𝑠 
→ 𝒕𝒄𝒐𝒎𝒎 = 𝒕𝒔 + 𝒕𝒘 ∗ 𝒎 

Network Topologies 

 Bus Star Crossbar Multistage Netw k-d Mesh Hypercube Tree-based 

p inputs 
b outputs 

 
simple 

common bus 
good cost 
scalable 

 
common node 
good perform 

scalable 

 
𝑝 ∗ 𝑏 switches 

  
bus/crossbar mix 

Linear Array 

 
1D-Torus/Ring 

 
Mesh 

 

 
3-d-hypercube 
𝑑 = log 𝑝 

 

diameter 1 2 1 log 𝑝 1D: 𝑝 − 1 

2D: 2(√𝑝 − 1) 

log 𝑝 
2 log

𝑝 + 1

2
 

links 𝑝(𝑝 − 1)

2
 

𝑝 − 1 𝑝2  1D: 𝑝 − 1 

2D: 2(𝑝 − √𝑝) 

𝑝 log 𝑝

2
 

𝑝 − 1 

bottle-neck bus bandwidth 
limited nodes 

central node cost grows 𝑝2 
difficult to scale 

  con: 
different length 

root 

Examples WLAN zone 
PCI bus 

LANs with 
Bridge or Switch 

non-block switch  
L1<->L2 - caches 

Omega-Network  hypercube Fat-Tree 
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Shared Memory Systems (SMS)  

Platforms 
 
P = Processor 
C = Cache 
M = Memory 

Uniform-memory-access (UMA) Non-Uniform-memory-access (NUMA) 

 
e.g. Intel Front Side Bus Architecture 

local cache (fast) 
L1 u. L2 (Level 1) 
 
global/shared 
memory 
(access time to M 
are identical) 
 
Memory Controller 
(MCH) = Northbridge 
 
Interface Controller 
(ICH) = Southbridge  

e.g. Intel Core i7 (Nehalem) 

 
local cache 
 
local memory 
(access also 
other M's) 

Caching Faster memory access, Load complete block of memory and hope next access is in this block 
Cache coherence: ensure that cache is consistent to each other 

Scenario 
 
 

s=shared 
d=dirty 
i=invalid 
w=write 
r=read 
f=flush 

Update and Invalidate Protocol 
step 1 write-back: set an invalidate flag on other copies 
step 2 write-through: update other copies 
 
Example 

 Start 𝑃0 𝑤 𝑃1𝑤 𝑃2𝑟 𝑃0𝑤 

𝑃0 1(𝑠) 𝑤
→ 3(𝑑) → 3(𝑖) → 3(𝑖) 𝑤

→ 5(𝑑) 
𝑃1 1(𝑠) → 1(𝑖) 𝑤

→ 4(𝑑) → 4(𝑠) → 4(𝑖) 

𝑃2 1(𝑠) → 1(𝑖) → 1(𝑖) 𝑟
→𝑓: 4(𝑠) → 4(𝑖) 

 

 
VC++ 
Concurrency 
Runtime 

Why: uniformity and predictability to applications that run 
simultaneously 
Pro: cooperative task scheduling (work-stealing algorithm), 
cooperative blocking 
Architecture: PPL (Parallel Patterns Library) - fine grained, 
Asynchronous Agents Library - coarse grained 
 
concurrency::parallel_for_each  

 vs OpenMP (included in VC++, VS2015 supports 2.0) 
for parallel algorithms that are iterative 
efficient when degree of parallelism pre-determined 
and matches the available resources on the system 
for high-performance computing 

Concurrency Runtime 
for less constrained computing environments 
dynamic scheduler that adapts to available resources 
and adjust degree of parallelism as workloads change 
easy for recursive problems 
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Parallel programming with C++ (std::) 

thread A thread is a single stream of control flow of a program. 
low-level, data exchange must be synchronized, is started automatically in constructor (in C++) 
uncaught exceptions in thread -> termination of entire program, static/global variables for each thread 

Executable obj a) function object (functor) 
b) lambda expression 
c) pointer to a function 

obj is copied as the arguments 

e.g functor #include <thread> 
void execObj(std::string text) { 
 std::cout << text << std::endl; } 

std::thread t1(execObj, “param”); 
t1.get_id(); // unique thread id 
t1.join(); // returns when finish 

e.g. lambda auto task = [param1,&param2,] { … } for (i=0; i<nThreads; i++) {thread(task)}; 

e.g. Matrix 
multiplication 

for (row = 0; row < n; row++) // no synch needed 
 for (column = 0; column < n; column++) 
  c[row][column] = create_thread(dot_product(get_row(a, row), get_col(b, col))); 

mutex 
mutual exclusion 

a lockable object that is designed to signal when critical sections of code need exclusive access, preventing 
other threads with the same protection from executing concurrently and access the same memory locations. 

lock a. isn’t looked: lock mutex 
b. locked by other thread: wait until unlocked 
c. locked by this thread: deadlock, undefined behaviour 

mutex mtx; 
mtx.lock(); 

unlock releasing ownership over it mtx.unlock(); 

condition_variable Block the calling thread until notified to resume. It uses a unique_lock (over a mutex) to lock the thread 

declare  condition_variable readingAllowed; 

wait blocks until notified unique_lock<mutex> lock(mtx); 
readingAllowed.wait(lock); 

notify wake up a blocking thread readingAllowed.notify_one(); // or notify_all() 

async and future async: initiates a computation and returns (two modes: launch::async, launch::deferred) 
future: return type of asnyc; get() -> blocks until the result is available 

pro  exception does not end in a crash, can be caught in .get() 

e.g. auto fut1 = async(launch::async, &funct1, 35); // asynch, started immediately 
auto fut2 = async(launch::deferred, &funct1, 35); // deferred, started with get 
cout << fut2.get() << endl; // waiting 
cout << fut1.get() << endl; // waiting 

packaged_tasks a packaged task wraps a callable element and allows its result to be retrieved asynchronously 
not started automatically, contains a stored task (e.g. function) and a shared state (e.g. int) 

e.g. // create task for calling fibrec, argument of fibrec has to be defined later 
packaged_task<size_t(size_t)> task1(&fibrec); 
auto fut1 = task1.get_future(); // future for getting result 
// create task for calling fibrec, argument of fibrecis bound to 35 
packaged_task<size_t(void)> task2(bind(&fibrec, 35)); 
auto fut2 = task2.get_future(); // future for getting result 
// call task1 in a parallel thread (move semantic) 
thread th(move(task1), 35); // hint for the compiler to 'move' instead of '=' 
task2(); // call task2 in this tread 
cout << fut1.get() << endl; // get result of task1 
cout << fut2.get() << endl; // get result of task2 
th.join(); // this treads waits on parallel thread th 

Synchronization 
primitives 

atomic_xyz all accesses are atomic (are not interrupted) 
atomic_flag atomic bool but lock-free 
once_flag used in call_once, makes sure that only one parallel threads executes the function 
recursive_mutex allows a thread computing a recursive function to reenter a critical section 
lock_guard locks a critical section; very simple usage; the only state is locked 
unique_lock needs its unique mutex object; handles both states: locked and unlocked 

assign operator 
move operator 

  C& operator = (const C&c) { x=c.x;  return *this; } 
  C& operator = (C && c) { x=c.x; c.x=0; return *this; } 

serial vs. parallel 
for loop 

serial for loop, no parallel algorithms in C++11/14  
sequentially ordered steps 
e.g. reading n integers from a sequential file 

parallel for loop, (since C++17) 
any order 
e.g. same task for each element of an array 

 Support C++17 standards: most algorithms have overloads that accept execution policies (seq/par/par_unseq) 
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OpenMP 

OpenMP A standard for directive based parallel programming, for FORTRAN and C++ 
support for concurrency, synchronization, data handling --> mutexes, condition variables, data scope, init 

Programming 
Model 

directives are based on the #pragma compiler directives (e.g. #pragma omp directive [clause list]) 
execute serially until the parallel directive, which creates a group of threads (#pragma omp parallel []) 
the main thread that encounter the parallel directive becomes the master of this group of threads (id=0) 

Clause List Conditional Parallelization - if -> check if threads need to be created, evaluated at runtime 
Degree of Concurrency - num_threads(integer expr) -> number of threads 
Data Handling - private (variable list) -> variables are local to each thread T 
 firstprivate (variable list) -> local variable, but initialized before the parallel directive 
 shared (variable list) -> variables are shared across all threads 
 threadprivate (variable list) -> variable is private to a thread 

 Default Clause - allows to affect the data-sharing attribute of variables 
 default(shared) -> each currently visible variable is shared (unless threadprivate or const) 
 default(none) -> shared if (explicitly listed || within construct || threadprivate or const || for loop) 

 Reduction Clause - specifies how a variable is combined into a single copy after the master exits 
 reduction(operator: variable list) - operators: +,*,-,&,|,^,&&,|| 

e.g. int main() { // serial segment 
 const int npoints = 1000000; int sum = 0;  srand(clock()); 
 #pragma omp parallel default(none) reduction(+:sum) num_threads(8) 
 { // omp -> for (i=0; i < 8; i++) pthread_create(..,internal_thread_name,..); 
  // parallel segment 
  #pragma omp for 
  for (int i = 0; i < npoints; i++) { 
   double rand_x = rand()/double(RAND_MAX); 
   if (((rand_x-0.5)*(rand_x-0.5)) < 0.125) 
    sum ++; 
  } 
 }  // serial segment 
 cout << setprecision(10) << 4*sum/double/npoints) << endl; 

concurrent 
tasks 

#pragma omp for [clause list] { } parallel iterations on threads; clauses: private, firstprivate, 
lastprivate, reduction, schedule (static, dynamic, guided, 
runtime), nowait (no implicit barrier at loop end), ordered 

#pragma omp sections [clause list]{ 
 #pragma omp section 
  /* structured block 1 */ 
 #pragma omp section 
  /* structured block 2*/ } 

non-iterative parallel task assignment 
code sections be divided among threads 

#pragma omp parallel shared(n) { } execute code in parallel, creates a group of threads 

synchronization #pragma omp barrier synchronize all threads in a team, wait until all 
#pragma omp single [clause list] executed on a single thread (not necessarily on master) 
#pragma omp master only master thread should execute a section 
#pragma omp critical [(name)] this code is only executed on one thread at a time 
#pragma omp atomic memory location will be automatically updated  
#pragma omp ordered for loop should be executed like a sequential loop 
#pragma omp flush [(variable list)] all threads have the same view for shared objects 

merge directive #pragma omp parallel for shared(n) {} 

nest directives #pragma omp parallel for shared(a,b,c) num_threads(4) { 
 for(int i = 0; i < 128; i++) 
  #pragma omp parallel for shared(a,b,c) num_threads(4) {...} 
} 
it is not allowed to bind to the same parallel directive for ‘for’, ‘section’, and ‘single’ 
per default, each inner ‘for’ directive generates a logical team which is still executed by the same thread 
otherwise set OMP_NESTED to TRUE 
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Performance Metrics for Parallel Systems  

Analytical 
Modeling 

Sequential Runtime: Evaluated by its runtime, 
identical on any serial platform 

Parallel Runtime depends on: 
input size n, number of processors p, communication param 

 

 Explanation Formula Example: adding 

𝑛 input size  𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

𝑝 number of processors  𝑜𝑛 𝑝 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 

𝑇𝑠 Serial runtime: time elapsed on a sequential computer 𝑊 = Θ(Ts) 𝑇𝑆 = Θ(𝑛) 

𝑇𝑝 Parallel runtime: time elapsed from the start of first processor 
to the end of the last processor 

𝑇𝑝 =
𝑊 + 𝑇𝑂(𝑊, 𝑝)

𝑝
 𝑇𝑃 =

𝑛

𝑝
+ 2 log 𝑝 

𝑇𝑂 Parallel Overhead: total time of all processors combined when 
non-useful 

𝑇𝑂 = 𝑝 ∗ 𝑇𝑝 − 𝑇𝑆  

= 𝑇𝑆 ∗ 𝑓 ∗ (𝑝 − 1) 

𝑇𝑂 = 𝑝 log𝑝 

𝑆 Speedup: Ratio of the serial runtime of the best serial algorithm 
to the parallel algorithm 
  lower bound: 0; upper bound: should be by p; 
superlinear due to caching and exploratory decomposition 

𝑆 =
𝑇𝑆
𝑇𝑃

=
𝑊

𝑇𝑝
=

𝑝 𝑊

𝑊 + 𝑇𝑂(𝑊, 𝑝)
 

 

𝑆 =
𝑛

𝑛
𝑝
+ 2 log 𝑝

 

𝐸 Efficiency: Speedup per processor 
 

𝐸 =
𝑆

𝑝
=

𝑇𝑠
𝑝 ∗ 𝑇𝑃

=
1

1 +
𝑇𝑂
𝑇𝑆

 𝐸 =
1

1 +
2𝑝 log 𝑝

𝑛

 

Cost Cost: amount of total work Cost = 𝑝 ∗ 𝑇𝑃 ≥ 𝑊  

Cost 
opt 

a parallel system is cost optimal if 
cost of solving problem on a parallel computer is asymptotically 
identical to serial cost 

𝐶𝑜𝑠𝑡 = Θ(𝑊) 
→ 𝐸 = Θ(1) 

𝑛 = 𝑊
= Ω(p log 𝑝) 

𝐾 efficiency coefficient 
𝐾 =

𝐸

1 − 𝐸
 

 

iso-E What is the rate at which the problem size W must increase to p 
to keep the efficiency fixed. This rate determines the scalability 
of a system. The slower/smaller the better. (high scalable) 

𝑊 = 𝑓(𝑝)   
 →    𝑊 = 𝐾 ∗ 𝑇𝑂(𝑊, 𝑝) 

𝑊 = Ω(𝑝) 

𝑊 = 𝐾 𝑝 log 𝑝 
𝑓(𝑝) = Θ(𝑝 log 𝑝) 

Scalability of Parallel Systems 

Amdahl's Law 
 
fixed workload 
improve runtime 

 

𝑊 = 𝑓 ∗𝑊⏟  
𝑊𝑠𝑒𝑞

+ (1 − 𝑓) ∗ 𝑊⏟        
𝑊𝑝𝑎𝑟

= Θ(Ts) 

𝑓 =
𝑊𝑠𝑒𝑞

𝑊
∈ [0. .1] 

𝑇𝑝 = 𝑊𝑠𝑒𝑞 +
𝑊𝑝𝑎𝑟

𝑝
= 𝑓 ∗𝑊 +

(1 − 𝑓) ∗ 𝑊

𝑝
 

𝑆 =
𝑇𝑠
𝑇𝑝

=
𝑊

𝑓 ∗𝑊 +
(1 − 𝑓) ∗𝑊

𝑝

=
𝑝

𝑓(𝑝 − 1) + 1
 

lim
𝑝→∞

𝑆 =
1

𝑓
 

𝑊: total work 
𝑊𝑠𝑒𝑞: sequential/serial work (non-parallelizable) 

𝑊𝑝𝑎𝑟: parallel work 

𝑓: fraction of sequential work 
 
Der sequentielle Anteil (𝑓) begrenzt den Speedup bei 
vielen Prozessoren. 
 
 

Gustafson's Law 
fixed runtime 
increase work & p 

 

𝑇𝑃 = 𝑇𝑠𝑒𝑞 + 𝑇𝑝𝑎𝑟  

𝜎 =
𝑇𝑠𝑒𝑞

𝑇𝑃
∈ [0,1] 

𝑇𝑃 = 𝜎 ∗ 𝑇𝑃 + (1 − 𝜎) ∗ 𝑇𝑃 

𝑆′ =
𝑇𝑝(𝑝 ∗ 𝑊, 1)

𝑇𝑝(𝑝 ∗ 𝑊, 𝑝)
= 𝑝 − (𝑝 − 1) ∗ 𝜎 

𝑇𝑠𝑒𝑞: time for the sequentiel work 

𝑇𝑝𝑎𝑟: time for the parallel work 

𝑆′: scaled speedup 
 
based on data paralellism 

Karp-Flatt 
 
includes 
overhead 

𝑇𝑃(𝑊, 𝑝) = 𝑇𝑠𝑒𝑞(𝑊) + 𝑇𝑜𝑣𝑒𝑟(𝑊, 𝑝) +
𝑇𝑝𝑎𝑟(𝑊)

𝑝
 

𝑆 =
𝑇𝑝(𝑊, 1)

𝑇𝑝(𝑊, 𝑝)
=

1

𝑒 +
1 − 𝑒
𝑝

  →   𝑒 =

1
𝑠
−
1
𝑝

1 −
1
𝑝

 

𝑇𝑜𝑣𝑒𝑟: overhead time for each processor 
𝑒: karp-flatt metric -> from relative speedup 
e ist kompatibel zu f 

 

Ideal Speedup 

 
Realer 
Speedup p 

S 

 

p=1 p=2 

t 

 

p=1 p=2 

t 
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Big-O-Notation 𝑔(𝑥) = 𝑂(𝑓(𝑥)) 𝑜𝑑𝑒𝑟 𝑔(𝑥) ∈ 𝑂(𝑓(𝑥)) 

𝑔(𝑥) = Ω((𝑥)) 

𝑔(𝑥) = Θ(a(x)) = 𝑂(𝑎(𝑥)) ∧ Ω(a(x)) 

𝑂 = 𝑂𝑏𝑒𝑟𝑔𝑟𝑒𝑛𝑧𝑒 
Ω = 𝑈𝑛𝑡𝑒𝑟𝑔𝑟𝑒𝑛𝑧𝑒 

Θ = 𝑂𝑏𝑒𝑟𝑔𝑟𝑒𝑛𝑧𝑒 𝑢𝑛𝑑 𝑈𝑛𝑡𝑒𝑟𝑔𝑟𝑒𝑛𝑧𝑒 
𝑥0 = 𝑆𝑡𝑎𝑟𝑡𝑤𝑒𝑟𝑡 
𝑐 = 𝐾𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 

∀𝑥≥ 𝑥0: |𝑔(𝑥)| ≤ 𝑐|𝑓(𝑥)| 
Bsp 𝑔(𝑥) = 7𝑥2 + 5 

𝑓(𝑥) = 𝑥2 
𝑐 = 8, 𝑎𝑏 𝑥0 =? 

𝑂(𝑚𝑒𝑟𝑔𝑒𝑠𝑜𝑟𝑡) = 𝑛 ∗ log 𝑛 
Ω(𝑎𝑛𝑦 𝑠𝑜𝑟𝑡) = 𝑛 ∗ log 𝑛 
Θ(𝑚𝑒𝑟𝑔𝑒𝑠𝑜𝑟𝑡) = 𝑛 ∗ log 𝑛 

General Es ist schwierig über kleine Instanzgrössen, das Wachstum in grossen Instanzgrössen vorauszusagen. 
Für verschiedene Instanzgrössen, werden oft verschiedene Algorithmen angewendet. 

scalable parallel 
system 

𝑇0 𝑔𝑟𝑜𝑤𝑠 𝑠𝑢𝑏𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑤𝑖𝑡ℎ 𝑊 
𝑊 ↑ ⟹ 𝐸 ↑ 

𝑊 ↑ 𝑎𝑛𝑑 𝑝 ↑ ⇒ 𝐸 𝑐𝑜𝑛𝑠𝑡 

a scalable parallel system can always be made cost-
optimal if the number of processing elements and the 
size of the computation are chosen appropriately 

Efficiency Fixed problem size W 

 

Fixed number of processing elements p 

 
Degree of 

Concurrency 
maximum number of operations (tasks) that can be 
executed simultaneously at any time in a parallel 
algorithm.  

e.g. Gaussian elimination 𝑊 = Θ(n3) 

𝐶(𝑊) = Θ(𝑛2) = Θ (W
2
3) < Θ(W)  

𝑊 = Ω(p
3

2) at least, to use them all 

Minimum 
Execution Times 

𝑑

𝑑𝑝
𝑇𝑃 = 0, let 𝑝𝑂be the value of 𝑝 as determined by this equation 

𝑇𝑃
𝑚𝑖𝑛 =

{
 
 

 
 𝑇𝑃(𝑝0) =

𝑊 + 𝑇𝑂(𝑊, 𝑝)

𝑝
, 𝑖𝑓 𝑝0 ≤ 𝐶(𝑊)

𝑇𝑃(𝐶(𝑊)) =
𝑊 + 𝑇𝑂(𝑊, 𝑝)

𝐶(𝑊)
, 𝑒𝑙𝑠𝑒

 

e.g. adding n numbers 
𝑑

𝑑𝑝
𝑇𝑃 = −

𝑛

𝑝2
+
2

𝑝
= 0 

𝑇𝑃
𝑚𝑖𝑛 = 2 log 𝑛 

Minimum Cost-
optimal 

execution time 

𝑇𝑝
𝑐𝑜𝑠𝑡_𝑜𝑝𝑡

= Ω(W
𝑊

𝑓−1(𝑊)
) 𝑝0 =

𝑛

2
, 𝐶𝑜𝑠𝑡 = 𝑝0𝑇𝑝

𝑚𝑖𝑛  

not cost-optimal 

 

DAG (directed, acyclic graph) Example 1 Example 2  

 

 
  

Nodes 𝑁 = 15 𝑁 = 64 𝑁 = 36 

Height 𝑛 = log𝑘(𝑁 + 1) = 4 𝑛 = √64 = 8 
𝑛 =

√1 + 8𝑁 − 1

2
= 8 

Degree of Concurrency 𝐶(𝑊) = 2𝑛−1 = 8 𝐶(𝑊) = 𝑛 = 8 𝐶(𝑊) = 𝑛 = 8 

max. speedup 
𝑝 = ∞ 

𝑆 =
𝑇𝑆
𝑇𝑃

=
𝑁

𝑛
=
2𝑛 − 1

𝑛
 𝑆 =

𝑛2

2𝑛 − 1
 𝑆 =

𝑁

𝑛
=
𝑛 + 1

2
 

𝑝 =
𝐶(𝑊)

2
 𝑆 =

𝑁

𝑛 + 1
=
2𝑛 − 1

𝑛 + 1
 

𝐸 =
𝑆

𝑝
=

2𝑛 − 1
𝑛 + 1
2𝑛−1

2

=
2𝑛 − 1

2𝑛−2(𝑛 + 1)
 

  

   

p 

E 

𝑝 ↑ ⟹  𝑇𝑂 ↑ ⟹  𝐸 ↓ 

W 

E 

𝑛 ↑ ⟹ 𝐸 ↑ 
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Heterogeneous Shared Memory System (HSMS) 

OpenCL framework to run code on GPU 

Performance  
Increase 

By Frequence (higher clock circuit rate): voltage reduction needed -> at its limit 
By number of cores: parallel coding needed 
By heterogeneity: handle different workload characteristics on different architectures 

Workloads control intensive (e.g. searching, sorting, parsing) -> best with CPUs 
data intensive (e.g. Image processing, simulation, modelling, data mining) -> best with GPUs 
compute intensive (e.g. iterative methods, numerical methods, financial modeling) 

HSA  Heterogeneous System Architect -> combine CPUs, GPUs, DSPs (Digital Signal Processing), FPGAs 
-> better performance and lower power consumption 

Architecture SIMD (single instruction on multiple data) and Vector Processing (pipelining computation over long data) 
Hardware Multithreading (independent instruction streams (threads) are executed concurrently 
  Simultaneous Multithreading (SMT) or Temporal Multithreading 
  Hyperthreading = 4 physical cores results in 8 logical cores 
Multi-Core Architectures (both CPUs and GPUs) 
Systems-on-Chip (SoC) and the APU Accelerated Processing Unit (mix of CPU and GPU) 

GPU Architecture 

 

GPUs tend to be heavily multithreaded, are design for process graphics 
Components 
Compute Unit (streaming multiprocessors, local memory: needs synch) 
Internal and external bus system 
Global memory: no synch 

Types C++ AMP (Accelerated Massive Parallelism) – open spec from Microsoft – based on DirectX 11, CPU fallback 
CUDA (Compute Unified Device Architecture) – from NVIDIA – supports C, C++ and Fortran, nvcc compiler 
OpenACC – from Cray/CAPS/NVIDIA/PGI – supports C, C++ and Fortran – pragma compiler directives 
OpenCL – from language C99 – 3 major code blocks – fastest – most complicated 

OpenCL 

 

Block 1: Device program: kernels and subroutines 
operation executed by the work items (vector_add) 
C99 based syntax with vector operations 
Block 2: Host program: device and kernel preparation 
Platform and device handling 
creating contexts and command queues 
compiling OpenCL device programs 
Block 3: Host program: data and program enqueing 
data allocation and management / filling in cmd queues / 
setting kernel arguments / running kernels / event handling 

Summary portable and high-performance framework, for computationally intensive algorithms, use all ressources 
efficient parallel programming language, C99 with extensions for task and data parallelism, built-in functions 
defines hardware and numerical precision requirements 
open standard for heterogeneous parallel computing 

e.g. OCLData ocl = initOCL("./edges.cl", "edges"); 
processOCL(ocl, image, out2, hFilter, vFilter, fSize); 
// OpenCL kernel 
__kernel void edges(__read_only image2d_t source, __write_only image2d_t dest, 
__constant int* hFilter, __constant int* vFilter, int fSize, sampler_t sampler) 
{ 
 const int w = get_global_size(0); // number of global work items 
 const int col = get_global_id(0); // global work item id 
 ... 
 uint4 pixel = read_imageui(source, sampler, coords); 
 ... 
 write_imageui(dest, coords, p); 
} 
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Decomposition and mapping techniques  

Parallel Algorithm 
Design 

 
Steps 1. decompose in pieces of work (tasks) which can be performed concurrently 

fine-grained: large number of tasks -> better load balance 
coarse-grained: medium number of tasks 

2. map this tasks to processors (e.g. task 1,2 and 3 can run in parallel) 
usually small number of processes than tasks 
goal: reduction of communication overhead 

3. manage access to shared data 
4. process mapping (not important in our course) 

Granularity number of tasks into which a problem is decomposed 

Degree of 
Concurrency 

number of tasks that can be executed in parallel, may change during execution 
𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑎𝑡 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 𝑑𝑢𝑟𝑖𝑛𝑔 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤𝑜𝑟𝑘

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ
 

Critical Path 
Length 

the length of the longest path in a task dependency graph -> shortest time of execution 

Task interaction 
graph 

the graph of tasks (nodes) and their interactions/data exchange (edges) is referred to as a task interaction 
graph 

 
Decomposition 

techniques 
Recursive decomposition: divide-and-conquer strategy, with recursion (e.g. min of a list) 
Input/output/intermediate data partitioning: devide data in different part 
-> assign tasks to these partitions (e.g. matrix mult), each output can be computed as a function of the input 
Exploration Decomposition: create task during run-time (e.g. tile puzzle) 

Mapping In general, the number of tasks is bigger than the processing elements -> mapping is needed 
Goal: minimize overhead (communication and idling) -> often contradicting 

Static Mapping 
tasks are mapped to processes a-priori 
we should know the size of each task 

Dynamic Mapping (Dynamic Load Balancing) 
tasks are mapped to processes at runtime 

data partitioning 
row/column/ 
block(grid)-wise 
cyclic, block-cyclic 
(e.g. LU Decomp) 

task graph 
partitioning 
opt.map = NPC 
binary tree 
(e.g. quicksort hyperc)  

hybrid 
 

centralized (Master/Slave) 
master manages tasks 
slave execute tasks 
e.g. sort entries in each row 
of an nxn matrix 

distributed (Pipeline) 
process send/receive 
work from others, 
no bottleneck 

Minimize 
Interaction 
Overhead 

Maximize data locality -> reuse intermediate data 
Minimize volume of data exchange 
Minimize frequency of interactions 

Minimize contention and hot-spots 
Overlapping computations with interactions 
-> use non-blocking communication, multithreading 

 
  

Problem 

𝑡1 

𝑡2 

𝑡4 𝑡3 
 

𝑡5 

decompose 

dependency graph (DAG) 

𝑝1 
𝑝2 

𝑝3 

map 

process 
mapping 

parallel processos processors 
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LU 
Decomposition of 
linear equations 
 
A = square matrix 
L = lower triang. 
U = upper triang. 

𝐴 = 𝐿𝑈 

(

𝐴1,1 𝐴1,2 𝐴1,3
𝐴2,1 𝐴2,2 𝐴2,3
𝐴3,1 𝐴3,2 𝐴3,3

) → (

𝐿1,1 0 0

𝐿2,1 𝐿2,2 0

𝐿3,1 𝐿3,2 𝐿3,3

) ∗ (

𝑈1,1 𝑈1,2 𝑈1,3
0 𝑈2,2 𝑈2,3
0 0 𝑈3,3

) 

 

𝐿1,1, 𝐿2,2, 𝐿3,3 = 1 

 
given value 
overwriten value 
use computed value 

 

Tasks: 
1. 𝐴1,1 → 𝐿1,1𝑈1,1 

2. 𝐿2,1 = 𝐴2,1𝑈1,1
−1 

3. 𝐿3,1 = 𝐴3,1𝑈1,1
−1 

4. 𝑈1,2 = 𝐿1,1
−1𝐴1,2 

5. 𝑈1,3 = 𝐿1,1
−1𝐴1,3 

6. 𝐴2,2 = 𝐴2,2 − 𝐿2,1𝑈1,2 

7. 𝐴2,3 = 𝐴2,3 − 𝐿2,1𝑈1,3 

8. 𝐴3,2 = 𝐴3,2 − 𝐿3,1𝑈1,2 

9. 𝐴3,3 = 𝐴3,3 − 𝐿3,1𝑈1,3 

10. 𝐴2,2 → 𝐿2,2𝑈2,2 

11. 𝐿3,2 = 𝐴3,2𝑈2,2
−1 

12. 𝑈2,3 = 𝐿2,2
−1𝐴2,3 

13. 𝐴3,3 = 𝐴3,3 − 𝐿3,2𝑈2,3 

14. 𝐴3,3 → 𝐿3,3𝑈3,3 

 
 

Beispiel Diagonal 
Round Robin 
 

𝑝 = 3 

Vorgehen 

𝑃0 𝑃1 𝑃0 
𝑃2 𝑃1 𝑃0 
𝑃2 𝑃1 𝑃2 

 

 1 2 3 4 5 6 7 8 

𝑃0 𝑇1 𝑇5 𝑇7 𝑇12     

𝑃1 𝑇4  𝑇6 𝑇8 𝑇10 𝑇11   

𝑃2  𝑇2 𝑇3 𝑇9   𝑇13 𝑇14 
 

𝑇𝑆 = 14 
𝑇𝑃 = 8 

𝑆 =
14

8
=
7

4
 

𝐸 =
7

4 ∗ 3
 

𝐶𝑜𝑠𝑡 = 𝑇𝑃 ∗ 𝑝 = 24 
𝑇𝑂 = 𝐶𝑜𝑠𝑡 − 𝑇𝑆 = 10 

𝑇𝑃
𝑚𝑖𝑛 = 7 

Ω(𝑝0) =
𝑇𝑆

𝑇𝑃
𝑚𝑖𝑛

= 2 

 
 
 
  

𝑇1 𝑇4 𝑇5 

𝑇2 𝑇3 

𝑇6 𝑇7 𝑇8 

𝑇10 𝑇9 

𝑇11 𝑇12 

𝑇13 

𝑇14 
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Distributed Memory Systems (DMS)  

 shared memory systems distributed memory systems 

 

 

for problems requiring vast amounts of data or computation 

Task execution tasks are carried out by threads tasks are carried out by processes 

Memory / 
Communication 

each thread has private memory 
and access to shared-memory 

processes have their own address space and can communicate 
to each other by different concepts: message passing, pipes, 
remotely shared-memory 

Properties cost of scaling the interconnect is very high 
large crossbar switches are very expensive 

interconnects are inexpensive 
coarse-grained computations usually don't need a lot of shared 
memory 

Examples  hypercube/toroidal mesh 

 

MapReduce 
Model 

introduced by Google in 2004 for large data set 
adopted for C++, C#, F#, Erlang, Java, Python, ... 
OpenSource Impl: Hadoop by Apache 
 
map: execute a function on all items of an input list 
reduce: take key-value and reduce to associated value 
 
e.g. compute the number of words for all available word lengths  

MPI: Message 
Passing Interface 

Standardized and portable message-parsing system for parallel computing architectures 
Language: in C and Fortran, adopted for Python and Java 
Implementations: MPICH, Open MPI, Microsoft MPI 
Cons: consider communication cost 

Structures asynchronous paradigm: all concurrent tasks execute asynchronously 
lossely synchronous model: tasks are synchronize to perform interactions 
between these interaction these interations, tasks execute completely asynchronously 
SPMD model: most message-passing programs are written using Single Program Multiple Data model 

Example: 
Greetings 

int main(int argc, char* argv[]) { 
 int numprocs, myid; 
 MPI_Init(&argc, &argv); // initializes MPI environment, eval cmd line args 
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs); // determines the number of processes 
 MPI_Comm_rank(MPI_COMM_WORLD, &myid); // determines the label (id) of calling process 
 if (myid == 0) { 
  const int bufLen = 100; char greeting[bufLen]; 
  cout << "process " << myid << " of " << numprocs << " processes!" << endl; 
  for (int i = 1; i < numprocs; i++) { 
   // receives a message: receives a buffer with n-elements from a source 
   // blocks until received, order of one sender is kept (nonovertaking) 
   MPI_Recv(greeting, bufLen, MPI_CHAR, i, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE); 
   cout << greeting << endl; 
  } 
 } else { 
  stringstream ss; ss << "process " << myid << " of " << numprocs << " processes!"; 
  string greeting(ss.str()); 
  // sends a message: send a buffer with n-elements to a destination 
  // blocks until received (non-buffered) or fully copied to internal buffer(buffered) 
  MPI_Send(greeting.c_str(), (int)greeting.size() + 1, MPI_CHAR, 0, 0, MPI_COMM_WORLD); 
 } 
 MPI_Finalize(); // terminates MPI, clean-up environment, should return MPI_SUCCESS 
 return 0; 
} 

I/O MPI_COMM_WORLD -> allows access for all processors to stdout and stderr, allows access for 𝑝0 to stdin 
order of process is unpredictable -> I/O should be done with process 0 

$(MSMPI_BIN)mpiexec.exe -n 10 "$(TargetPath)" 
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Buffering/ 
Blocking 
determined by 
implementation 

 Command Pro Cons 

Non-Buffered – blocking Ssend simple, safe idling and deadlocks 

Buffered (on receiver) – blocking Bsend less idling block during send 

Non-Buffered – non-blocking Isend non-blocking ensure semantic 

solve deadlocks with MPI_Sendrecv or MPI_Sendrecv_replace 
use MPI_Test to check if an operation has finished 
use MPI_Wait to wait until an operation has finished 
use MPI_Status variable to get information about MPI_Recv operation 
use MPI_Get_count to get the count of data items received 

Buffer (aus Sicht 
von MPI) 

Externer Buffer: Buffer meines Programms 
Internen Buffer: Buffer von MPI 

 

Debug MPI run with one or two processes, run all processes on a single computer, use assertions 
use synchronous instead of buffered communication, attach debugger to one of these processes 

Communicator 
MPI_Comm 

Defines a set of processes that are allowed to communicate with each other (intra-communication) 
A process can belong to multiple communication domains 
Default Communicator MPI_COMM_WORLD includes all processes 

Processor 
Mappings 

The programmer cannot explicitly specify how processes are mapped onto processors-> job of MPI library 
Supported Topologies: k-dim. Mesh, arbitrary graph, dist graph 

Partitioning 
Topologies 

use MPI_Comm_split to split processes into certain subset 
use MPI_Cart_create to create new communicators from old ones (MPI_Cart_coord, MPI_Cart_rank) 
use MPI_Cart_shift to shift data in a cartesian topology 
use MPI_Cart_sub to form lower-dimensional grids 

Collective 
Communication 
Operations 

Barrier synchronization MPI_Barrier(comm) 

Broadcast: one-to-all, all-to-all MPI_Bcast(buf,count,datatype,source,comm  

Reduction: reduce, all-reduce MPI_Reduce(sendbuf,recvbuf,count,datatype,op,target,comm) 
MPI_Allreduce(sendbuf,recvbuf,count,datatype, op,comm) 

Prefix-sum MPI_Scan(sendbuf,recvbuf,count,datatype,op,comm) 

Personalized comm: gather and scatter MPI_Gather(sendbuf,sendcount,sendType,recvbuf,recvcount..) 
MPI_Allgather, MPI_Scatter, MPI_Alltoall 

each of these operations is defined over a group corresponding to the communicator 
all processors in a communicator must call these operations 

Reduction 
Operations 

Operation  Meaning  Datatypes 
MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD Maximum, Minimum, Sum, Product C integers and floats 
MPI_LAND, MPI_LOR, MPI_LXOR Logical AND, Logical OR, Logical XOR C integers 
MPI_BAND, MPI_BOR, MPI_BXOR Bit-wise AND, Bit-wise OR, Bit-wise XOR C integers and byte 
MPI_MAXLOC, MPI_MINLOC max-min, min-min value-location Data-pairs 

 

MPI Version MPI-1 1994 version 1.0 

MPI-2 2000 +Threads -> use run openMP on a Node 
+ I/O parallel access to files 

MPI-3 2012 - C++ Bindings 
+ Non-blocking collective operations 
+ One-sided communcation (RemoteMemoryAccess) 
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Collective Communication 

Data Exchange Designing parallel algorithms on a distributed-memory system requires data exchange between processes. 
This exchange can significantly impact the efficiency because of interaction delays. 

efficient impl. Improve performance, reduce development effort and cost, improve software qualitity 

Overhead due to idling, contention (conflict), communication and excess computation (not performed by serial) 

Cost depends on: communication model, network topology, data handling & routing (e.g. cut-through), protocols 

Message 
passing costs 

Startup time 𝑡𝑠: time spent at sending and receiving nodes 
Per-hop time 𝑡ℎ: function of number of hops and includes factors like switch latencies, network delays, ets. 
Per-word transfer time 𝑡𝑤: overheads by the message length: bandwidth of links, error checking/correction. 
Communication cost 𝑡𝑐𝑜𝑚𝑚 = 𝑡𝑠 + 𝑙 ∗ 𝑡ℎ +𝑚 ∗ 𝑡𝑤 (size 𝑚, point-to-point messaging) 
Simplified cost model 𝑡𝑐𝑜𝑚𝑚 = 𝑡𝑠 +𝑚 ∗ 𝑡𝑤 (𝑡ℎ is often very small) 

Overview of 
Global 
Communication 

What data is spread? Same data is sent to all nodes Personalized data is sent to different nodes 

Broadcast Personalized 

How is received 
data handled? 

Aggregated 
(glued togehter) 

Reduced 
(combined)  

Aggregated Reduced 

Who is 
sending to 
whom 

One-to-all One-to-All Broadcast Scatter 

All-to-one - - Gather All-to-One Reduction 

All-to-All All-to-All Broadcast All-Reduce Total Exchange All-to-All Reduction 
 

Lowerbound 
𝑝 ∗

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∗ 𝑎𝑣𝑔. 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠
 

1. Find formula for the lower bound for an algorithm 
2. Calculate it for the different comm. systems 

 

Process 𝑝 
3 = 𝑝 − 1 

Linear-Array / Rings Two-dim. mesh 

𝑅𝑜𝑤, 𝑐𝑜𝑙𝑠: √𝑝 

Hypercube 𝒑 = 𝟐𝒅 
𝑑𝑖𝑚: 𝑑 = log 𝑝 

One-to-All Broadcast 
All-to-One Reduction 

0 𝑀
1
2
3

𝑜𝑛𝑒−𝑡𝑜−𝑎𝑙𝑙 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡
→                
𝑎𝑙𝑙−𝑡𝑜−𝑜𝑛𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛
←                

0 𝑀
1 𝑀
2 𝑀
3 𝑀

 

Naïve 

 

𝑂(𝑝 − 1) 

 

 

𝑂(log 𝑝) 
 
𝑇 = (𝑡𝑠 +𝑚𝑡𝑤) ∗ 

log 𝑝 

 

Better (recursive doubling) 

 

𝑂(log 𝑝) 

 

All-to-All Broadcast (All-Gather) 
All-to-All Reduction 
0 𝑀0

1 𝑀1

2 𝑀2

3 𝑀3

𝑎𝑙𝑙 −𝑡𝑜−𝑎𝑙𝑙 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡
→                
𝑎𝑙𝑙−𝑡𝑜−𝑎𝑙𝑙 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛
←               

0 𝑀0. . 𝑀3

1 𝑀0. . 𝑀3

2 𝑀0. . 𝑀3

3 𝑀0. . 𝑀3

 

Efficient approach 
Send data in each step to the 
neighbour 

 
𝑂(𝑝 − 1) 

𝑇 = (𝑝 − 1)(𝑡𝑠 +𝑚𝑡𝑤) 

 

1. Rows 

(√𝑝 − 1)(𝑡𝑠 +𝑚𝑡𝑤)  

2. Columns 

(√𝑝 − 1)(𝑡𝑠 +𝑚𝑡𝑤√𝑝) 

 

𝑇 = 2𝑡𝑠( √𝑝 − 1) + 

𝑚𝑡𝑤(𝑝 − 1) 

𝑇 = 𝑡𝑠 log 𝑝 + 
𝑚𝑡𝑤(𝑝 − 1) 

All-Reduce 
0 𝑀0

1 𝑀1

2 𝑀2

3 𝑀3

𝑎𝑙𝑙−
𝑟𝑒𝑑𝑢𝑐𝑒
→    

0 𝑀𝑎

1 𝑀𝑎

2 𝑀𝑎

3 𝑀𝑎

 

inefficient approach 
all2one reduction + one2all broadc. 
better approach 
all2all broadc without incr size of m 

𝑇ℎ𝑦𝑝𝑒𝑟 = (𝑡𝑠 +𝑚𝑡𝑤) log 𝑝 

Prefix-Sum 

0 𝑀0

1 𝑀1

2 𝑀2

3 𝑀3

𝑝𝑟𝑒𝑓𝑖𝑥−
𝑠𝑢𝑚

→     

0 𝑀0

1 𝑀0 +𝑀1

2 …

3 ∑ 𝑀𝑖

𝑝−1

𝑖=0

 

all2all broadcast but only with 
labels less or equals to k 

 

Scatter (One-to-All personalized communic.) 
Gather 

0 𝑀0…𝑀3 

1
2
3

𝑠𝑐𝑎𝑡𝑡𝑒𝑟
→    
𝑔𝑎𝑡ℎ𝑒𝑟
←    

0 𝑀0

1 𝑀1

2 𝑀2

3 𝑀3

 

 𝑇 = 𝑡𝑠 log 𝑝 + 𝑚𝑡𝑤(𝑝 − 1) 

𝑇 = Ω(𝑚𝑡𝑤(𝑝 − 1)) 

Total Exchange e.g. transpose a matrix 
(All-to-All Personalized Communication) 
0 𝑀0,0…𝑀0,3 

1 𝑀1,0…𝑀1,3

2 𝑀2,0…𝑀2,3

3 𝑀3,0…𝑀3,3

𝑡𝑜𝑡𝑎𝑙
𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒
→      

0 𝑀0,0…𝑀3,0

1 𝑀0,1…𝑀3,1

2 𝑀0,2…𝑀3,2

3 𝑀0,3 …𝑀3,3

 

𝑇𝑟𝑖𝑛𝑔 = (𝑡𝑠 +
𝑡𝑤𝑚𝑝

2
) (𝑝 − 1)  

 

𝑇𝑀𝑒𝑠ℎ = (2𝑡𝑠 +𝑚𝑝𝑡𝑤)(√𝑝 − 1) 

𝑇𝑛𝑎𝑖𝑣𝑒 ℎ𝑦𝑝𝑒𝑟 = (𝑡𝑠 +
𝑡𝑤𝑚𝑝

2
) log 𝑝 

𝑇𝑏𝑒𝑡𝑡𝑒𝑟 ℎ𝑦𝑝𝑒𝑟 = (𝑡𝑠 + 𝑡𝑤𝑚)(𝑝 − 1) 
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PARALLEL ALGORITHMS 

Numerical Algorithms 

Dense 
Matrix-Vector 
Multiplication 

Gegeben: 
𝐴: 𝑛 𝑥 𝑛 − 𝑀𝑎𝑡𝑟𝑖𝑥 
𝑥, 𝑦: 𝑛 𝑥 1 − 𝑉𝑒𝑐𝑡𝑜𝑟 

Gesucht: 
𝑦 = 𝐴 𝑥 

𝑝

{
 

 

(

 

𝐴0,0 𝐴0,1 𝐴0,2 𝐴0,3
𝐴1,0 𝐴1,1 𝐴1,2 𝐴1,3
𝐴2,0 𝐴2,1 𝐴2,2 𝐴2,3
𝐴3,0 𝐴3,1 𝐴3,2 𝐴3,3)

 

⏟                  
𝐴

× (

𝑥1
𝑥2
𝑥3
𝑥4

)

⏟  
𝑥

=

(

 
 
𝑦1}

𝑛

𝑝
𝑦2
𝑦3
𝑦4 )

 
 

⏟    
𝑦

 

Solution 1: 
Row-wise 1D 

Partitioning 

1 row of matrix A per process (p=n) 
1. all-to-all broadcast of x 
2. 𝑝𝑖  computes 𝑦𝑖 = 𝐴𝑖 ∗ 𝑥 

𝑇𝑃 = Θ(𝑛)⏟
1.

+ Θ(𝑛)⏟
2.

= Θ(𝑛) 

𝐶𝑜𝑠𝑡 = 𝑛 ∗ Θ(𝑛) = Θ(𝑛2) → 𝑐𝑜𝑠𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

Using fewer than n processes (p<n) 

Each process owns 𝑚 =
𝑛

𝑝
 rows of A 

and the corresponding elements of 𝑥 
same algorithm 
 
problem size: 

𝑊 = Θ(𝑛2) 

𝑇𝑃 = 𝑡𝑠 log 𝑝 +
𝑡𝑤𝑛

𝑝
(𝑝 − 1)

⏟              
1.𝑎𝑙𝑙−𝑡𝑜−𝑎𝑙𝑙

+
𝑛2

𝑝⏟
2.

= Θ(log 𝑝 + 𝑛 +
𝑛2

𝑝
) 

𝐶𝑜𝑠𝑡 = Θ(p log 𝑝 + 𝑛𝑝 + 𝑛2) → 𝑐𝑜𝑠𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑓𝑜𝑟 𝑝 = 𝑂(𝑛) 
𝑇𝑂 = 𝑝 log 𝑝 + 𝑛𝑝 + 𝑛2 −𝑊 = 𝑝 log 𝑝 + 𝑛𝑝 

Isoefficiency: 𝑊 = 𝐾 𝑇0 = 𝐾 𝑝 log 𝑝⏟      
𝑊=𝑝 log 𝑝

+ 𝐾 √𝑊𝑝⏟    
𝑊=𝑝2

 

degree of concurrency:  𝐶(𝑊) = 𝑂(√𝑊) = 𝑂(𝑛) 

𝑝 = 𝑂(𝑛) → 𝑛 = Ω(𝑝) → 𝑊 = Ω(𝑝2) 

⇒ max 𝑏𝑙𝑢𝑒 
→ 𝑓(𝑝) = Θ(𝑝2) 

Solution 2: 
2D Partitioning 

1 matrix element per process 
𝑝𝑖  𝑜𝑤𝑛𝑠 𝐴𝑖,𝑗 

𝑙𝑎𝑠𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑤𝑛 𝑥𝑖  
1. Align 𝑥 along the diagonal 
2. Distribute 𝑥𝑖  alogn columns 
3. 𝑛2 parallel multiplications 
4. All-to-one reduction – rows 

𝑇𝑃 ≈
𝑛2

𝑝⏟
3.

+ 𝑡𝑠 log 𝑝 + 𝑡𝑤
𝑛

√𝑝
log 𝑝

⏟              
4.

 

𝑇𝑂 = 𝑝𝑇𝑝 −𝑊 = 𝑛2 + 𝑡𝑠𝑝 log 𝑝 + 𝑡𝑤√𝑝 𝑛 log 𝑝 − 𝑛2 

𝑝 = 𝑂(𝑓−1(𝑊)) ≈ 𝑂 (
𝑛2

log2 𝑛
) 

Resume: 2D faster for 𝑝 ≤ 𝑛, better isoefficiency and more scalable 

Dense 
Matrix-Matrix 
Multiplication 

Gegeben: 
𝐴, 𝐵: 𝑛 𝑥 𝑛 − 𝑀𝑎𝑡𝑟𝑖𝑐𝑒𝑠 

Gesucht: 
𝐶 = 𝐴 𝐵 

(

3 1 2 1
1 2 1 3
… … … …
… … … …

)

⏟          
𝐴

× (

… … 2 1
… … 1 1
… … 1 2
… … 3 2

)

⏟          
𝐵

= (

… … 12 10
… … 14 11
… … … …
… … … …

)

⏟            
𝑦

 

Solution 1: 
Block-Matrix 

Multiplication 

divide into q blocks → (1 < 𝑞 ≤ 𝑛) 
𝑝 = 𝑞2 

1. all-to-all broadcast of Matrix 
A’s blocks in each row 

2. all-to-all broadcast of matrix 
B’s blocks in each column 

3. compute block 𝑐𝑖,𝑗  

 
𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛: 𝑊 = 𝑛3 

(

3 1 2 1
1 2 1 3
… … … …
… … … …

)(

… … 2 1
… … 1 1
… … 1 2
… … 3 2

) = (
7 4
4 3

) + (
5 6
10 8

) 

𝑇𝑃 =
𝑛3

𝑞2⏟
𝑞 𝑏𝑙𝑜𝑐𝑘 𝑚𝑢𝑙𝑡.

+ 2(𝑡𝑠 log 𝑞 +
𝑡𝑤𝑛

2

𝑞2
(𝑞 − 1))

⏟                  
2 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑠

 

cost-optimal for 𝑝 = 𝑂(𝑛2); isoefficiency Θ (𝑝
3

2) 

degree of concur. 𝐶(𝑊) = 𝑂 (𝑊
2

3) = 𝑂(𝑛2) = 𝑝 → 𝑊 = Ω(p
3

2) 

Cannon’s Matrix 
Multiplication 

memory optimal 
each p computes one block and shifts 
𝐴𝑖,𝑘  in its row and 𝐵𝑘,𝑗  in its columns 

𝑇𝑃 =
𝑛3

𝑝
+ 2√𝑝𝑡𝑠 + 2𝑡𝑤

𝑛2

√𝑝
 isoefficiency 𝑂 (𝑝

3

2) 

DNS Matrix 
Multiplication 

with intermediate data partitioning 
𝑛3 processes, each compute one 
scalar multiplication 
reduce vectors of 𝑛 multiplication 

𝑇𝑃 = 𝑂(1) + Θ(log 𝑛) = Θ(log 𝑛) 
Θ(𝑛3 log 𝑛), is not cost optimal 

using fewer than 𝒏𝟑 processes 
assume 𝑝 = 𝑞3 𝑓𝑜𝑟 𝑞 < 𝑛 

block partitioning: block size = 
𝑛

𝑞
×

𝑛

𝑞
 

data partitioning: block size= (
𝑛

𝑞
)
3

 

𝑇𝑃 =
𝑛3

𝑝
+ 𝑡𝑠 log 𝑝 +

𝑡𝑤𝑛
2

𝑝
2
3

log 𝑝 

isoefficiency: Θ(𝑝 log3 𝑝) 

cost optimal for 𝑝 = 𝑂 (
𝑛3

log3 𝑛
) 

Parallel Gaus 
Elimination 

1D Row Partitioning 
𝑇𝑃 =

3

2
𝑛(𝑛 − 1) + 𝑡𝑠𝑛 log 𝑛 +

1

2
𝑡𝑤𝑛(𝑛 − 1) log𝑛 

𝑂(𝑛2) → 𝑖𝑠 𝑐𝑜𝑠𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

2D Partit. with pipelining, 𝒑 = 𝒏𝟐 𝑂(𝑛) → 𝑖𝑠 𝑐𝑜𝑠𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 more scalable than 1D 

2D Partit. with pipelining, 𝒑 < 𝒏𝟐 
𝑂 (

𝑛3

𝑝
) → 𝑖𝑠 𝑐𝑜𝑠𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

𝑛 ≫ 𝑝 
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Sorting Algorithms 

Overview Most commonly used and well-studied kernels. Lower bound is Θ(𝑛 log 𝑛). 

Verteilte Daten: jeder Prozess hat 
𝑛

𝑝
 Daten. 

Parallel sortierte Sequence: aufwärts sortiert innerhalb eines Prozesses und sortiert nach prozessor id. 

Compare-Exch process p1 and p2 exchange elem 𝑎 and 𝑏. p1 keeps the min, p2 keeps the max. 𝑇 = 𝑡𝑠 + 𝑡𝑤 

Compare Split Daten Austausch mit 
𝑛

𝑝
 sortierten Daten. Merged alle und behält die zuständigen Daten. 𝑇 = 𝑡𝑠 + 𝑡𝑤

𝑛

𝑝
 

Sorting Network network of comparators designed specifically for sorting (2 inputs, 2 outputs) (incr or decr) 

Parallel Odd-Even 
Transposition 
Sort 

𝑇𝑃 =
𝑛

𝑝
log

𝑛

𝑝⏟  
𝑙𝑜𝑘𝑎𝑙𝑒𝑠 𝑠𝑜𝑟𝑡𝑖𝑒𝑟𝑒𝑛

+ 𝑝⏟
𝐴𝑛𝑧𝑎ℎ𝑙
𝑝ℎ𝑎𝑠𝑒𝑛

∗
𝑛

𝑝⏟
 

𝐶𝑜𝑚𝑝.𝑠𝑝𝑙𝑖𝑡

=
𝑛

𝑝
log

𝑛

𝑝
+ 𝑛 

𝐶𝑜𝑠𝑡 = 𝑝 ∗ 𝑇𝑝 = 𝑛 log
𝑛

𝑝
+ 𝑝 ∗ 𝑛 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝: 𝑆 =
𝑇𝑆
𝑇𝑃

= 𝑂(
𝑛 log 𝑛

𝑛
𝑝
log

𝑛
𝑝
+ 𝑛

) 

 
𝑝 = 𝑛 → 𝐶𝑜𝑠𝑡 = Θ(𝑛2) nicht kostenoptimal, da sortieren 𝑛 log𝑛 verwenden sollte. 
𝑝 = log 𝑛 → 𝐶𝑜𝑠𝑡 = Θ(𝑛 log𝑛) kostenoptimal 

Parallel Shellsort 1. compare-split operation on process far aways 
2. odd-even transposition sort with 𝑙 ≤ 𝑝 

𝑇𝑃 = Θ(
𝑛

𝑝
log

𝑛

𝑝
)

⏟      
𝑙𝑜𝑐𝑎𝑙 𝑠𝑜𝑟𝑡

+ Θ(
𝑛

𝑝
log 𝑝)

⏟      
1.

+ Θ(𝑙
𝑛

𝑝
)

⏟    
2.

 

 
Bitonic Sort 
 

 

a bitonic sequence has two tones (sequences): increasing and decreasing or vice versa (shift allowed) 

1. build a bitonic sequence 

 

2. merge into a sorted sequence 

 

Hypercube 
𝑇𝑃 = Θ(log2 𝑛) 

Mesh 

𝑇𝑃 = Θ(log2 𝑛)⏟      
𝑐𝑜𝑚𝑝𝑎𝑟𝑒

+ Θ(√𝑛)⏟  
𝑐𝑜𝑚𝑚

 

𝑛

𝑝
 items on hypercube 

𝑇𝑃 = Θ(
𝑛

𝑝
log

𝑛

𝑝
) + 2Θ (

𝑛

𝑝
log2 𝑝) 

Quicksort Simple, low overhead, optimal complexity 𝑂(𝑛 log 𝑛) 
recursive select one element as pivot, divide into 2 
sequences (1 with smaller, 1 with bigger then pivot). 

 
PRAM 
Parallel Quicksort 

CRCW (concurrent read, write) PRAM with 
concurrent writes resulting in an arbitrary write 
succeeding. 

SAS Quicksort Shared Adress Space Quicksort 
recursive repeated for each process group and sub-
array is assigned to a single process, in which case it 
proceeds to sort it locally 
global rearrangement: 
each p counts n greater/smaller than pivot, to know 
in which element to write 

 

𝑇𝑃 = Θ(
𝑛

𝑝
log

𝑛

𝑝
)

⏟      
𝑙𝑜𝑐𝑎𝑙 𝑠𝑜𝑟𝑡

+ Θ(
𝑛

𝑝
log 𝑝) + Θ(log2 𝑝)

⏟              
𝑎𝑟𝑟𝑎𝑦 𝑠𝑝𝑙𝑖𝑡𝑠

 

Sequential 
Bucket Sort 

assumption: the n-elements to be sorted are uniformly distributed over an interval [a,b] 
1. divide the range [a,b] of input numbers into m equal sized intervals, called buckets 
2. each element is placed in its appropriate bucket (buckets have roughly identical number of elem) 
3. elements in the bucket are locally sorted 

~
𝑛

𝑚
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑏𝑢𝑐𝑘𝑒𝑡 𝑂(𝑛)⏟

𝑝𝑙𝑎𝑐𝑖𝑛𝑔

+𝑚 ∗ 𝑂 (
𝑛

𝑚
log

𝑛

𝑚
)

⏟        
𝑙𝑜𝑐𝑎𝑙 𝑠𝑜𝑟𝑡

 

𝑇𝑃 = 𝑛 ∗ log
𝑛

𝑚
 

Normal sort 
𝑚 = 1 → 𝑇𝑃 = 𝑛 ∗ log𝑛 

Enum sort 
𝑚 = 𝑛 → 𝑇𝑃 = 𝑂(𝑛) 

 

Enumeration Sort similar to bucket sort, but create for each number in the range a bucket, and put it in the right bucket 
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Parallel Bucket 
Sort 

each process is assigned a block of 
𝑛

𝑝
 elements, number of buckets m=p, each process knows the range [a,b] 

1. each process partitions its block of 
𝑛

𝑝
 elements into p sub-blocks, one for each of the p buckets 

2. each process send 𝑝 − 1 sub-blocks to the appropriate processe using a single all-to-all 
personalized communication 

3. each process sorts all the elements it receives by using an optimal sequential sorting algorithms 

𝑇𝑃 = 𝑂 (
𝑛

𝑝
)

⏟  
1.

+ 𝑂 (
𝑛

𝑝2
∗ 𝑝)

⏟      
2.

+ 𝑂 (
𝑛

𝑝
log

𝑛

𝑝
)

⏟      
3.

= 𝑂 (
𝑛

𝑝
(1 + log

𝑛

𝑝
)) = 𝑂 (

𝑛

𝑝
log

𝑛

𝑝
) 

Sequencial 
Sample Sort 

Similar to bucket sort without the unrealistic assumption of uniformly distributed elements 
a sample is selected from the n elements and choosing 𝑚 − 1 elements (splitters) from the sorted sample. 
Splitter selection: each p: sort with quicksort, choose p-1 samples (equal divided); repeat with samples 

Parallel Sample S. m = p; share splitters with all-to-all broadcast; 

𝑇𝑃 = Θ(
𝑛

𝑝
log

𝑛

𝑝
)

⏟      
𝑙𝑜𝑐𝑎𝑙 𝑠𝑜𝑟𝑡

+ Θ(𝑝2 log 𝑝)⏟      
𝑠𝑜𝑟𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

+ Θ(𝑝 log
𝑛

𝑝
)

⏟      
𝑏𝑙𝑜𝑐𝑘 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

+ Θ(
𝑛

𝑝
) + Θ(𝑝 log 𝑝)

⏟            
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛

 

Graph Algorithms (kommt nicht)  

DFS vs BFS DFS (Depth-First Search Algorithm) BFS (Best-First-Search Algorihtm) 

  
Pro: small place 𝑂(𝑑 ∗ ℎ) 
Cons: find sub-optimal solutions first 
Variation: set a maximum depth level 

Pro: Find best solutions first 

Cons: needs a lot of space 𝑂(𝑑ℎ) 

 

 
Code 
OpenMP 
Evt. OpenCL 
MPI 
Param order doesn’t matter, but name should be clear 
1/3 theory, 1/3 code, 1/3 run algorithm 
Cost-optimal / efficiency 
Exam is until parallel sorting 
Parallel graph search is a little bit to advance 
 
 
120min, A hand written summary of 4 A4 page 
 

 


