
ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 1 von 16

PARALLEL COMPUTING AND ALGORITHMS

Motivation

Concurrent
computing

a form of computing in which programs are designed as collections of interacting computational processes

• sequentially on a single processor by interleaving the execution steps of each computational process

• in parallel by assigning each computational process to one of a set of processors that may be close
or distributed across a network

challenges: ensure the correct sequencing, coordinate access to shared resources
tools: Threads, Mutex, Semaphores

Cloud
computing

Cloud computing is a type of Internet-based computing that provides shared computer processing resources
and data to computers and other devices on demand.

Parallel
computing

a form of computation in which many calculations are carried out simultaneously
tools: no Mutex nor Semaphores (we could, but we don't want to)

is the dominant paradigm in computer architecture nowadays, since power consumption became a concern
challenges: more difficult to write, higher fault tolerance, larger amount of memory needed
Pro: usually faster computation (n computers are not n times faster), Con: communication, synchronization

levels:

bit-level: all bits of a word are computed in parallel
instructions level: several instructions are computed parallel
data parallelism: the same operations is computed on several data in parallel
task parallelism: several tasks work together in parallel

examples:
weather forecast
DNA structures
astronom. model

FLOPS Floating
operations /sec

MFLOP = Mega 106 GFLOP = Giga 109
-> normal computer

TFLOP=Tera 1012 PFLOP=Peta 1015
-> good parallel computing

HPC High Performance Computing

hint first use the right algorithms, than start programming parallel

Architectures of parallel infrastructures

Implicit
Parallelism

processors have multiple functional units and execute multiple instructions in the same cycle
by pipelining, superscalar execution, very long instruction word processors

Explicite
Parallelism

must specify concurrency and interaction between concurrent subtasks -> this is what we want
try to minimize concurrency and synchronization

Programming
Models Process based models

multiple process
private data, shared memory (synch)

Lightweight processes and Threads
one process with multiple threads
all data is global (faster synch)

PRAM
Parallel Random
Access Machine

• extension of the RAM

• multiple processors share clock,
but exec different instruction

• global memory of unbounded size

Handling memory access

• EREW (Exclusive-read, exclusive-write)

• CREW (Concurrent-read, exclusive-write) -> good

• ERCW (Exclusive-read, concurrent-write)

• CRCW (Concurrent-read, concurrent-write) -> very good

Concurrent write Common: write only if all values are identical (5,5) → 5
Arbitrary: write the data from a randomly selected processor (5,7) → 5 𝑜𝑟 7
Priority: follow a predetermined priority order (5 ℎ𝑖𝑔ℎ 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦, 7 𝑙𝑜𝑤 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦) → 5
Sum: Write the sum of all data items (5,7) → 12

Chunking determining the amount of data to assign to each task (chunk or grain size)

Granularity the size of a chunk, depends on algorithm and used hardware
fine-grained parallelism: low arithmetic intensity, more communication, better splitting / load balance
coarse-grained parallelism: high arithm. intensity, less communication, difficult to load balance efficiently

Control Structure SIMD (Single Instruction Multiple Data),
called SSE on Intel, e.g. vector operation

MIMD (Multiple Instruction Multiple Data)
simple MIMD: SPMD = Single Program Multiple Data

 a single control unit dispatches
the same instruction to various processors
that work on different data

each processor has its own control unit
each processor can execute different instructions
on different data items

Pro / Con less HW, less memory
needs regular structure, selectively turn off opera.

high performance workstation at low cost
use existing software, processors can be added

implementations GPU (Graphic Processing Unit)
DSP (Digital Signal Processors)

SPARC servers, multiprocessor PCs,
NASA Beowulf inspired workstation clusters

Communication
Models

Shared-Address-Space Platforms (Multiprocessors) Message Passing Platforms (Multicomputers)

part of the memory is accessible to all processors
processors interact by modifing data objects

own exclusive memory
using sending messages

Task

Process Threads

ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 2 von 16

Interconnection
Network for HPC

Infiniband (very high throughput and very low latency, scalable, direct or switched interconnection)
PCI Express 4 (high-speed serial bus standard, external cabling over Thunderbolt)
NVIDIA NVLink (high-bandwidth, energy-efficient)

Switching Hub

forwarding per MAC,
non blocking

spanning tree
protocol: shortes
path bridging

store-and-foreward
buffers until complete,
error checking before forwarding

cut-through
forward imediately, buffer when port is busy,
no error checking

evaluation • Diameter -> the distance between the farthest two nodes

• Channel Bandwidth -> number of bits that can be communicated simultaneously over a link

• Cross-Section Bandwidth -> the min number of wires one must cut to divide into two equals parts

• Cost -> number of links/switches, length of wires

Message passing
costs

𝑡𝑠 Startup time: spent at sending and receiving nodes
𝑡ℎ Per-hop time: number of hops (includes switch latencies, delays)
𝑡𝑤 Per-word transfer time: includes overheads from message length
𝑚 number of messages

cut-through cost:
𝑡𝑐𝑜𝑚𝑚 = 𝑡𝑠 + 𝑙 ∗ 𝑡ℎ + 𝑡𝑤 ∗ 𝑚
𝑡ℎ ≪ 𝑡𝑤 → 𝑣𝑖𝑒𝑙 𝑘𝑙𝑒𝑖𝑛𝑒𝑟 𝑎𝑙𝑠
→ 𝒕𝒄𝒐𝒎𝒎 = 𝒕𝒔 + 𝒕𝒘 ∗ 𝒎

Network Topologies

 Bus Star Crossbar Multistage Netw k-d Mesh Hypercube Tree-based

p inputs
b outputs

simple

common bus
good cost
scalable

common node
good perform

scalable

𝑝 ∗ 𝑏 switches

bus/crossbar mix

Linear Array

1D-Torus/Ring

Mesh

3-d-hypercube
𝑑 = log 𝑝

diameter 1 2 1 log 𝑝 1D: 𝑝 − 1

2D: 2(√𝑝 − 1)

log 𝑝
2 log

𝑝 + 1

2

links 𝑝(𝑝 − 1)

2

𝑝 − 1 𝑝2 1D: 𝑝 − 1

2D: 2(𝑝 − √𝑝)

𝑝 log 𝑝

2

𝑝 − 1

bottle-neck bus bandwidth
limited nodes

central node cost grows 𝑝2
difficult to scale

 con:
different length

root

Examples WLAN zone
PCI bus

LANs with
Bridge or Switch

non-block switch
L1<->L2 - caches

Omega-Network hypercube Fat-Tree

ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 3 von 16

Shared Memory Systems (SMS)

Platforms

P = Processor
C = Cache
M = Memory

Uniform-memory-access (UMA) Non-Uniform-memory-access (NUMA)

e.g. Intel Front Side Bus Architecture

local cache (fast)
L1 u. L2 (Level 1)

global/shared
memory
(access time to M
are identical)

Memory Controller
(MCH) = Northbridge

Interface Controller
(ICH) = Southbridge

e.g. Intel Core i7 (Nehalem)

local cache

local memory
(access also
other M's)

Caching Faster memory access, Load complete block of memory and hope next access is in this block
Cache coherence: ensure that cache is consistent to each other

Scenario

s=shared
d=dirty
i=invalid
w=write
r=read
f=flush

Update and Invalidate Protocol
step 1 write-back: set an invalidate flag on other copies
step 2 write-through: update other copies

Example

 Start 𝑃0 𝑤 𝑃1𝑤 𝑃2𝑟 𝑃0𝑤

𝑃0 1(𝑠) 𝑤
→ 3(𝑑) → 3(𝑖) → 3(𝑖) 𝑤

→ 5(𝑑)
𝑃1 1(𝑠) → 1(𝑖) 𝑤

→ 4(𝑑) → 4(𝑠) → 4(𝑖)

𝑃2 1(𝑠) → 1(𝑖) → 1(𝑖) 𝑟
→𝑓: 4(𝑠) → 4(𝑖)

VC++
Concurrency
Runtime

Why: uniformity and predictability to applications that run
simultaneously
Pro: cooperative task scheduling (work-stealing algorithm),
cooperative blocking
Architecture: PPL (Parallel Patterns Library) - fine grained,
Asynchronous Agents Library - coarse grained

concurrency::parallel_for_each

 vs OpenMP (included in VC++, VS2015 supports 2.0)
for parallel algorithms that are iterative
efficient when degree of parallelism pre-determined
and matches the available resources on the system
for high-performance computing

Concurrency Runtime
for less constrained computing environments
dynamic scheduler that adapts to available resources
and adjust degree of parallelism as workloads change
easy for recursive problems

ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 4 von 16

Parallel programming with C++ (std::)

thread A thread is a single stream of control flow of a program.
low-level, data exchange must be synchronized, is started automatically in constructor (in C++)
uncaught exceptions in thread -> termination of entire program, static/global variables for each thread

Executable obj a) function object (functor)
b) lambda expression
c) pointer to a function

obj is copied as the arguments

e.g functor #include <thread>
void execObj(std::string text) {
 std::cout << text << std::endl; }

std::thread t1(execObj, “param”);
t1.get_id(); // unique thread id
t1.join(); // returns when finish

e.g. lambda auto task = [param1,¶m2,] { … } for (i=0; i<nThreads; i++) {thread(task)};

e.g. Matrix
multiplication

for (row = 0; row < n; row++) // no synch needed
 for (column = 0; column < n; column++)
 c[row][column] = create_thread(dot_product(get_row(a, row), get_col(b, col)));

mutex
mutual exclusion

a lockable object that is designed to signal when critical sections of code need exclusive access, preventing
other threads with the same protection from executing concurrently and access the same memory locations.

lock a. isn’t looked: lock mutex
b. locked by other thread: wait until unlocked
c. locked by this thread: deadlock, undefined behaviour

mutex mtx;
mtx.lock();

unlock releasing ownership over it mtx.unlock();

condition_variable Block the calling thread until notified to resume. It uses a unique_lock (over a mutex) to lock the thread

declare condition_variable readingAllowed;

wait blocks until notified unique_lock<mutex> lock(mtx);
readingAllowed.wait(lock);

notify wake up a blocking thread readingAllowed.notify_one(); // or notify_all()

async and future async: initiates a computation and returns (two modes: launch::async, launch::deferred)
future: return type of asnyc; get() -> blocks until the result is available

pro exception does not end in a crash, can be caught in .get()

e.g. auto fut1 = async(launch::async, &funct1, 35); // asynch, started immediately
auto fut2 = async(launch::deferred, &funct1, 35); // deferred, started with get
cout << fut2.get() << endl; // waiting
cout << fut1.get() << endl; // waiting

packaged_tasks a packaged task wraps a callable element and allows its result to be retrieved asynchronously
not started automatically, contains a stored task (e.g. function) and a shared state (e.g. int)

e.g. // create task for calling fibrec, argument of fibrec has to be defined later
packaged_task<size_t(size_t)> task1(&fibrec);
auto fut1 = task1.get_future(); // future for getting result
// create task for calling fibrec, argument of fibrecis bound to 35
packaged_task<size_t(void)> task2(bind(&fibrec, 35));
auto fut2 = task2.get_future(); // future for getting result
// call task1 in a parallel thread (move semantic)
thread th(move(task1), 35); // hint for the compiler to 'move' instead of '='
task2(); // call task2 in this tread
cout << fut1.get() << endl; // get result of task1
cout << fut2.get() << endl; // get result of task2
th.join(); // this treads waits on parallel thread th

Synchronization
primitives

atomic_xyz all accesses are atomic (are not interrupted)
atomic_flag atomic bool but lock-free
once_flag used in call_once, makes sure that only one parallel threads executes the function
recursive_mutex allows a thread computing a recursive function to reenter a critical section
lock_guard locks a critical section; very simple usage; the only state is locked
unique_lock needs its unique mutex object; handles both states: locked and unlocked

assign operator
move operator

 C& operator = (const C&c) { x=c.x; return *this; }
 C& operator = (C && c) { x=c.x; c.x=0; return *this; }

serial vs. parallel
for loop

serial for loop, no parallel algorithms in C++11/14
sequentially ordered steps
e.g. reading n integers from a sequential file

parallel for loop, (since C++17)
any order
e.g. same task for each element of an array

 Support C++17 standards: most algorithms have overloads that accept execution policies (seq/par/par_unseq)

ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 5 von 16

OpenMP

OpenMP A standard for directive based parallel programming, for FORTRAN and C++
support for concurrency, synchronization, data handling --> mutexes, condition variables, data scope, init

Programming
Model

directives are based on the #pragma compiler directives (e.g. #pragma omp directive [clause list])
execute serially until the parallel directive, which creates a group of threads (#pragma omp parallel [])
the main thread that encounter the parallel directive becomes the master of this group of threads (id=0)

Clause List Conditional Parallelization - if -> check if threads need to be created, evaluated at runtime
Degree of Concurrency - num_threads(integer expr) -> number of threads
Data Handling - private (variable list) -> variables are local to each thread T
 firstprivate (variable list) -> local variable, but initialized before the parallel directive
 shared (variable list) -> variables are shared across all threads
 threadprivate (variable list) -> variable is private to a thread

 Default Clause - allows to affect the data-sharing attribute of variables
 default(shared) -> each currently visible variable is shared (unless threadprivate or const)
 default(none) -> shared if (explicitly listed || within construct || threadprivate or const || for loop)

 Reduction Clause - specifies how a variable is combined into a single copy after the master exits
 reduction(operator: variable list) - operators: +,*,-,&,|,^,&&,||

e.g. int main() { // serial segment
 const int npoints = 1000000; int sum = 0; srand(clock());
 #pragma omp parallel default(none) reduction(+:sum) num_threads(8)
 { // omp -> for (i=0; i < 8; i++) pthread_create(..,internal_thread_name,..);
 // parallel segment
 #pragma omp for
 for (int i = 0; i < npoints; i++) {
 double rand_x = rand()/double(RAND_MAX);
 if (((rand_x-0.5)*(rand_x-0.5)) < 0.125)
 sum ++;
 }
 } // serial segment
 cout << setprecision(10) << 4*sum/double/npoints) << endl;

concurrent
tasks

#pragma omp for [clause list] { } parallel iterations on threads; clauses: private, firstprivate,
lastprivate, reduction, schedule (static, dynamic, guided,
runtime), nowait (no implicit barrier at loop end), ordered

#pragma omp sections [clause list]{
 #pragma omp section
 /* structured block 1 */
 #pragma omp section
 /* structured block 2*/ }

non-iterative parallel task assignment
code sections be divided among threads

#pragma omp parallel shared(n) { } execute code in parallel, creates a group of threads

synchronization #pragma omp barrier synchronize all threads in a team, wait until all
#pragma omp single [clause list] executed on a single thread (not necessarily on master)
#pragma omp master only master thread should execute a section
#pragma omp critical [(name)] this code is only executed on one thread at a time
#pragma omp atomic memory location will be automatically updated
#pragma omp ordered for loop should be executed like a sequential loop
#pragma omp flush [(variable list)] all threads have the same view for shared objects

merge directive #pragma omp parallel for shared(n) {}

nest directives #pragma omp parallel for shared(a,b,c) num_threads(4) {
 for(int i = 0; i < 128; i++)
 #pragma omp parallel for shared(a,b,c) num_threads(4) {...}
}
it is not allowed to bind to the same parallel directive for ‘for’, ‘section’, and ‘single’
per default, each inner ‘for’ directive generates a logical team which is still executed by the same thread
otherwise set OMP_NESTED to TRUE

ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 6 von 16

Performance Metrics for Parallel Systems

Analytical
Modeling

Sequential Runtime: Evaluated by its runtime,
identical on any serial platform

Parallel Runtime depends on:
input size n, number of processors p, communication param

 Explanation Formula Example: adding

𝑛 input size 𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠

𝑝 number of processors 𝑜𝑛 𝑝 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

𝑇𝑠 Serial runtime: time elapsed on a sequential computer 𝑊 = Θ(Ts) 𝑇𝑆 = Θ(𝑛)

𝑇𝑝 Parallel runtime: time elapsed from the start of first processor
to the end of the last processor

𝑇𝑝 =
𝑊 + 𝑇𝑂(𝑊, 𝑝)

𝑝
 𝑇𝑃 =

𝑛

𝑝
+ 2 log 𝑝

𝑇𝑂 Parallel Overhead: total time of all processors combined when
non-useful

𝑇𝑂 = 𝑝 ∗ 𝑇𝑝 − 𝑇𝑆

= 𝑇𝑆 ∗ 𝑓 ∗ (𝑝 − 1)

𝑇𝑂 = 𝑝 log𝑝

𝑆 Speedup: Ratio of the serial runtime of the best serial algorithm
to the parallel algorithm
 lower bound: 0; upper bound: should be by p;
superlinear due to caching and exploratory decomposition

𝑆 =
𝑇𝑆
𝑇𝑃

=
𝑊

𝑇𝑝
=

𝑝 𝑊

𝑊 + 𝑇𝑂(𝑊, 𝑝)

𝑆 =
𝑛

𝑛
𝑝
+ 2 log 𝑝

𝐸 Efficiency: Speedup per processor

𝐸 =
𝑆

𝑝
=

𝑇𝑠
𝑝 ∗ 𝑇𝑃

=
1

1 +
𝑇𝑂
𝑇𝑆

 𝐸 =
1

1 +
2𝑝 log 𝑝

𝑛

Cost Cost: amount of total work Cost = 𝑝 ∗ 𝑇𝑃 ≥ 𝑊

Cost
opt

a parallel system is cost optimal if
cost of solving problem on a parallel computer is asymptotically
identical to serial cost

𝐶𝑜𝑠𝑡 = Θ(𝑊)
→ 𝐸 = Θ(1)

𝑛 = 𝑊
= Ω(p log 𝑝)

𝐾 efficiency coefficient
𝐾 =

𝐸

1 − 𝐸

iso-E What is the rate at which the problem size W must increase to p
to keep the efficiency fixed. This rate determines the scalability
of a system. The slower/smaller the better. (high scalable)

𝑊 = 𝑓(𝑝)
 → 𝑊 = 𝐾 ∗ 𝑇𝑂(𝑊, 𝑝)

𝑊 = Ω(𝑝)

𝑊 = 𝐾 𝑝 log 𝑝
𝑓(𝑝) = Θ(𝑝 log 𝑝)

Scalability of Parallel Systems

Amdahl's Law

fixed workload
improve runtime

𝑊 = 𝑓 ∗𝑊⏟
𝑊𝑠𝑒𝑞

+ (1 − 𝑓) ∗ 𝑊⏟
𝑊𝑝𝑎𝑟

= Θ(Ts)

𝑓 =
𝑊𝑠𝑒𝑞

𝑊
∈ [0. .1]

𝑇𝑝 = 𝑊𝑠𝑒𝑞 +
𝑊𝑝𝑎𝑟

𝑝
= 𝑓 ∗𝑊 +

(1 − 𝑓) ∗ 𝑊

𝑝

𝑆 =
𝑇𝑠
𝑇𝑝

=
𝑊

𝑓 ∗𝑊 +
(1 − 𝑓) ∗𝑊

𝑝

=
𝑝

𝑓(𝑝 − 1) + 1

lim
𝑝→∞

𝑆 =
1

𝑓

𝑊: total work
𝑊𝑠𝑒𝑞: sequential/serial work (non-parallelizable)

𝑊𝑝𝑎𝑟: parallel work

𝑓: fraction of sequential work

Der sequentielle Anteil (𝑓) begrenzt den Speedup bei
vielen Prozessoren.

Gustafson's Law
fixed runtime
increase work & p

𝑇𝑃 = 𝑇𝑠𝑒𝑞 + 𝑇𝑝𝑎𝑟

𝜎 =
𝑇𝑠𝑒𝑞

𝑇𝑃
∈ [0,1]

𝑇𝑃 = 𝜎 ∗ 𝑇𝑃 + (1 − 𝜎) ∗ 𝑇𝑃

𝑆′ =
𝑇𝑝(𝑝 ∗ 𝑊, 1)

𝑇𝑝(𝑝 ∗ 𝑊, 𝑝)
= 𝑝 − (𝑝 − 1) ∗ 𝜎

𝑇𝑠𝑒𝑞: time for the sequentiel work

𝑇𝑝𝑎𝑟: time for the parallel work

𝑆′: scaled speedup

based on data paralellism

Karp-Flatt

includes
overhead

𝑇𝑃(𝑊, 𝑝) = 𝑇𝑠𝑒𝑞(𝑊) + 𝑇𝑜𝑣𝑒𝑟(𝑊, 𝑝) +
𝑇𝑝𝑎𝑟(𝑊)

𝑝

𝑆 =
𝑇𝑝(𝑊, 1)

𝑇𝑝(𝑊, 𝑝)
=

1

𝑒 +
1 − 𝑒
𝑝

 → 𝑒 =

1
𝑠
−
1
𝑝

1 −
1
𝑝

𝑇𝑜𝑣𝑒𝑟: overhead time for each processor
𝑒: karp-flatt metric -> from relative speedup
e ist kompatibel zu f

Ideal Speedup

Realer
Speedup p

S

p=1 p=2

t

p=1 p=2

t

ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 7 von 16

Big-O-Notation 𝑔(𝑥) = 𝑂(𝑓(𝑥)) 𝑜𝑑𝑒𝑟 𝑔(𝑥) ∈ 𝑂(𝑓(𝑥))

𝑔(𝑥) = Ω((𝑥))

𝑔(𝑥) = Θ(a(x)) = 𝑂(𝑎(𝑥)) ∧ Ω(a(x))

𝑂 = 𝑂𝑏𝑒𝑟𝑔𝑟𝑒𝑛𝑧𝑒
Ω = 𝑈𝑛𝑡𝑒𝑟𝑔𝑟𝑒𝑛𝑧𝑒

Θ = 𝑂𝑏𝑒𝑟𝑔𝑟𝑒𝑛𝑧𝑒 𝑢𝑛𝑑 𝑈𝑛𝑡𝑒𝑟𝑔𝑟𝑒𝑛𝑧𝑒
𝑥0 = 𝑆𝑡𝑎𝑟𝑡𝑤𝑒𝑟𝑡
𝑐 = 𝐾𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒

∀𝑥≥ 𝑥0: |𝑔(𝑥)| ≤ 𝑐|𝑓(𝑥)|
Bsp 𝑔(𝑥) = 7𝑥2 + 5

𝑓(𝑥) = 𝑥2
𝑐 = 8, 𝑎𝑏 𝑥0 =?

𝑂(𝑚𝑒𝑟𝑔𝑒𝑠𝑜𝑟𝑡) = 𝑛 ∗ log 𝑛
Ω(𝑎𝑛𝑦 𝑠𝑜𝑟𝑡) = 𝑛 ∗ log 𝑛
Θ(𝑚𝑒𝑟𝑔𝑒𝑠𝑜𝑟𝑡) = 𝑛 ∗ log 𝑛

General Es ist schwierig über kleine Instanzgrössen, das Wachstum in grossen Instanzgrössen vorauszusagen.
Für verschiedene Instanzgrössen, werden oft verschiedene Algorithmen angewendet.

scalable parallel
system

𝑇0 𝑔𝑟𝑜𝑤𝑠 𝑠𝑢𝑏𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑤𝑖𝑡ℎ 𝑊
𝑊 ↑ ⟹ 𝐸 ↑

𝑊 ↑ 𝑎𝑛𝑑 𝑝 ↑ ⇒ 𝐸 𝑐𝑜𝑛𝑠𝑡

a scalable parallel system can always be made cost-
optimal if the number of processing elements and the
size of the computation are chosen appropriately

Efficiency Fixed problem size W

Fixed number of processing elements p

Degree of

Concurrency
maximum number of operations (tasks) that can be
executed simultaneously at any time in a parallel
algorithm.

e.g. Gaussian elimination 𝑊 = Θ(n3)

𝐶(𝑊) = Θ(𝑛2) = Θ (W
2
3) < Θ(W)

𝑊 = Ω(p
3

2) at least, to use them all

Minimum
Execution Times

𝑑

𝑑𝑝
𝑇𝑃 = 0, let 𝑝𝑂be the value of 𝑝 as determined by this equation

𝑇𝑃
𝑚𝑖𝑛 =

{

 𝑇𝑃(𝑝0) =

𝑊 + 𝑇𝑂(𝑊, 𝑝)

𝑝
, 𝑖𝑓 𝑝0 ≤ 𝐶(𝑊)

𝑇𝑃(𝐶(𝑊)) =
𝑊 + 𝑇𝑂(𝑊, 𝑝)

𝐶(𝑊)
, 𝑒𝑙𝑠𝑒

e.g. adding n numbers
𝑑

𝑑𝑝
𝑇𝑃 = −

𝑛

𝑝2
+
2

𝑝
= 0

𝑇𝑃
𝑚𝑖𝑛 = 2 log 𝑛

Minimum Cost-
optimal

execution time

𝑇𝑝
𝑐𝑜𝑠𝑡_𝑜𝑝𝑡

= Ω(W
𝑊

𝑓−1(𝑊)
) 𝑝0 =

𝑛

2
, 𝐶𝑜𝑠𝑡 = 𝑝0𝑇𝑝

𝑚𝑖𝑛

not cost-optimal

DAG (directed, acyclic graph) Example 1 Example 2

Nodes 𝑁 = 15 𝑁 = 64 𝑁 = 36

Height 𝑛 = log𝑘(𝑁 + 1) = 4 𝑛 = √64 = 8
𝑛 =

√1 + 8𝑁 − 1

2
= 8

Degree of Concurrency 𝐶(𝑊) = 2𝑛−1 = 8 𝐶(𝑊) = 𝑛 = 8 𝐶(𝑊) = 𝑛 = 8

max. speedup
𝑝 = ∞

𝑆 =
𝑇𝑆
𝑇𝑃

=
𝑁

𝑛
=
2𝑛 − 1

𝑛
 𝑆 =

𝑛2

2𝑛 − 1
 𝑆 =

𝑁

𝑛
=
𝑛 + 1

2

𝑝 =
𝐶(𝑊)

2
 𝑆 =

𝑁

𝑛 + 1
=
2𝑛 − 1

𝑛 + 1

𝐸 =
𝑆

𝑝
=

2𝑛 − 1
𝑛 + 1
2𝑛−1

2

=
2𝑛 − 1

2𝑛−2(𝑛 + 1)

p

E

𝑝 ↑ ⟹ 𝑇𝑂 ↑ ⟹ 𝐸 ↓

W

E

𝑛 ↑ ⟹ 𝐸 ↑

ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 8 von 16

Heterogeneous Shared Memory System (HSMS)

OpenCL framework to run code on GPU

Performance
Increase

By Frequence (higher clock circuit rate): voltage reduction needed -> at its limit
By number of cores: parallel coding needed
By heterogeneity: handle different workload characteristics on different architectures

Workloads control intensive (e.g. searching, sorting, parsing) -> best with CPUs
data intensive (e.g. Image processing, simulation, modelling, data mining) -> best with GPUs
compute intensive (e.g. iterative methods, numerical methods, financial modeling)

HSA Heterogeneous System Architect -> combine CPUs, GPUs, DSPs (Digital Signal Processing), FPGAs
-> better performance and lower power consumption

Architecture SIMD (single instruction on multiple data) and Vector Processing (pipelining computation over long data)
Hardware Multithreading (independent instruction streams (threads) are executed concurrently
 Simultaneous Multithreading (SMT) or Temporal Multithreading
 Hyperthreading = 4 physical cores results in 8 logical cores
Multi-Core Architectures (both CPUs and GPUs)
Systems-on-Chip (SoC) and the APU Accelerated Processing Unit (mix of CPU and GPU)

GPU Architecture

GPUs tend to be heavily multithreaded, are design for process graphics
Components
Compute Unit (streaming multiprocessors, local memory: needs synch)
Internal and external bus system
Global memory: no synch

Types C++ AMP (Accelerated Massive Parallelism) – open spec from Microsoft – based on DirectX 11, CPU fallback
CUDA (Compute Unified Device Architecture) – from NVIDIA – supports C, C++ and Fortran, nvcc compiler
OpenACC – from Cray/CAPS/NVIDIA/PGI – supports C, C++ and Fortran – pragma compiler directives
OpenCL – from language C99 – 3 major code blocks – fastest – most complicated

OpenCL

Block 1: Device program: kernels and subroutines
operation executed by the work items (vector_add)
C99 based syntax with vector operations
Block 2: Host program: device and kernel preparation
Platform and device handling
creating contexts and command queues
compiling OpenCL device programs
Block 3: Host program: data and program enqueing
data allocation and management / filling in cmd queues /
setting kernel arguments / running kernels / event handling

Summary portable and high-performance framework, for computationally intensive algorithms, use all ressources
efficient parallel programming language, C99 with extensions for task and data parallelism, built-in functions
defines hardware and numerical precision requirements
open standard for heterogeneous parallel computing

e.g. OCLData ocl = initOCL("./edges.cl", "edges");
processOCL(ocl, image, out2, hFilter, vFilter, fSize);
// OpenCL kernel
__kernel void edges(__read_only image2d_t source, __write_only image2d_t dest,
__constant int* hFilter, __constant int* vFilter, int fSize, sampler_t sampler)
{
 const int w = get_global_size(0); // number of global work items
 const int col = get_global_id(0); // global work item id
 ...
 uint4 pixel = read_imageui(source, sampler, coords);
 ...
 write_imageui(dest, coords, p);
}

ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 9 von 16

Decomposition and mapping techniques

Parallel Algorithm
Design

Steps 1. decompose in pieces of work (tasks) which can be performed concurrently

fine-grained: large number of tasks -> better load balance
coarse-grained: medium number of tasks

2. map this tasks to processors (e.g. task 1,2 and 3 can run in parallel)
usually small number of processes than tasks
goal: reduction of communication overhead

3. manage access to shared data
4. process mapping (not important in our course)

Granularity number of tasks into which a problem is decomposed

Degree of
Concurrency

number of tasks that can be executed in parallel, may change during execution
𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑎𝑡 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 𝑑𝑢𝑟𝑖𝑛𝑔 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤𝑜𝑟𝑘

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ

Critical Path
Length

the length of the longest path in a task dependency graph -> shortest time of execution

Task interaction
graph

the graph of tasks (nodes) and their interactions/data exchange (edges) is referred to as a task interaction
graph

Decomposition

techniques
Recursive decomposition: divide-and-conquer strategy, with recursion (e.g. min of a list)
Input/output/intermediate data partitioning: devide data in different part
-> assign tasks to these partitions (e.g. matrix mult), each output can be computed as a function of the input
Exploration Decomposition: create task during run-time (e.g. tile puzzle)

Mapping In general, the number of tasks is bigger than the processing elements -> mapping is needed
Goal: minimize overhead (communication and idling) -> often contradicting

Static Mapping
tasks are mapped to processes a-priori
we should know the size of each task

Dynamic Mapping (Dynamic Load Balancing)
tasks are mapped to processes at runtime

data partitioning
row/column/
block(grid)-wise
cyclic, block-cyclic
(e.g. LU Decomp)

task graph
partitioning
opt.map = NPC
binary tree
(e.g. quicksort hyperc)

hybrid

centralized (Master/Slave)
master manages tasks
slave execute tasks
e.g. sort entries in each row
of an nxn matrix

distributed (Pipeline)
process send/receive
work from others,
no bottleneck

Minimize
Interaction
Overhead

Maximize data locality -> reuse intermediate data
Minimize volume of data exchange
Minimize frequency of interactions

Minimize contention and hot-spots
Overlapping computations with interactions
-> use non-blocking communication, multithreading

Problem

𝑡1

𝑡2

𝑡4 𝑡3

𝑡5

decompose

dependency graph (DAG)

𝑝1
𝑝2

𝑝3

map

process
mapping

parallel processos processors

ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 10 von 16

LU
Decomposition of
linear equations

A = square matrix
L = lower triang.
U = upper triang.

𝐴 = 𝐿𝑈

(

𝐴1,1 𝐴1,2 𝐴1,3
𝐴2,1 𝐴2,2 𝐴2,3
𝐴3,1 𝐴3,2 𝐴3,3

) → (

𝐿1,1 0 0

𝐿2,1 𝐿2,2 0

𝐿3,1 𝐿3,2 𝐿3,3

) ∗ (

𝑈1,1 𝑈1,2 𝑈1,3
0 𝑈2,2 𝑈2,3
0 0 𝑈3,3

)

𝐿1,1, 𝐿2,2, 𝐿3,3 = 1

given value
overwriten value
use computed value

Tasks:
1. 𝐴1,1 → 𝐿1,1𝑈1,1

2. 𝐿2,1 = 𝐴2,1𝑈1,1
−1

3. 𝐿3,1 = 𝐴3,1𝑈1,1
−1

4. 𝑈1,2 = 𝐿1,1
−1𝐴1,2

5. 𝑈1,3 = 𝐿1,1
−1𝐴1,3

6. 𝐴2,2 = 𝐴2,2 − 𝐿2,1𝑈1,2

7. 𝐴2,3 = 𝐴2,3 − 𝐿2,1𝑈1,3

8. 𝐴3,2 = 𝐴3,2 − 𝐿3,1𝑈1,2

9. 𝐴3,3 = 𝐴3,3 − 𝐿3,1𝑈1,3

10. 𝐴2,2 → 𝐿2,2𝑈2,2

11. 𝐿3,2 = 𝐴3,2𝑈2,2
−1

12. 𝑈2,3 = 𝐿2,2
−1𝐴2,3

13. 𝐴3,3 = 𝐴3,3 − 𝐿3,2𝑈2,3

14. 𝐴3,3 → 𝐿3,3𝑈3,3

Beispiel Diagonal
Round Robin

𝑝 = 3

Vorgehen

𝑃0 𝑃1 𝑃0
𝑃2 𝑃1 𝑃0
𝑃2 𝑃1 𝑃2

 1 2 3 4 5 6 7 8

𝑃0 𝑇1 𝑇5 𝑇7 𝑇12

𝑃1 𝑇4 𝑇6 𝑇8 𝑇10 𝑇11

𝑃2 𝑇2 𝑇3 𝑇9 𝑇13 𝑇14

𝑇𝑆 = 14
𝑇𝑃 = 8

𝑆 =
14

8
=
7

4

𝐸 =
7

4 ∗ 3

𝐶𝑜𝑠𝑡 = 𝑇𝑃 ∗ 𝑝 = 24
𝑇𝑂 = 𝐶𝑜𝑠𝑡 − 𝑇𝑆 = 10

𝑇𝑃
𝑚𝑖𝑛 = 7

Ω(𝑝0) =
𝑇𝑆

𝑇𝑃
𝑚𝑖𝑛

= 2

𝑇1 𝑇4 𝑇5

𝑇2 𝑇3

𝑇6 𝑇7 𝑇8

𝑇10 𝑇9

𝑇11 𝑇12

𝑇13

𝑇14

ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 11 von 16

Distributed Memory Systems (DMS)

 shared memory systems distributed memory systems

for problems requiring vast amounts of data or computation

Task execution tasks are carried out by threads tasks are carried out by processes

Memory /
Communication

each thread has private memory
and access to shared-memory

processes have their own address space and can communicate
to each other by different concepts: message passing, pipes,
remotely shared-memory

Properties cost of scaling the interconnect is very high
large crossbar switches are very expensive

interconnects are inexpensive
coarse-grained computations usually don't need a lot of shared
memory

Examples hypercube/toroidal mesh

MapReduce
Model

introduced by Google in 2004 for large data set
adopted for C++, C#, F#, Erlang, Java, Python, ...
OpenSource Impl: Hadoop by Apache

map: execute a function on all items of an input list
reduce: take key-value and reduce to associated value

e.g. compute the number of words for all available word lengths

MPI: Message
Passing Interface

Standardized and portable message-parsing system for parallel computing architectures
Language: in C and Fortran, adopted for Python and Java
Implementations: MPICH, Open MPI, Microsoft MPI
Cons: consider communication cost

Structures asynchronous paradigm: all concurrent tasks execute asynchronously
lossely synchronous model: tasks are synchronize to perform interactions
between these interaction these interations, tasks execute completely asynchronously
SPMD model: most message-passing programs are written using Single Program Multiple Data model

Example:
Greetings

int main(int argc, char* argv[]) {
 int numprocs, myid;
 MPI_Init(&argc, &argv); // initializes MPI environment, eval cmd line args
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs); // determines the number of processes
 MPI_Comm_rank(MPI_COMM_WORLD, &myid); // determines the label (id) of calling process
 if (myid == 0) {
 const int bufLen = 100; char greeting[bufLen];
 cout << "process " << myid << " of " << numprocs << " processes!" << endl;
 for (int i = 1; i < numprocs; i++) {
 // receives a message: receives a buffer with n-elements from a source
 // blocks until received, order of one sender is kept (nonovertaking)
 MPI_Recv(greeting, bufLen, MPI_CHAR, i, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 cout << greeting << endl;
 }
 } else {
 stringstream ss; ss << "process " << myid << " of " << numprocs << " processes!";
 string greeting(ss.str());
 // sends a message: send a buffer with n-elements to a destination
 // blocks until received (non-buffered) or fully copied to internal buffer(buffered)
 MPI_Send(greeting.c_str(), (int)greeting.size() + 1, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
 }
 MPI_Finalize(); // terminates MPI, clean-up environment, should return MPI_SUCCESS
 return 0;
}

I/O MPI_COMM_WORLD -> allows access for all processors to stdout and stderr, allows access for 𝑝0 to stdin
order of process is unpredictable -> I/O should be done with process 0

$(MSMPI_BIN)mpiexec.exe -n 10 "$(TargetPath)"

ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 12 von 16

Buffering/
Blocking
determined by
implementation

 Command Pro Cons

Non-Buffered – blocking Ssend simple, safe idling and deadlocks

Buffered (on receiver) – blocking Bsend less idling block during send

Non-Buffered – non-blocking Isend non-blocking ensure semantic

solve deadlocks with MPI_Sendrecv or MPI_Sendrecv_replace
use MPI_Test to check if an operation has finished
use MPI_Wait to wait until an operation has finished
use MPI_Status variable to get information about MPI_Recv operation
use MPI_Get_count to get the count of data items received

Buffer (aus Sicht
von MPI)

Externer Buffer: Buffer meines Programms
Internen Buffer: Buffer von MPI

Debug MPI run with one or two processes, run all processes on a single computer, use assertions
use synchronous instead of buffered communication, attach debugger to one of these processes

Communicator
MPI_Comm

Defines a set of processes that are allowed to communicate with each other (intra-communication)
A process can belong to multiple communication domains
Default Communicator MPI_COMM_WORLD includes all processes

Processor
Mappings

The programmer cannot explicitly specify how processes are mapped onto processors-> job of MPI library
Supported Topologies: k-dim. Mesh, arbitrary graph, dist graph

Partitioning
Topologies

use MPI_Comm_split to split processes into certain subset
use MPI_Cart_create to create new communicators from old ones (MPI_Cart_coord, MPI_Cart_rank)
use MPI_Cart_shift to shift data in a cartesian topology
use MPI_Cart_sub to form lower-dimensional grids

Collective
Communication
Operations

Barrier synchronization MPI_Barrier(comm)

Broadcast: one-to-all, all-to-all MPI_Bcast(buf,count,datatype,source,comm

Reduction: reduce, all-reduce MPI_Reduce(sendbuf,recvbuf,count,datatype,op,target,comm)
MPI_Allreduce(sendbuf,recvbuf,count,datatype, op,comm)

Prefix-sum MPI_Scan(sendbuf,recvbuf,count,datatype,op,comm)

Personalized comm: gather and scatter MPI_Gather(sendbuf,sendcount,sendType,recvbuf,recvcount..)
MPI_Allgather, MPI_Scatter, MPI_Alltoall

each of these operations is defined over a group corresponding to the communicator
all processors in a communicator must call these operations

Reduction
Operations

Operation Meaning Datatypes
MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD Maximum, Minimum, Sum, Product C integers and floats
MPI_LAND, MPI_LOR, MPI_LXOR Logical AND, Logical OR, Logical XOR C integers
MPI_BAND, MPI_BOR, MPI_BXOR Bit-wise AND, Bit-wise OR, Bit-wise XOR C integers and byte
MPI_MAXLOC, MPI_MINLOC max-min, min-min value-location Data-pairs

MPI Version MPI-1 1994 version 1.0

MPI-2 2000 +Threads -> use run openMP on a Node
+ I/O parallel access to files

MPI-3 2012 - C++ Bindings
+ Non-blocking collective operations
+ One-sided communcation (RemoteMemoryAccess)

ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 13 von 16

Collective Communication

Data Exchange Designing parallel algorithms on a distributed-memory system requires data exchange between processes.
This exchange can significantly impact the efficiency because of interaction delays.

efficient impl. Improve performance, reduce development effort and cost, improve software qualitity

Overhead due to idling, contention (conflict), communication and excess computation (not performed by serial)

Cost depends on: communication model, network topology, data handling & routing (e.g. cut-through), protocols

Message
passing costs

Startup time 𝑡𝑠: time spent at sending and receiving nodes
Per-hop time 𝑡ℎ: function of number of hops and includes factors like switch latencies, network delays, ets.
Per-word transfer time 𝑡𝑤: overheads by the message length: bandwidth of links, error checking/correction.
Communication cost 𝑡𝑐𝑜𝑚𝑚 = 𝑡𝑠 + 𝑙 ∗ 𝑡ℎ +𝑚 ∗ 𝑡𝑤 (size 𝑚, point-to-point messaging)
Simplified cost model 𝑡𝑐𝑜𝑚𝑚 = 𝑡𝑠 +𝑚 ∗ 𝑡𝑤 (𝑡ℎ is often very small)

Overview of
Global
Communication

What data is spread? Same data is sent to all nodes Personalized data is sent to different nodes

Broadcast Personalized

How is received
data handled?

Aggregated
(glued togehter)

Reduced
(combined)

Aggregated Reduced

Who is
sending to
whom

One-to-all One-to-All Broadcast Scatter

All-to-one - - Gather All-to-One Reduction

All-to-All All-to-All Broadcast All-Reduce Total Exchange All-to-All Reduction

Lowerbound
𝑝 ∗

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∗ 𝑎𝑣𝑔. 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠

1. Find formula for the lower bound for an algorithm
2. Calculate it for the different comm. systems

Process 𝑝
3 = 𝑝 − 1

Linear-Array / Rings Two-dim. mesh

𝑅𝑜𝑤, 𝑐𝑜𝑙𝑠: √𝑝

Hypercube 𝒑 = 𝟐𝒅
𝑑𝑖𝑚: 𝑑 = log 𝑝

One-to-All Broadcast
All-to-One Reduction

0 𝑀
1
2
3

𝑜𝑛𝑒−𝑡𝑜−𝑎𝑙𝑙 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡
→
𝑎𝑙𝑙−𝑡𝑜−𝑜𝑛𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛
←

0 𝑀
1 𝑀
2 𝑀
3 𝑀

Naïve

𝑂(𝑝 − 1)

𝑂(log 𝑝)

𝑇 = (𝑡𝑠 +𝑚𝑡𝑤) ∗

log 𝑝

Better (recursive doubling)

𝑂(log 𝑝)

All-to-All Broadcast (All-Gather)
All-to-All Reduction
0 𝑀0

1 𝑀1

2 𝑀2

3 𝑀3

𝑎𝑙𝑙 −𝑡𝑜−𝑎𝑙𝑙 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡
→
𝑎𝑙𝑙−𝑡𝑜−𝑎𝑙𝑙 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛
←

0 𝑀0. . 𝑀3

1 𝑀0. . 𝑀3

2 𝑀0. . 𝑀3

3 𝑀0. . 𝑀3

Efficient approach
Send data in each step to the
neighbour

𝑂(𝑝 − 1)

𝑇 = (𝑝 − 1)(𝑡𝑠 +𝑚𝑡𝑤)

1. Rows

(√𝑝 − 1)(𝑡𝑠 +𝑚𝑡𝑤)

2. Columns

(√𝑝 − 1)(𝑡𝑠 +𝑚𝑡𝑤√𝑝)

𝑇 = 2𝑡𝑠(√𝑝 − 1) +

𝑚𝑡𝑤(𝑝 − 1)

𝑇 = 𝑡𝑠 log 𝑝 +
𝑚𝑡𝑤(𝑝 − 1)

All-Reduce
0 𝑀0

1 𝑀1

2 𝑀2

3 𝑀3

𝑎𝑙𝑙−
𝑟𝑒𝑑𝑢𝑐𝑒
→

0 𝑀𝑎

1 𝑀𝑎

2 𝑀𝑎

3 𝑀𝑎

inefficient approach
all2one reduction + one2all broadc.
better approach
all2all broadc without incr size of m

𝑇ℎ𝑦𝑝𝑒𝑟 = (𝑡𝑠 +𝑚𝑡𝑤) log 𝑝

Prefix-Sum

0 𝑀0

1 𝑀1

2 𝑀2

3 𝑀3

𝑝𝑟𝑒𝑓𝑖𝑥−
𝑠𝑢𝑚

→

0 𝑀0

1 𝑀0 +𝑀1

2 …

3 ∑ 𝑀𝑖

𝑝−1

𝑖=0

all2all broadcast but only with
labels less or equals to k

Scatter (One-to-All personalized communic.)
Gather

0 𝑀0…𝑀3

1
2
3

𝑠𝑐𝑎𝑡𝑡𝑒𝑟
→
𝑔𝑎𝑡ℎ𝑒𝑟
←

0 𝑀0

1 𝑀1

2 𝑀2

3 𝑀3

 𝑇 = 𝑡𝑠 log 𝑝 + 𝑚𝑡𝑤(𝑝 − 1)

𝑇 = Ω(𝑚𝑡𝑤(𝑝 − 1))

Total Exchange e.g. transpose a matrix
(All-to-All Personalized Communication)
0 𝑀0,0…𝑀0,3

1 𝑀1,0…𝑀1,3

2 𝑀2,0…𝑀2,3

3 𝑀3,0…𝑀3,3

𝑡𝑜𝑡𝑎𝑙
𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒
→

0 𝑀0,0…𝑀3,0

1 𝑀0,1…𝑀3,1

2 𝑀0,2…𝑀3,2

3 𝑀0,3 …𝑀3,3

𝑇𝑟𝑖𝑛𝑔 = (𝑡𝑠 +
𝑡𝑤𝑚𝑝

2
) (𝑝 − 1)

𝑇𝑀𝑒𝑠ℎ = (2𝑡𝑠 +𝑚𝑝𝑡𝑤)(√𝑝 − 1)

𝑇𝑛𝑎𝑖𝑣𝑒 ℎ𝑦𝑝𝑒𝑟 = (𝑡𝑠 +
𝑡𝑤𝑚𝑝

2
) log 𝑝

𝑇𝑏𝑒𝑡𝑡𝑒𝑟 ℎ𝑦𝑝𝑒𝑟 = (𝑡𝑠 + 𝑡𝑤𝑚)(𝑝 − 1)

ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 14 von 16

PARALLEL ALGORITHMS

Numerical Algorithms

Dense
Matrix-Vector
Multiplication

Gegeben:
𝐴: 𝑛 𝑥 𝑛 − 𝑀𝑎𝑡𝑟𝑖𝑥
𝑥, 𝑦: 𝑛 𝑥 1 − 𝑉𝑒𝑐𝑡𝑜𝑟

Gesucht:
𝑦 = 𝐴 𝑥

𝑝

{

(

𝐴0,0 𝐴0,1 𝐴0,2 𝐴0,3
𝐴1,0 𝐴1,1 𝐴1,2 𝐴1,3
𝐴2,0 𝐴2,1 𝐴2,2 𝐴2,3
𝐴3,0 𝐴3,1 𝐴3,2 𝐴3,3)

⏟
𝐴

× (

𝑥1
𝑥2
𝑥3
𝑥4

)

⏟
𝑥

=

(

𝑦1}

𝑛

𝑝
𝑦2
𝑦3
𝑦4)

⏟
𝑦

Solution 1:
Row-wise 1D

Partitioning

1 row of matrix A per process (p=n)
1. all-to-all broadcast of x
2. 𝑝𝑖 computes 𝑦𝑖 = 𝐴𝑖 ∗ 𝑥

𝑇𝑃 = Θ(𝑛)⏟
1.

+ Θ(𝑛)⏟
2.

= Θ(𝑛)

𝐶𝑜𝑠𝑡 = 𝑛 ∗ Θ(𝑛) = Θ(𝑛2) → 𝑐𝑜𝑠𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙

Using fewer than n processes (p<n)

Each process owns 𝑚 =
𝑛

𝑝
 rows of A

and the corresponding elements of 𝑥
same algorithm

problem size:

𝑊 = Θ(𝑛2)

𝑇𝑃 = 𝑡𝑠 log 𝑝 +
𝑡𝑤𝑛

𝑝
(𝑝 − 1)

⏟
1.𝑎𝑙𝑙−𝑡𝑜−𝑎𝑙𝑙

+
𝑛2

𝑝⏟
2.

= Θ(log 𝑝 + 𝑛 +
𝑛2

𝑝
)

𝐶𝑜𝑠𝑡 = Θ(p log 𝑝 + 𝑛𝑝 + 𝑛2) → 𝑐𝑜𝑠𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑓𝑜𝑟 𝑝 = 𝑂(𝑛)
𝑇𝑂 = 𝑝 log 𝑝 + 𝑛𝑝 + 𝑛2 −𝑊 = 𝑝 log 𝑝 + 𝑛𝑝

Isoefficiency: 𝑊 = 𝐾 𝑇0 = 𝐾 𝑝 log 𝑝⏟
𝑊=𝑝 log 𝑝

+ 𝐾 √𝑊𝑝⏟
𝑊=𝑝2

degree of concurrency: 𝐶(𝑊) = 𝑂(√𝑊) = 𝑂(𝑛)

𝑝 = 𝑂(𝑛) → 𝑛 = Ω(𝑝) → 𝑊 = Ω(𝑝2)

⇒ max 𝑏𝑙𝑢𝑒
→ 𝑓(𝑝) = Θ(𝑝2)

Solution 2:
2D Partitioning

1 matrix element per process
𝑝𝑖 𝑜𝑤𝑛𝑠 𝐴𝑖,𝑗

𝑙𝑎𝑠𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑤𝑛 𝑥𝑖
1. Align 𝑥 along the diagonal
2. Distribute 𝑥𝑖 alogn columns
3. 𝑛2 parallel multiplications
4. All-to-one reduction – rows

𝑇𝑃 ≈
𝑛2

𝑝⏟
3.

+ 𝑡𝑠 log 𝑝 + 𝑡𝑤
𝑛

√𝑝
log 𝑝

⏟
4.

𝑇𝑂 = 𝑝𝑇𝑝 −𝑊 = 𝑛2 + 𝑡𝑠𝑝 log 𝑝 + 𝑡𝑤√𝑝 𝑛 log 𝑝 − 𝑛2

𝑝 = 𝑂(𝑓−1(𝑊)) ≈ 𝑂 (
𝑛2

log2 𝑛
)

Resume: 2D faster for 𝑝 ≤ 𝑛, better isoefficiency and more scalable

Dense
Matrix-Matrix
Multiplication

Gegeben:
𝐴, 𝐵: 𝑛 𝑥 𝑛 − 𝑀𝑎𝑡𝑟𝑖𝑐𝑒𝑠

Gesucht:
𝐶 = 𝐴 𝐵

(

3 1 2 1
1 2 1 3
… … … …
… … … …

)

⏟
𝐴

× (

… … 2 1
… … 1 1
… … 1 2
… … 3 2

)

⏟
𝐵

= (

… … 12 10
… … 14 11
… … … …
… … … …

)

⏟
𝑦

Solution 1:
Block-Matrix

Multiplication

divide into q blocks → (1 < 𝑞 ≤ 𝑛)
𝑝 = 𝑞2

1. all-to-all broadcast of Matrix
A’s blocks in each row

2. all-to-all broadcast of matrix
B’s blocks in each column

3. compute block 𝑐𝑖,𝑗

𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛: 𝑊 = 𝑛3

(

3 1 2 1
1 2 1 3
… … … …
… … … …

)(

… … 2 1
… … 1 1
… … 1 2
… … 3 2

) = (
7 4
4 3

) + (
5 6
10 8

)

𝑇𝑃 =
𝑛3

𝑞2⏟
𝑞 𝑏𝑙𝑜𝑐𝑘 𝑚𝑢𝑙𝑡.

+ 2(𝑡𝑠 log 𝑞 +
𝑡𝑤𝑛

2

𝑞2
(𝑞 − 1))

⏟
2 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑠

cost-optimal for 𝑝 = 𝑂(𝑛2); isoefficiency Θ (𝑝
3

2)

degree of concur. 𝐶(𝑊) = 𝑂 (𝑊
2

3) = 𝑂(𝑛2) = 𝑝 → 𝑊 = Ω(p
3

2)

Cannon’s Matrix
Multiplication

memory optimal
each p computes one block and shifts
𝐴𝑖,𝑘 in its row and 𝐵𝑘,𝑗 in its columns

𝑇𝑃 =
𝑛3

𝑝
+ 2√𝑝𝑡𝑠 + 2𝑡𝑤

𝑛2

√𝑝
 isoefficiency 𝑂 (𝑝

3

2)

DNS Matrix
Multiplication

with intermediate data partitioning
𝑛3 processes, each compute one
scalar multiplication
reduce vectors of 𝑛 multiplication

𝑇𝑃 = 𝑂(1) + Θ(log 𝑛) = Θ(log 𝑛)
Θ(𝑛3 log 𝑛), is not cost optimal

using fewer than 𝒏𝟑 processes
assume 𝑝 = 𝑞3 𝑓𝑜𝑟 𝑞 < 𝑛

block partitioning: block size =
𝑛

𝑞
×

𝑛

𝑞

data partitioning: block size= (
𝑛

𝑞
)
3

𝑇𝑃 =
𝑛3

𝑝
+ 𝑡𝑠 log 𝑝 +

𝑡𝑤𝑛
2

𝑝
2
3

log 𝑝

isoefficiency: Θ(𝑝 log3 𝑝)

cost optimal for 𝑝 = 𝑂 (
𝑛3

log3 𝑛
)

Parallel Gaus
Elimination

1D Row Partitioning
𝑇𝑃 =

3

2
𝑛(𝑛 − 1) + 𝑡𝑠𝑛 log 𝑛 +

1

2
𝑡𝑤𝑛(𝑛 − 1) log𝑛

𝑂(𝑛2) → 𝑖𝑠 𝑐𝑜𝑠𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙

2D Partit. with pipelining, 𝒑 = 𝒏𝟐 𝑂(𝑛) → 𝑖𝑠 𝑐𝑜𝑠𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 more scalable than 1D

2D Partit. with pipelining, 𝒑 < 𝒏𝟐
𝑂 (

𝑛3

𝑝
) → 𝑖𝑠 𝑐𝑜𝑠𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙

𝑛 ≫ 𝑝

ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 15 von 16

Sorting Algorithms

Overview Most commonly used and well-studied kernels. Lower bound is Θ(𝑛 log 𝑛).

Verteilte Daten: jeder Prozess hat
𝑛

𝑝
 Daten.

Parallel sortierte Sequence: aufwärts sortiert innerhalb eines Prozesses und sortiert nach prozessor id.

Compare-Exch process p1 and p2 exchange elem 𝑎 and 𝑏. p1 keeps the min, p2 keeps the max. 𝑇 = 𝑡𝑠 + 𝑡𝑤

Compare Split Daten Austausch mit
𝑛

𝑝
 sortierten Daten. Merged alle und behält die zuständigen Daten. 𝑇 = 𝑡𝑠 + 𝑡𝑤

𝑛

𝑝

Sorting Network network of comparators designed specifically for sorting (2 inputs, 2 outputs) (incr or decr)

Parallel Odd-Even
Transposition
Sort

𝑇𝑃 =
𝑛

𝑝
log

𝑛

𝑝⏟
𝑙𝑜𝑘𝑎𝑙𝑒𝑠 𝑠𝑜𝑟𝑡𝑖𝑒𝑟𝑒𝑛

+ 𝑝⏟
𝐴𝑛𝑧𝑎ℎ𝑙
𝑝ℎ𝑎𝑠𝑒𝑛

∗
𝑛

𝑝⏟

𝐶𝑜𝑚𝑝.𝑠𝑝𝑙𝑖𝑡

=
𝑛

𝑝
log

𝑛

𝑝
+ 𝑛

𝐶𝑜𝑠𝑡 = 𝑝 ∗ 𝑇𝑝 = 𝑛 log
𝑛

𝑝
+ 𝑝 ∗ 𝑛

𝑆𝑝𝑒𝑒𝑑𝑢𝑝: 𝑆 =
𝑇𝑆
𝑇𝑃

= 𝑂(
𝑛 log 𝑛

𝑛
𝑝
log

𝑛
𝑝
+ 𝑛

)

𝑝 = 𝑛 → 𝐶𝑜𝑠𝑡 = Θ(𝑛2) nicht kostenoptimal, da sortieren 𝑛 log𝑛 verwenden sollte.
𝑝 = log 𝑛 → 𝐶𝑜𝑠𝑡 = Θ(𝑛 log𝑛) kostenoptimal

Parallel Shellsort 1. compare-split operation on process far aways
2. odd-even transposition sort with 𝑙 ≤ 𝑝

𝑇𝑃 = Θ(
𝑛

𝑝
log

𝑛

𝑝
)

⏟
𝑙𝑜𝑐𝑎𝑙 𝑠𝑜𝑟𝑡

+ Θ(
𝑛

𝑝
log 𝑝)

⏟
1.

+ Θ(𝑙
𝑛

𝑝
)

⏟
2.

Bitonic Sort

a bitonic sequence has two tones (sequences): increasing and decreasing or vice versa (shift allowed)

1. build a bitonic sequence

2. merge into a sorted sequence

Hypercube
𝑇𝑃 = Θ(log2 𝑛)

Mesh

𝑇𝑃 = Θ(log2 𝑛)⏟
𝑐𝑜𝑚𝑝𝑎𝑟𝑒

+ Θ(√𝑛)⏟
𝑐𝑜𝑚𝑚

𝑛

𝑝
 items on hypercube

𝑇𝑃 = Θ(
𝑛

𝑝
log

𝑛

𝑝
) + 2Θ (

𝑛

𝑝
log2 𝑝)

Quicksort Simple, low overhead, optimal complexity 𝑂(𝑛 log 𝑛)
recursive select one element as pivot, divide into 2
sequences (1 with smaller, 1 with bigger then pivot).

PRAM
Parallel Quicksort

CRCW (concurrent read, write) PRAM with
concurrent writes resulting in an arbitrary write
succeeding.

SAS Quicksort Shared Adress Space Quicksort
recursive repeated for each process group and sub-
array is assigned to a single process, in which case it
proceeds to sort it locally
global rearrangement:
each p counts n greater/smaller than pivot, to know
in which element to write

𝑇𝑃 = Θ(
𝑛

𝑝
log

𝑛

𝑝
)

⏟
𝑙𝑜𝑐𝑎𝑙 𝑠𝑜𝑟𝑡

+ Θ(
𝑛

𝑝
log 𝑝) + Θ(log2 𝑝)

⏟
𝑎𝑟𝑟𝑎𝑦 𝑠𝑝𝑙𝑖𝑡𝑠

Sequential
Bucket Sort

assumption: the n-elements to be sorted are uniformly distributed over an interval [a,b]
1. divide the range [a,b] of input numbers into m equal sized intervals, called buckets
2. each element is placed in its appropriate bucket (buckets have roughly identical number of elem)
3. elements in the bucket are locally sorted

~
𝑛

𝑚
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑏𝑢𝑐𝑘𝑒𝑡 𝑂(𝑛)⏟

𝑝𝑙𝑎𝑐𝑖𝑛𝑔

+𝑚 ∗ 𝑂 (
𝑛

𝑚
log

𝑛

𝑚
)

⏟
𝑙𝑜𝑐𝑎𝑙 𝑠𝑜𝑟𝑡

𝑇𝑃 = 𝑛 ∗ log
𝑛

𝑚

Normal sort
𝑚 = 1 → 𝑇𝑃 = 𝑛 ∗ log𝑛

Enum sort
𝑚 = 𝑛 → 𝑇𝑃 = 𝑂(𝑛)

Enumeration Sort similar to bucket sort, but create for each number in the range a bucket, and put it in the right bucket

ZHAW/HSR Druckdatum: 05.07.18 TSM_ProgAlg

Marcel Meschenmoser Dozent: Prof. Dr. C. Stamm Seite 16 von 16

Parallel Bucket
Sort

each process is assigned a block of
𝑛

𝑝
 elements, number of buckets m=p, each process knows the range [a,b]

1. each process partitions its block of
𝑛

𝑝
 elements into p sub-blocks, one for each of the p buckets

2. each process send 𝑝 − 1 sub-blocks to the appropriate processe using a single all-to-all
personalized communication

3. each process sorts all the elements it receives by using an optimal sequential sorting algorithms

𝑇𝑃 = 𝑂 (
𝑛

𝑝
)

⏟
1.

+ 𝑂 (
𝑛

𝑝2
∗ 𝑝)

⏟
2.

+ 𝑂 (
𝑛

𝑝
log

𝑛

𝑝
)

⏟
3.

= 𝑂 (
𝑛

𝑝
(1 + log

𝑛

𝑝
)) = 𝑂 (

𝑛

𝑝
log

𝑛

𝑝
)

Sequencial
Sample Sort

Similar to bucket sort without the unrealistic assumption of uniformly distributed elements
a sample is selected from the n elements and choosing 𝑚 − 1 elements (splitters) from the sorted sample.
Splitter selection: each p: sort with quicksort, choose p-1 samples (equal divided); repeat with samples

Parallel Sample S. m = p; share splitters with all-to-all broadcast;

𝑇𝑃 = Θ(
𝑛

𝑝
log

𝑛

𝑝
)

⏟
𝑙𝑜𝑐𝑎𝑙 𝑠𝑜𝑟𝑡

+ Θ(𝑝2 log 𝑝)⏟
𝑠𝑜𝑟𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

+ Θ(𝑝 log
𝑛

𝑝
)

⏟
𝑏𝑙𝑜𝑐𝑘 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

+ Θ(
𝑛

𝑝
) + Θ(𝑝 log 𝑝)

⏟
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛

Graph Algorithms (kommt nicht)

DFS vs BFS DFS (Depth-First Search Algorithm) BFS (Best-First-Search Algorihtm)

Pro: small place 𝑂(𝑑 ∗ ℎ)
Cons: find sub-optimal solutions first
Variation: set a maximum depth level

Pro: Find best solutions first

Cons: needs a lot of space 𝑂(𝑑ℎ)

Code
OpenMP
Evt. OpenCL
MPI
Param order doesn’t matter, but name should be clear
1/3 theory, 1/3 code, 1/3 run algorithm
Cost-optimal / efficiency
Exam is until parallel sorting
Parallel graph search is a little bit to advance

120min, A hand written summary of 4 A4 page

