ZHAW/HSR/FHNW

SOFTWARE ENGINEERING

Software Evolution

Druckdatum: 27.08.18 TSM_SoftwEng

Evolution is the set of activities (technical and managerial), that ensures that software continues to meet organizational
and business objects in a cost effective way over its lifetime. Driven by changes from stakeholders.

Types Requirements, Architecture, Design, Test case, Traceability, Data, Runtime, Language,

Classical Engin. | Waterfall model: when we are done after testing, then why does maintenance cost 70-80% off all cost

Agile Engin. Software evolution is a ingredient of agile software development (iterative development, allow change)

Software functionality stays e Corrective: Errors need to be fixed (Bugfixing)

Maintenance |the same! e Preventive: Prevent problems in the future (e.g. fix design issues)

e Adaptive: Something has changed in the environment (e.g new version)
e Perfective: Improve system qualities (e.g. performance)

Software Aging

Causes Lack of Movement (product owner don't see that changes are needed), e.g. DOS

Ignorant Surgery (caused by changes which do not understand the original design concept)
Cost Inability to keep up (with the market) e.g. VMS; Reduced performance

Decreasing Reliability (buggy, accidental bugging) e.g. MS-Office
Prevent Design and code for change; Keep records (docu); Second opinion (reviews)
Treatold retroactive documentation (build afterwards); retroactive incremental modularization;
software amputation (remove unused code); major surgery - restructing

Maintenance |Maintenance: software is already delivered s Evolution
. . . . * *
vs Evolution Evolution: from the very beginning * o 1 otaa 20 &
Maintenance
Types of S-Programs, can be completely and formally specified (e.g. sort an array)
Programs P-Programs, can be completely specified, but makes an approximation of the real world (e.g. chess)

E-Programs, mechanize a human or societal activity (e.g. ERP-system)

Lehman’s Law

Software systems have to evolve, otherwise they gradually become useless.

Roadmap Initial development stage
e Research challenge: design for change development
e Outcome: architecture & team knowledge
Evolution stage . « evolution
Evolution
e Goal: implement changes . changes
e Research challenge: program comprehension
e Management issue: keep team ;zi\élrfg;g
Servicing stage
e Goal: tactical changes at minimum cost
e Research challenge: program compehension
Phase-out
e servicing discontinued .
Close-down Close-down
e switch-off
Legacy Systems | old computer-based systems, which are still in use by organizations

e still business critical e replacing is risky (no/incomplete docu, change
e many changes over the years at high costs, no knowledge/understanding)
e many people involved e difficult to modify

Reverse engin.

trying to understand the architecture or behaviour of a large software system from source code

Re-engineering

trying to re-structure a legacy system, to produce a new system that is more evolvable

Forward engin.

traditional process of moving from design to implementation

Deal with
change

Program comprehension: Understanding the existing program in order to change it.
Methods: Source code/Runtime/Performance/Design/Architecture analysis, Metrics, Visualization tools
Tools: Sotograph, Metric, Checkstyle, CodeCrawler, Sonar
Change impact analysis: Identification of parts of the system that will be affected by a proposed change.
Change propagation: Making sure that all affected parts are changed correctly.
Restructuring/Refactoring: Improving the software structure or architecture without changing behavior.
Regression testing: Verifying that the change should not have an impact on the previous behavior.
Program transformation: One or multiple modifications applied to a program

e Translations (other language) e.g. Program Migration, Reverse Engineering

e Rephrasing (same language) e.g. Reengineering, Refactoring

Marcel Meschenmoser

Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 1 von 18

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Quality Metrics/Analysis and Visualization

Goal Quality Control, determine Quality of legacy code
Levels Code, Design, Architecture
Metrics a measurement scale and method to determine the value of an indicator of a certain software product
Types | Size Metrics: LOC, Number of Classes, Number of Methods, Halstead-Metric
Logical Structure Metrics: Cyclomatic Complexity McCabe
Data Structures Metrics: Number of Variables, Duration
Style Metrics: Naming Conventions, Nesting

Metrics for Cohesion and Coupling Fan-In, Fan-Out, Lack-of-Cohesion, Number of called Methods
Pro | quick overview, Indikator SW-Quality, Timeline SW-Quality, automatisierbar, motiviert, vergleichbar
Cons | absolute Zahlen, nicht immer aussagekraftig, lange Rechenzeit, Zahlenfixiert, keine optimale Schwellwerte
Tools | Metrics (for Eclipse), Checkstyle, Emma, CMT, Sonar, SonarQube, ...
Visualizations Software visualization tools use graphical techniques to make software visible (e.g. CodeCity)
Types | Hierarchical Views: Euclidean cones, Hyperbolic trees; Bottom UP Approach: Filter
Goal | read quality, get understanding, various levels, scalable
Approach | Polymetric View (=colored rectangles for the entities and edges for the relationships)
Pro | Customizable, modifiable, simple, powerful, scalability
Cons | Visual language must be learned, can't view inside the classes and strucutres -> go to code
Tools | CodeCrawler, Evolizer, Moose, Creole / Shrimp, CodeCity, EvoSpacer, Rigi, JInsight, Sonargraph, ...
Technical Dept metaphor to help us think about doing something quick and dirty

FEAST Feedback, Evolution And Software Technology
Code Duplication | Goal Avoid code and data duplications / redundancy
Problems Increase size of code, hard to understand and maintain code, more bugs
Types 1: is an exact copy without modifications (except for whitespace and comments)

2:is a syntactically identical copy, only variable type, or function identifiers has changed

3:is a copy with further modifications; statements have changed/added or removed

Cause Unknown change impact; badly, organized reuse; time pressure; Ignorance; shortsightedness
Handling e Preventive: activities to avoid new clones

e Compensative: limit the negative impact of existing clones

e corrective: remove clones from systemk

Solutions Code refactoring, modularization and parameterization
Polymetric View
Layout: Checker |Layout: Tree Layout: Tree Layout: Stapled Layout: Scatterplot
Target |Classes Classes Classes Classes Methods
Scope Full system Full system Subsystem Subsystem Full system
Metrics | Width: NOA Width: NOA. Width: NMA. Width: NOM. Position (X): LOC.
Height: NOM Height: NOM. Height: NMO. Height: WLOC. Position (Y): NOS.
Color: WLOC Color: WLOC Color: NME Color: NOM
Sort Width - - - -
goal identify large and | detect complexity |qualifies the inheritance | relates NOM with very scalable view shows
small classes and structure in relationships by WLOC of classes all methods using a
scales up to very |terms of the displaying NMA relative |detect exceptionsin |compare LOC and NOS as
functionality to NMO height position metrics
= HEmme s
PEEE R S
Pl L
Metrics
Class Metrics Method Metrics
HNL: Number of classes in superclass chain of class LOC: Method lines of code

NME: Number of methods extended, override but use base | MSG: Number of method message sends
NMI: Number of methods inherited, defined in superclass | NOP: Number of (input) parameters

NMO: Number of methods override, redefined NI: Number of invocations of other methods within method body
NOA: Number of attributes (= NIV + NCV) NMAA: Number of accesses on attributes

NOC: Number of immediate subclasses of a class NOS: Number of statements in method body

NOM: Number of methods Attribute Metrics

WLOC: Sum of LOC over all methods NAA: Number of times directly accessed (= NGA + NLA)

WNOC: Number of all descendant classes NGA: number of direct accesses from outside of its class

NLA: number of direct accesses from within its class

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 2 von 18

ZHAW/HSR/FHNW

Druckdatum: 27.08.18

TSM_SoftwEng

Restructuring Existing Code - Evolution of Legacy Code

Tools

There are a lot of tools, but people must do the job.

New
Functionality

Var A) Hack: duplicated code, complex conditionals, abusive inheritance, large classes/methods
-> like taking a loan on your software -> pay back via reengineering

Var B) No Hack: refactor, restructure, reengineer first
-> investment for the future -> paid back during maintainance

Establish key priorities, Identify guiding principles
Most Valuable First (for customer)
Maximize Commitment, early results, build confidence

Goals Reverse Engineering Reengineering
Cope with complexity, Recover lost information, Unbundling, Performance, Port to other platform, Design
Generate alternative views, Detect side effects, extraction, Exploitation of New Technology
synthesize higher abstraction, Facilitate reuse
Techniques Redocumentation, Design recovery (metrics) Restructuring, Data reengineering, Refactoring
Re*-Patterns Tests: Your Life Insurance Lifecycle:
Detailed Model Capture \ Migration Strategies 1. requirement analysis
5T < Detecting Duplicated Code
Initial Understanding 24P 2. model capture
First Contact Redistribute Responsibilities | 3- problem detection
i - 4. problem resolution
: S Transform Conditionals .
Setting Direction to Polymorphism 5. program transformation
1. Setting Direction 2. First Contact
— o Setting Direction talk with — System-experts — o ith ,
set direction where to start developers / \ end users ~ .
, Y \| \
Agree on Maxims Chat with the Interview \
Most Valuable First Maintai i \ talk about it
maintain coordinate aintainars Buring bemo \
direction direction what to do whatiotiodo: | = T TR SiSerei s S
L\ verify what r
Appoint a Fix Problems, _\you hear | ~_— software system —__
Navigator Not Symptoms I wead it~ X
Speok to the If It Ain't Broke, | ’,/ _
Round Table &how to doit Don't Fix It | J/ read about it compile it \\
T e | \
Keep It Simple ' Y \
. . I Read all the Code Skim the Do a Mock
Agree on Maxims (common understanding) I in One Hour Documentation Installation

System experts

talk to maintainers to get historical and political context
talk to end users to get an initial feeling for the functionality
Software system

read it (all code in one hour), read about it, compile it

3. Initial Understanding
//‘____-— — top-down — . recover
Ve | design
/
/ Speculate
f.-' about Design
|"I
|’II
understand? Analyze the Study the
i Persistent Data Exceptional Entities
\\ i
\ recover | identify
\ database | problems
\ |
AN S

_ ;_ baﬂom-up'“"J
top-down (recover design)

bottom-up (recover database, identify problems)

4. Detailed Model Capture

Tie Code and Questions —_

“._ expose

\ "\ design
keep track of . §
your understanding ™~ — Refactor to Understand e _
|
r" \
test your

expose collaborations / ’ %
= understanding
Step Through the Execution <4

| . o Write Tests to

Understand
expose contracts

\,
A | ook for the Contracts -

expose evolution
Learn from the Past

_—» Use Your Tools -

Look for Key Methods g |
1 |
Look For Constructor Calls |

3 |

—» LoOk for Template/Hook Methods <a———— = |

Look for Super Calls

»

N

Redistributed
Responsibilities
1.
2.

3. Move Behavior Close to Data

The Law of Demeter (method M of obj O should invoke only methods of O, param of M, obj created by M,
direct component obj of O) -> Don’t talk to strangers

Eliminate Navigation Code (this.intermediary.provider.service(); -> remove middle man)

Split up God Class (to much intelligence -> split up -> easier said, than done)

Transform
Conditionals to
Polymorphism

1. Transform Self Type Checks — 2. Transform Client Checks — 3. Factor out State — 4. Factor out Strategy —
5. Introduce Null Object — 6. Transform Conditionals into Registration

Marcel Meschenmoser

Dozent: Martin Kropp & Thomas Koller & Andreas Meier

Seite 3 von 18

ZHAW/HSR/FHNW

Adding Tests to Legacy Code

Druckdatum: 27.08.18

TSM_SoftwEng

Why Breaking
Dependencies

Types of
Dependencies

Tests Your Life Insurance
TDD Test Driven Development
Process | Write test code -> Execute test which should fail -> Write functional code until test pass -> Iterate
Pro | better design of code -> think about its intended use, simpler code -> only program requirements,
documentation and specifications, faster iterations during impl., breaking dependencies, safely refactoring
Mock Objects | simulated objects that mimic the behavior of real objects in controlled ways (Fake)
pro: interface discovery, consider an object's interactions with its collaborators
Need-Driven Development: guides interface design by services that an object requires, not those it provides
Legacy Code |is code without tests -> bad code. it doesn’t matter how pretty, well written, object-oriented it is.
Why change? | Adding a feature; fixing a bug; improve design; optimize resource usage
How do we a) Edit and Pray (work with extreme care)
change? plan carefully -> fully understanding of change -> make change -> run to check -> smoke tests -> pray
b) Cover and Modify (work with a safety net — a test harness)
run tests -> write new tests -> write code -> refactor -> wash/rinse/repeat -> verify by running tests
Change Alg. | Identify change points -> Find test points -> Break dependencies -> Write tests -> Make changes and refactor

a) Sensing (break dependencies to get visibility/understanding what the code is doing)
b) Separation (break dependencies to test in isolation)

e Singletons -> hope that Singleton-Class is good for your tests too
e Internal instantiations (new Class) -> hope that class runs well in tests
e Concrete Dependencies (give Class per Constructor) -> hope that class let’s you know what is happening

seam (Naht)

type:
object seam

a seam is a place where you can change the behavior without editing in that place
every seam has an enabling point, a place where you can make the decision to use one behavior or another

This method call is not a seam, no enabling point
void doSomething() {
IController ¢ = new BombController();

This is now a seam, we can change behaviour
void doSomething(IController c) {
c.doAction(); // change behaviour

dependencies

c.doAction(); }
}
other types | pre-processing seam, link seam

Problems CUT (Class Under Test) MUT (Method Under Test)

that can Object of the class can’t be created easily The method to test is not accessible

occur Test harness won’t build with the class Method needs hard to construct parameters
Constructor we need to use has bad side effects Method has bad side effects
Significant work happens in the constructor

Changing Reason: | need to change a monster method and can’t write tests

Software Action: Introduce sensing variables, Extract what you know, Break out a method object, Skeletonize Methods,
Find Sequences, Extract to the current class first, Extract small pieces, Be prepared to redo extractions
Reason: | need to make a change, but don’t know what tests to write
Action: Characterization tests, Characterizing classes, Targeted Testing
Reason: It takes forever to make a change
Action: Understanding, Lag Time, Breaking Dependencies, Build Dependencies

Breaking Extract and Override Call: Extract the call to a virtual method and then override it in a testing subclass

Extract and Override Factory Method: Extract object creation into factory method and override in tests
Replace Global Reference with Getter: Extract global reference to method and override in tests

Extract Interface: Find member functions to extract, and copy function signatures to a interface
Parameterize method: Identify dependency and make new method with arguments

Marcel Meschenmoser

Dozent: Martin Kropp & Thomas Koller & Andreas Meier

Seite 4 von 18

ZHAW/HSR/FHNW

Druckdatum: 27.08.18 TSM_SoftwEng

Software Architectures

Role of software architecture

Architecture

is a process: design and build; is a role: software architect; results in products: plans, models, prototypes

Definition a software system's architecture is the set of principal design decisions about the system -> Taylor
Design e structure e.g. “The elements should be organized and composed exactly like this...”
decisions e behavior e.g. “Data processing, storage, and visualization will be performed in strict sequence”

e interaction e.g. “Communication among all system elements will occur only using event notifications”
¢ non-functional properties e.g. “the dependability will be ensured by replicated processing modules”

Requirements

o fulfills functional and non-functional requirements (Ressource, CPU, RAM, Responsetime, Scalability)
e can be realized (political and organizational)
e can be implemented (e.g. proof through prototypes)

Prove prototype, vertical slice

Types Enterprise architecture (defines how an enterprise uses many applications -> metaphor: city planning)
Application architecture (defines the pieces that compose an application -> metaphor: building architecture)

Document UML (Diagramme/Modelle) or Kruchten's View 4+1 (Logical=functional; Development=programmer;
Process=dynamic; Physical=topology; + Scenarios=UseCases)

Difficulties Multi-dimensional decisions, interdependent factors, strong impact, requirements change

Pro communication among stakeholders (understanding/consensus/discussions/decisions)

document design decisions (guideline/basis/planing/checkpoints)
abstraction of the system (homogeneous systems / outsourcing or acquiring parts)

Misconceptions

Architecture is the same as design -> Architect's focus is on the boundaries and interfaces

Architecture is about infrastructure -> Frameworks, application servers, and databases from a minor part of
the problem space only

Architecture solves technical problems -> Changes are your biggest problem, isn't technical

Architecture is rigid and fixed (up front) -> Understand the impact of change

-> Start with a walking skeleton -> Great software is not built, it is grown

Architecture is pure science or pure art -> requires both and more

Mentorsupport

A mentor-support onboaring process can have a major positive impact

Role of software architect

Role

guarantee fulfillment of requirements (within budget)

demonstrate achievability (with models and/or prototypes)

design and construct (components, interfaces, responsibilities, structure)

coach and consult developer and other stakeholders (technology, project planning, risk management)

Tasks

Decide (under uncertainty, but decide), Document (adequately), Proof feasibility, Program, Communicate,
Negotiate (with stakeholders), Simplify, Standardize, Listen, Observe, Think (about the future), Lead

Mistakes

Believing the requirements; Being seduced by the technology; Majoring on your strengths and neglecting
other areas; Not stopping designers from designing; Thinking you can do it all yourself.

Requirements

e Knowledge and Experience in Architecture

e Technical breadth and technical understanding
e Disciplined, methodical working

e Experience with the whole Software Life Cycle
e |eadership qualities

e ability to communicate

Summary

Simplicity, Abstraction, Separation, Structure, Interface, Communication, Delivery of working systems

Ubung

Fowler: "important stuff"

Bass: Strukturen, Element, Beziehungen

ja ja
Taylor: principle design decisions ? nein

ja nein

?/ja ja

Ford: Hard to change later

Marcel Meschenmoser

Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 5 von 18

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Interfaces

why? Major aspect of good software design. It's too easy to design bad or wrong interfaces.
types run-time: call (function, method, procedure), event-callback, remote interfaces (synch/asynch)
compile-time: inheritance, use, inclusion/import
examples java interface, UNIX/POSIX for files, REST
types and data interfaces (methods <-> class attributes) vs service interface (methods <-> parameters)
styles sequential access (iterator above list) vs random access (get any element in list)
1-to-1 relationship interface vs n-to-1relationship of interface
stateless interface (no storage) vs stateful interface (with storage)
minimal interface (only needed methods) vs complete interface (methods for convenience/efficiency)
with inheritance (less delegation) vs with interfaces (delay hierarchy until usage is known)
Remote | procedural style (req-res, synch, handle failures) Vs document style (send/recv messages in document)
interfaces | synchronous (immediate, blocks, not scalable) Vs asynchronous (scalable, parameter validation)
stateless (scalable server, redundancy, more data) vs stateful (state per client, less data, state recovery)
REST Representational State Transfer (Fielding 2000) Goal: Uniform interface with 4 Constraints:
Client/Server, Stateless, Cachable Identification of Resources in Requests
standardisierte Operationen/Daten(JSON) Manipulation of Resources through Representations
resources are uniquely identified by the path Self-descriptive messages
WebService APIs offering REST over HTTP Hypermedia as the engine of application state (?!)
HTTP Method Safe (no change of data) |ldempotent (multiple exec does not change the data)
GET / HEAD / OPTIONS |yes yes
POST / PATCH no no
PUT / DELETE no yes
Design e Information Hiding
Principles e Low coupling, high cohesion

Coupling (2 classes): dependency between two classes
Cohesion (1 class): low cohesion means great variety of actions, high means focus on intention
e Separate Query (get) and Action(set) (either obtain state or change state)
e Three Laws of Interfaces (Ken Pugh)
o do what the method say it does; do not harm; notify caller if unable to perform
e Manage Dependencies — SOLID principles (Robert Martin)
o SRP: Single Responsibility: high cohesion, only one reason to change
o Open-Closed Principle — open for extension, closed for change
o ‘Liskov’ substitution principle — subclasses fulfill interface's role
o Interface Segregation Principle — split "fat" interfaces to increase cohesion
o Dependency Inversion Principle:
high-level classes should not depend upon low-level; both should depend on abstraction
abstractions should not depend on details; details should depend on abstractions

e Simplicity
DbC (Design by Contract)
Design by a contract defines obligations of both parties (client/supplier) as their benefits
Contract Preconditions (@Requires) — what the client needs to provide as true -> client/caller is responisble

Postconditions (@Ensures) — what the component promises to establish -> supplier is responsible
Invariants (@Invariant) — conditions that remain true -> for supplier
Contracts belong to the interface -> only define contracts for public interface methods
query=get 1. Separate queries (get) from commands (set)
command=set 2. Separate basic queries (e.g. count) from derived queries (e.g. isSEmpty)
3. For each derived query, write a postcondition that specifies what result will be returned in terms of
on or more base queries (e.g. postcondition in isEmpty: return (count=0)
4. For each command, write a postcondition that specifies the value of every basic query
5. For every query and command decide on a suitable precondition
6. Write invariants to define unchanging properties of objects
problems | lack of language support, not used systematically
pro | contracts abstract from implementation; good documentation; clearly defined responsibilities between client
and supplier; simpler code; helps writing better unit tests; less bugs
defensive | ensure the continuing function of code under unforeseen circumstances -> automatically fix failures
programming | opposite of DbC

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 6 von 18

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

HTTP Status Codes

This page is created from HTTF status code information found at ietf. org and Wikipedia. Click on the category heading or the status code link to read more.

1xx Informational

100 Continue

2XX Success

¥ 200 OK

203 Mon-Authoritative Information
206 Partial Content

226 IM Used

3xx Redirection
300 Multiple Choices

303 See Other

306 (Unused)

4xx Client Error

% 400 Bad Request

¥ 403 Forbidden

406 Mot Acceptable

% 409 Conflict

412 Precondition Failed

415 Unsupported Media Type

426 Upgrade Required
431 Request Header Fields Too Large

450 Blocked by Windows Parental Controls (Microsoft)

5xx Server Error

% 500 Internal Server Error

101 Switching Protocols

% 201 Created
% 204 No Content
207 Multi-Statu

ebDAV)

301 Moved Permanently
* 304 Not Modified
307 Temporary Redirect

% 401 Unauthorized

¥ 404 Not Found

407 Proxy Authentication Required
410 Gone

413 Request Entity Too Large
416 Requested Range Not 5
420 Enhance Your Calm {
424 Failed Dependenc
428 Precondition Required

444 Mo Response (Mginx)

451 Unavailable For Legal Reasons

501 Mot Implemented
504 Gateway Timeout

102 Processing (WebDAV)

202 Accepted
205 Reset Content
208 A

302 Found
305 Use Proxy
308 Permanent Redirect (experimental)

402 Payment Required

405 Method Not Allowed

408 Request Timeout

411 Length Required

414 Request-URI Too Long
417 Expectation Failed

422 Unprocessable Entity (W
425 Reserved for WebDAV
429 Too Many Requests

449 Retry With (Microsoft)
499 Client Closed Request (Nginx)

502 Bad Gateway
505 HTTP Version Not Supported

503 Service Unavailable

506 Varant Also Negotiates (Experimental) 507 Insufficient Storage 508 Loop Detected (WebDAV)

509 Bandwidth Limit Exceeded (Apache) 510 Not Extended 511 Network Authentication Required
598 Metwork read timeout error 599 Metwork connect timeout ermror

% “Top 10" HTTP Status Code. More REST service-specific information is contained in the entry.
http://www.restapitutorial.com/httpstatuscodes.html#

Architecture Styles and Patterns

Architecture Set of established architectural organizations — components, relationships, connectors, ...
Style Patterns: well-known organizational structures

e Descriptions of successful engineering stories

e Address recurring problems

e Describe generic solutions that worked
Reference Models: Prescribes specific configurations of components and interactions
Pattern Types |Architectural Patterns: Express a fundamental structural organization scheme for software systems
Design Patterns: Scheme for refining subsystems or components.
Idioms: Low level pattern specific to a programming language
Structure ofa | Problem, Tension (Forces to make a problem hard), Resolution of forces (Solution),
pattern Relationship to other Patterns, Consequences (Pro/Cons)
Misconceptions | All design patterns are inherently good -> Counter-Example: Singleton
"l invented that pattern" -> rule of three known uses
Design patterns are blueprints -> with copy-paste copy examples NO!
Let you turn off your brain -> they give you a better means to think about design
Are for experts only -> good OO programming without knowing design patterns is impossible today
Dangers Too much flexibility, too many patterns in a design, separate patterns split into separate classes,
over-engineering, misunderstanding the example/diagram for the pattern
Things to know | more than 23 patterns, successful solution concept, good patterns are honest -> pro and cons
pattern names give us a common vocabulary to discuss design efficiently and are targets for refactoring
Beware of YAGNI (You ain't gonna need it)! Create simple code!
Summary A pattern consists of more than the solution (diagram) but is a description of a proven engineering
experience that applies in each context and solves a problem generically with stating benefits and liabilities.
Some patterns are obsolete (Singleton)

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 7 von 18

http://www.restapitutorial.com/httpstatuscodes.html

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Architectural Pattern

A pattern for software architecture describes a recurring design problem that arises in specific design contexts, and presents a
well-proven generic scheme for its solution.
From Mud to Structure

Layers Intent Pro
. structure applications that can be Reuse of layers
e (Comp J [Comp decomposed into groups of subtasks | dependencies kept local
Solution exchangeability
Business Layer Comp = Comp services and interface per layer, Con
bottom up cascades of changing behavior
Database Layer Examples buffering of data
3-tier architecture, OSI 7 Layer model, |unnecessary work (checksum, encrypt)
structure the software into several layers TCP/IP, APIs, Virtual machines difficult to find correct granularity
each layer has a role and responsibility
Pipes and Filters Intent Pro
Filter Filter Filter Structure for systems that process a concurrent Processing, reusable,
Decrypt [l Auth De-Dup stream of data exchangeability, scalable
. . . . Each step is encapsulated in a filter Cons
Pipe Pipe Pipe Pipe . . L. e .
Data is passed through pipes between |efficiency is limited to slowest filter
Divide a large processing task into smaller, adjacent filters (Buffering/Sync) buffering of data
independent steps (filters) that are connected Examples
by channels (Pipes) Compiler, Incoming-Order
Blackboard Intent: Pro
Blackboard as common exchange of Easy to add new apps, extend data
information. space is easy
knowledge source with specialized Cons
modules and own representation modifying the structure of data space
control component which selects, is hard as all apps are affected
Blackboard configure and execute modules need synchronization and access
Example control
Speech recognition, vehicle
identification and tracking

Distributed Systems

Client-Server Intent: Pro
. services are centrally available on a server. Good to model a set of services
Client clients request services from the server Con
Client I | server respond relevant services to clients Thread per Request
Examples: IPC can cause overhead

TCP/IP Web-Clients, Document-Sharing

Server

Master-Slave Intent Pro
master distribute work among identical slaves Accuracy, Performance
slaves return result to master Cons
master computes a result isolated slaves -> no shared state
Examples latency due to communication
huge computation operation only for decomposable problems

Peer-to-Peer Intent: Pro
Distributed application supports decentralized computing
partitioning of tasks or work load robust in failure of a peer
peers are equally privileged scalable in resources and power
peers can be both clients and servers Cons
Examples no guarantee about quality, security
File-sharing networks (G2, Gnutella), Multimedia | performance depends on number of
protocols (P2PTV), nodes

Multimedia applications (Spotify)

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 8 von 18

ZHAW/HSR/FHNW

Druckdatum: 27.08.18

TSM_SoftwEng

SOA (Service Oriented
Architecture)

Intent:

independent products/service/technologies
can be access remotely

services are implemented through messaging

Pro:

Loose coupling, information hiding,
stateless, reusable, compose services
Cons:

not scalable because of shared interface

MVC (Model View Controller)

Intent:
Model contains the core functionality and data.

Implement change-propagation mechanism
Design view/controller/relationship/init
Examples:

MFC, Swing, Web frameworks (Django, Rails)

Variants:
merge view and controller

View Views display information to the user. Pro
Controllers handle user input. Views and Multiple, synchronized, pluggable view;
Controllers together comprise the Ul. exchange of "look and feel", framework
Solution potential
Model Identify core functionality and model classes Cons:

increased complexity

potential excessive number of updates
private, intimate coupling between view
and controller; close coupling of views
and controllers to a model

Publisher-Subscribe or
Event-bus pattern

Publisher
Source

Publisher
Source

Bus
ent Service

Subscriber
Listener

Subscriber
Listener

Intent

keep the state of components synchronized.
Enables one-way propagation of changes: one
publisher notifies any number of subscribers
about changes to its state.

Solution

subscribers register their interest in an event and
are subsequently asynchronously notified of
events generated by publishers.

Loosely coupled form of interaction required
decoupling: nobody knows each other, scalable
Examples

Android development, Notification services

Variants

Filtering: not all events are of interest
Pro

Decoupling, can come and go,

effective for highly distributed systems
Cons

Event service may need to store events
Authenticity of events: trust each other
difficult to scale

Broker

Client

Server Server Server

Intent

Server publish their services to broker
Client request a service from the broker
Broker redirects client to a suitable server
Example

Apache ActiveMQ, Apache Kafka,
RabbitMQ, JBoss Messaging

Pro

dynamic change, addition, deletion and
relocation of servers

transparent distribution to developer
Cons

requires standardization of server

Interpreter pattern

Abstract
Expression

NonTerminal
Expression

Terminal
Expression

Intent

Interprets programs written in dedicated
language. class for each symbol

Example

Database query language (SQL)
Communication protocols languages

Pro

Highly dynamic behavior, good for end
user programmability, flexible

Cons

interpreted language is slower than
compiled one

Enterprise Integration Patterns

EAI Pattern provide solutions for the integration of systems and components.

File Transfer Applications generate files for
commonly used data, which are
exchanged

Shared Database Applications read and write into a
shared DB

Remote Procedure |Applications offer interfaces that can

Invocation be called

Messaging Applications use a shared messaging
system for exchanging data

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 9 von 18

ZHAW/HSR/FHNW
ADD: Attribute Driven Design

Druckdatum: 27.08.18

Marcel Meschenmoser

ADD quality requirements (general or specific) -> set of tactics -> architecture
Qualitat observable via execution: performance, security, availability, functionality, usability |six quality attributes
requirements | not observable via execution: modifiability, portability, reusability, testability from Bass 2003
Qua!ity ("Process, Starage,) From [Bass 2003] 1. Extern'al'
Attribute Processor, 2. Unanticipated msg
Scenario /\ Communication 3. Normal operation
/ 4. Process
W 5. Inform operator,
continue to operate
, 6. No downtime
. — | Artifact | ——— -
' | msnmulus Respon —>
—)_f ”lllll
Q Source '_:g:#,tssmn En\monmant | Record, Notify, HBSPOI'ISG
of Stimulus | —crash 3 Disable, Measure
_~__ | -timing | Normal, Continue) (:) 7N
(|| -response | Degraded (normal/ '/Repair time h
Internal, AN | operation |\ degraded), Be |1, o iy,
l\ExternaI) < \unavailable / Available /
degraded time
interval |
_ /
Tactic A tactic is a design decision that influences the control of a quality attribute response.
Modifiability e Localize modifications — Reduce the number of modules directly affected by a change
tactics o maintain semantic coherence — responsibility work together -> Layer, SRP
o anticipate expected changes — minimize effect on change -> Adapter, Strategy, Interp, Facad
o generalize module — broader range of functions due to its input type -> Interpreter
o limit possible options — limit set of options -> Layer, Common Abstraction Layer
o abstract common services — through specialized modules -> Helper/lookup service, ...
e Prevent ripple effects — limit modifications to the localized modules
o Types of Dependencies: Syntax, Semantic, Sequence, Identity of an interface,
Runtime location, Quality of service / data provided, Existence, Resource assumption
o Information hiding — decompose and choose private-public -> Facade, Adapter, Proxy
o Maintain existing interfaces — separate interface from implementation -> layering, adapter
o Restrict communication paths —restrict data production and data consumption -> coupling
o Use intermediary —introduce an intermediary to manage dependency -> MVC/PAC, mediat.
e Defer binding time — Control deployment time
o Runtime registration — plug-and-play operation -> Lookup services, registries, plug-and-play
o Configuration files — set parameters at start-up -> dependency injection
o Polymorphism — late binding of method calls -> good class hierarchies, abstraction
o Component replacement —load time binding -> dynamic loadable modules
o Adherence to defined protocols — Runtime binding of independent processes -> e.g. SOAP
Availability e Fault Detection -> Ping/Echo, Heartbeat, Exception
Tactics e Recovery-Preparation and Repair -> Voting, Active Redundancy, Passive Redundancy, Spare
e Recovery-Reintroduction -> Shadow, State Resynchronization, Rollback
e Prevention -> Removal from Service, Transactions, Process Monitor
Security e Resisting Attacks -> Authenticate Users, Authorize Users, Maintain Data Confidentiality, Maintain
Tactics Integrity, Limit Exposure, Limit Access
e Detecting Attacks -> Intrusion Detection
e Recovering from an Attack -> Restoration (see availability), Identification (Audit Trail)
Testability e Manage Input / Output -> Record/Playback, Separate Interface from Implementation, Specialized
Tactics Access Routines/Interfaces
e Internal Monitoring (Build-in Monitors)
Usability e Separate User Interface
Tactics e Support User Initiative (Cancel, Undo, Aggregate)
e Support System Initiative (User Model, System Model, Task Model)

Dozent: Martin Kropp & Thomas Koller & Andreas Meier

TSM_SoftwEng

Seite 10 von 18

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Performance
Tactics

e Event: single or stream - Message arrival, time expiration, significant state change, ...
e Latency - Time between arrival of an event and the generation of a response to it
e Event arrives — System processes it or processing is blocked
e Resource Demand
o Increase Computation Efficiency -> Better algorithm, cache data (Proxy)
o Reduce Computational Overhead -> Simpler protocols, data compression
o Manage Event Rate -> avoid oversampling
o Control Frequency of sampling -> perhaps by queuing requests
e Resource Management
o Introduce Concurrency -> processes, threads, load balancing
o Maintain Multiple Copies -> copy-on-demand (proxy), caching
o Increase available resources -> faster, additional processors, more memory, faster network
e Resource Arbitration
o Scheduling Policy -> FIFO, fixed priority, dynamic priority, static/pre-emptying scheduling

Software Architecture Documentation and Analysis

ATAM - Architecture Tradeoff Analysis Method (Architectural Evaluation)

Why?

Architecture tells about system properties
Architecture drives the software system
Good evaluation methods

When?

Early in the lifecycle -> to be cost-effective

Costs

Staff time (accomplishments, training

Benefits

Financial, recorded rationales for decisions, early detection of problems, validation of requirements, improve

Participants

Evaluation Team (3 to 5 people, competent, unbiased, no hidden agenda)
Project decision makers (architect, project manager, customer)
Stakeholder (developer, tester, integrators, maintainers, performance engineer, users, system builds, ...)

Outputs

Documentation, business goals, quality requirements, mapping of decisions to quality requirements, risks,
non-risks, prioritization of risks, better understanding

Performance

Phase 0: Preparation

Project representative’s brief evaluators

Phase 1 and 2: Evaluation

1-1: present ATAM

1-2: present business drivers (functions, constraints, business goals, stakeholders, architectural drivers)
1-3: present the current architecture (1h) (context diagrams, component/behavioral/deployment views)
1-4 catalog architectural approaches (architectural patterns, style, and tactics)

1-5: generate quality attribute utility table

1-6: examine the highest ranked scenarios, evaluate architectural approaches, identify risks and non-risks
-> time-out, gather more stakeholders for phase 2

2-7: brainstorm and prioritize scenarios (utility table as input)

2-8: analyze architectural approach

2-9: present results (documentation, scenarios, utility table, risks, non-risks, sensitive points)

Phase 3: Follow-up

Evaluation team produces and delivers written evaluation report

Summary

Architecture analysis method
Based on evaluating quality scenarios
Helps mitigate architectural risks

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 11 von 18

ZHAW/HSR/FHNW

Druckdatum: 27.08.18

Process and Architecture

TSM_SoftwEng

Process User needs -> Requirement -> Design -> Implement -> Test/Document -> Install/Deploy -> Check
Waterfall System- sometimes no backward arrow,
Model analyse \ but in paper of Royce are they drawn.
\' Sgggiwgﬁ[)n —\
Architektur-
entwurf N\
Feinentwurf
\ unglgggier%ng \
_ Integration
und Test _\ Testing
\ Installation
und Abnahme '\
Betrieb
und Wartung
V-Modell
System System
Design Integration
. Acceptance
Requirements Testing
General Design ~ Component
Specification Testing
etailed eig v)
Specification UnitTesting
V-Model
RUP N, | rinciples
Rational Disciplines ncepton Elaboration Sonattuction Transtion | | Risk as primary driver, Architecture
Unified 8 Business Modeling A’; l ! centric, Iterative and incremental
Process wl Renuimments i | | Each phase ends with a milestone
- ;] *; Phases
o Analysis & Design ; f— - Inception: Lifecycle objectives (scope!)
0 Implementation | | N Elaboration: Lifecycle Architecture
" Test] | : i Construction: Initial operational
[| ‘ capability
8 Deployment
: '] BTN Transition: Product Release
a Configuration & | | |
Change Mgt —————. | | ISsues
= Project Management | l | Heavy: Lots of documents (in UML),
& Emironment | | | roles and process specification
- ' ai— 4
Initial E1 E2 Cc1 c2 CN 1 T2
Extreme Lean => Less documentation. Delivers capabilities quickly
Programming | Belief that architecture will gradually emerge (because of YAGNI and BDUF)
XP YAGNI: You Ain’t Gonna Need it
BDUF: No Big Design Up Front
Agile A system or software architecture that is versatile, easy to evolve, and easy to modify, while resilient enough
Architecture | not to degrade after a few changes
An agile way to define an architecture, using an iterative lifecycle, allowing the architectureal design to
tactically evolve over time
The zipper Architecturing design and building the system must go hand in hand
model e.g. each second sprint is an architecture sprint
SODA Software Development Process @ HSLU

Marcel Meschenmoser

Dozent: Martin Kropp & Thomas Koller & Andreas Meier

Seite 12 von 18

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Agile Software Development

Agile Manifesto and eXtreme Programming

Agiles Individuals and interactions over processes and tools

Manifest Working software over comprehensive documentation A]
Customer collaboration over contract negotiation ‘ Scrum
Responding to change over following a plan —
While there is value on the right, we value the items on the left more. - XP

Agile Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.

Principles Welcome changing requirements, even late in development for the customer's competitive advantage.

Deliver working software frequently (couple of weeks/months), with a preference to the shorter timescale.
Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment, support and trust they need.

The most efficient and effective method of conveying infos to and within a team is face-to-face conversation.
Working software is the primary measure of progress. Not documentation.

Promote sustainable development. Sponsors/developers/users should maintain a constant pace indefinitely.
Continuous attention to technical excellence and good design enhances agility.

Simplicity - the art of maximizing the amount of work not done - is essential and elegance.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to get more effective, then adjusts its behavior accordingly.

XP . The role of XP is to
Communica ! . -

eXtreme tion Practices give us principles and
Programming . Fesd practices in order to

4 variables eedbac deal with the risks!

Core values
Problem
risks in Courage

Listening

11 Principles

Designing Testing

Problem | 4 Variables: Time/Resources/Quality (external forces — customer/manager), Scope (our control variable)

Cost of change: slow rate

Core Values | Simplicity: We will do what is needed and asked for, but no more. This will maximize the value created for the
investment made to date. We will take small simple steps to our goal and mitigate failures as they happen. We
will create something we are proud of and maintain it long term for reasonable costs.

Communication: Everyone is part of the team and we communicate face to face daily. We work together on
everything from requirements to code. We will create the best solution to our problem that we can together.
Feedback: We will take every iteration commitment seriously by delivering working software. We
demonstrate our software early and often then listen carefully and make any changes needed. We will talk
about the project and adapt our process to it, not the other way around.

Courage: We will tell the truth about progress and estimates. We don't document excuses for failure because
we plan to succeed. We don't fear anything because no one ever works alone and. We adapt to any changes.
Respect: Everyone gives and feels the respect they deserve as a valued team member. Everyone contributes
value even if it's simply enthusiasm. Developers respect the expertise of the customers and vice versa.
Management respects our right to accept responsibility and receive authority over our own work.

XP Practives | The Planning Game: Balance between business and technical considerations to estimate work load.

Business people decide about: Scope + Priority + Composition of releases + Dates of releases

Technical people decide about: Estimates + Consequences + Process + Detailed Scheduling

Small releases: Every Releases should be as small as possible, containing the most valuable business
requirements. The release has to make sense as a whole (no half-working features).

Metaphor: Everybody on the team needs to have a common understanding for the system and a shared
vocabulary. This applies for technical and non-technical people.

Simple design: The right design for a software system is one that: runs all tests, has no duplicated logic, has
the fewest possible classes/methods, “put in what need when you need it”, emergent, growing design.
Testing: Any program feature without an automated test simply doesn’t exist. The tests become part of the
system and allow the system to accept change. Development cycle (TDD) — Listen (requirements), Test (write
tests), Code (simplest), Design (refactor).

Refactoring: When implementing a feature, ask yourself if there is a way to improve the existing source code,
so that implementing the feature is easier. Automated tests provide a safety-net for refactoring without fear.

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 13 von 18

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Pair programming: All product code is written by two people looking at one screen with one keyboard and one
mouse. The programmer on the keyboard focuses on the current method, the other thinks about the broader
context (refactoring, etc.). Pairs change frequently.

Collective ownership: Anybody who sees an opportunity to add value to any portion is required to do so.
Everybody takes responsibility for the whole of the system. Not everybody knows every part, but everyone
knows something about every part.

Continuous integration: Code is integrated and tested at least once a day (sometimes more), Build process
must be automated, on a dedicated machine. Automated tests are run and detect problems early.

40 hours week: Sustainable development. Effort should be spread out evenly. Extended periods of overtime
have a negativimpact on productivity. Goal: Be fresh every morning, be tired and satisfied every evening. Not
being in front of a computer does not mean forgetting about the system... taking a step back often leads to
“Ahal” moments.

On-site customer: A real customer must be physically with the team, available to answer their questions. Real
customer = user who will use the system. The real customer does not work on the project 100% of his time,
but needs to be “there” to answer questions rapidly. The real customer also help with prioritization.

Coding standards: collective ownership + constant refactoring means that coding practices must be unified

Literatur - Clean Code, Clean Coder, Clean Architecture

Conclusion There is no “magic” process that would work exactly the same way for every project, in every environment.
Agile methodologies and XP describe core values and key principles that you need to integrate and customize
in your particular context. Agile teams need to continuously reflect on their work. XP looks like it is less
“formal” than traditional methodologies. But while there are certainly less roles, less workflows and less
artifacts, XP requires a lot of discipline to work well.

Extreme Test Scenarios

Programming

Project User Stories Mew User Story

) Reguiraments Froject Velocity Bugs
. Systam Release Latest Customer
Architectural oo, Release pian” [, version, Acceptance approval, Small
Spike lenung@\ Tests Releases
Uncertain Confident w
Estirnates Estimates
Splke Copryright 2000 1, Deavan Wells

XP Game

Description The XP Game is a playful way to familiarize the players with some of the more difficult concepts of the XP
Planning Game, like velocity, story estimation, yesterday’s weather and the cycle of life. Anyone can
participate. The goal is to make development and business people work together in 1 team. Both will have the
experience of performing the other role. It’s especially useful when a company starts adopting XP.

Outline In real life Planning Game, development and business people are sitting on opposite sides of the table. Both

participate, but in different roles. The XP Game makes the players switch between developer and customer
roles, so that they understand each other’s behaviour very well.

Some of the concepts in the Planning Game are difficult to grasp, for developers and for customers. This XP
Game is a practical way to demonstrate how the rules of the XP Planning Game make up an environment in
which it becomes possible to make predictable plans. After all, the easiest way to get a feeling for the way it
works is to experience it.

It differs from the classical Mousetrap or Coffeemaker Game in several ways:

The developers and customers are not separated. Everybody get to play the developer and customer role.
The stories are really very simply, everybody will understand them,

but they’re also very concrete.

We do a real implementation, with real, unambiguous acceptance tests,

but not a bit technical!!! (I guess everybody can inflate a balloon...)

There’s a small element of competition in it that makes it a really fun game to play.

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 14 von 18

ZHAW/HSR/FHNW

Agile estimating and planning

Druckdatum: 27.08.18

TSM_SoftwEng

Why do we Plans help us to know: Who works on the project during the period. Is the project on track to deliver the
plan? functionality the user needs. When will you be done.

Organisations demand estimates (budget, marketing campaigns, product release date, training internal users).
How do we Create a coarse-grained long-term plan to know where the target is and
plan? a fine-grained short-term plan for the next week or month
Goals Reduces risk, reduces uncertainty, supports better decision making, establishes trust, transport information)
plan vs Plans are documents or figures, planning is an activity
planning Agile planning shifts the emphasis from the plan to the planning.

Plans change

Agile plans often (and gladly) changed: During a project we learn new thinks from the customer / complexity

business value

Geld verdienen oder Geld sparen.

key idea

A project rapidly and reliably generates a flow of useful new capabilities and new knowledge. Aha Effekt.

Levels

Strategy - Portfolio - Product - Release - Iteration - Day

agile teams plan these levels

Estimate with

Story points are a relative measure of the complexity of a user story.

Story poins Velocity is a measure of a team’s rate of progress per iteration.

Number of iterations = Total number of story points / velocity of the team.
Planning Everybody has card with number of Fibonacci, and estimate without an influence of others.
Poker Makes fun. Add cards like Coffee, infinit, or question mark.

User Stories

Describes a WHO, WHAT, and WHY scenario from user perspective. Delivers value to the user.
Is small enough to estimate. Is accurate enough to be testable.
A large user story is called an epic. A set of related user stories may be combined to a theme.

T 5 |
Code the. J
=]
Testthe
6
Asa user, |

Deriving an Ask an expert: Pro: Usually does not take long, Con: Less useful on agile projects
Estimate Analogy: There is evidence that we are better at estimating relative size than absolute size.
Disaggregation: Pro: Break a large story into smaller items. Cons: easy to go to fare.
Read Reading: No Silver Bullet.
Release Release planning is the process of creating a very high- | Estimate User Stories: Let the team do the estimates
planning level plan that covers a period longer than an iteration | (not the product owner). Don’t spend too much time.
(3-9) months. What will be build by when. Not Commitments.
Doin any Iteration length: Use 4 weeks iterations.
sequence
oo Estimate Velocity: Use historical values, run an
‘ iteration iteration (or two/three). Make a forecast (with hours
y length)
Dclurminc Estimate the ~ Sclecl per day per Week)'
conditions of ———# Lori Estimat — stories and a e e . ..
| satsfaction usersiories ‘ volocky \releasedate | | Prioritize User Stories: Product owner priorize
' ' A / ' ~ |features.
Prioriize Select stories and a release date: Feature-driven
user stories
lterate uniil the release’s ' ‘ project or Date-driven project.
conditions of satisfaction . .
can best be met Important: Update Release plan at start of iteration
Iteration ndios N more detail than release plan
planning | prioriies |1 ecta looks at the specific work of a single iteration
i story © add ‘ " Askfor | Canemmt ©peraion | | decompose user stories into tasks, estimate each task
) § ~ e team ———— > planningis . .
donttyan (Expandne” commitment, done in terms of the number of ideal hours to complete
toreton M| e Cannml T planning for value:
commit . ey . .
. - - prioritization of the User Stories
Estimat . . .
‘ e ‘ Remove 2 - financial value of having the features
\ - cost of developing (story points)
- new knowledge by developing the feature
- risk removed by developing the feature
Tracking Burndown-Chart Task Board Parking-Lot Chart
i 1 Tests Swimmer Reporting
250 /:\ Story To Do Ready In Process To Verify Hours Demographics
Asa user, | Code the. Code the. Code the.
200 \ a ¢ o e 4 33 8 stories 12 stories
36 story points 41 story points

Code the.
Dc 4

50% 100%

Ho
2 8
|

Cade the.
can 8
2

Code the...

Marcel Meschenmoser

Dozent: Martin Kropp & Thomas Koller & Andreas Meier

Seite 15 von 18

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Scrum
Ursprung vom Rugby — Ball vor-/zuriick hin/-her geben
Goal Scrum is an agile process that allows us to focus on delivering the highest business value in the shortest time.

It allows us to rapidly and repeatedly inspect actual working software (after every sprint).

The business sets the priorities. Teams self-organize to determine the best way to deliver the highest priority
features. Every two weeks to a month anyone can see real working software and decide to release it as is or
continue to enhace it for another spring.

Characteristics

Self-organizing teams

Product progresses in a series of month-long “sprints”

Requirements are captured as items in a list of “product backlog.

No specific engineering practices prescribed.

Uses generative rules to create an agile environment for delivering projects.
One of the “agile processes”

Process
DAILY SCRUM
MEETING
24 HOuURS V P
OTENTIALLY
PrRODUCT SPRINT ‘ - SHIPPABLE
BAckLOG BACKLOG PrROooucT
INCREMENT
2-4 WEEKS
R
Roles Product owner: defines features, decide release date and content, responsible for the ROI,
prioritize features according to market value, accept or reject work results
Scrum master: responsible for scrum values and practices, removes obstacles, ensure team functionality,
enable close cooperation, shield team from external interferences
Team: 5-9 people, cross-functional (tester/developer/designer), should be full-time, self-organizing
Ceremonies Sprint planning
- Sprint planning meeting teams select items from the product backlog
ca::;-lq task are identified and estimated
Sprinc prioritization collaboratively (not by the scrum master)
Product * Analyze and evaluate product user stories are decomposed to tasks
backl backlog) R .
acklog + Select sprint goal > s.prlnt backlog is created
sprint goal: short statement what to focus
Business 3 X
[Sprint planning
* Decide how to achieve sprint goal
(design) .
:;ZE:: * Create sprint backlog (tasks) from Spr‘lnt
product backlog items (user backlog
stories / features)
Technology * Estimate sprint backlog in hours
Sprint review: whole team presents the world what it achieved during the sprint (2h preparation, no slides)
Sprint retrospective: what is working and what is not, 15-30min, after every sprint
discuss what they'd like to start/stop/continue doing
Daily scrum meeting
Everyone answers three questions: E 15-min, stand-up,
What did you do yesterday? not for problem solving, invite whole world,
Pt
2 only team members / scrum master / product owner can talk,
What will you do today? helps avoid other unnecessary meetings
T
| ™y " 3 these are not status for the scrum master
il el i they are commitments in front of peers
Artifacts Product backlog: list of all tasks

Spring backlog: individuals sign up for work they choose, work is never assigned, update estimations daily, any
team member can add/delete/change sprint backlog
Burndown charts: charts which indicates how well the sprint is progressing

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 16 von 18

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Kanban
Origin Original author: Taiichi Ohno (Inventor of Just-In-Time manufacturing 1995)
Principles | Visualize the workflow: Split the work into pieces, write each on a card and put on the wall
Limit work in progress (WIP): assigne explicit limits to how many items may be in progress at each state.
Measure the lead time (average time to complete one item aka "cycle time"), optimize process
Kanban |Scrum is more prescriptive (more rules to follow) than Kanban
vs Scrum
Kanban
bonrd Next| Ana Iyscs Developw\ent Acceptance |Prod
| 2
Ongoing | Done OngOMg . Dong | Ongoing + Done |
—= ! : ';ﬁ“ o
I S) e e
]] . s
i @ . E<E =
- ' — 1
' '
1] | Eor
|) |
| | I
1 1 !
1 : 1 :
Definition of Done: Definition of Done: Definition of Done:
» Goal is clear »Code clean & checked in on trunk || « Customer accepted
- First tasks defined - Integrated & regression tested *Ready for production
» Story split (if necessary) * Running on UAT environment
Feature / story .| Task / defect What to pull first
Hard deadline -
Date when (if applicable) |:]=task =defect 1. Panic features Yk
added to board . (should be swarmed and kept
E= completed woving. Intervupt other work
* = priority and break WIP limits as
2000-08-20 2009-09-320 b{ Led ,\tc“sary)
ocke
deseriptios * | KKk = panic \E 2. Priority features %k
! _ 2. Hard deadline features
Who is analyzing / 'hWko ':: doing (only if deadline is at risk)
‘ V testing right nhow tars right oW 4. Oldest features
Pro Bottlenecks become clearly visible.
Provides a more gradual evolution path from waterfall to agile software development.
Provides a way to do agile software development without necessarily having to use time-boxed fixed-commitment
iterations such as Scrum sprints.
Tends to naturally spread throughout the organization to other departments.
Lean
Definition | Reduce the waste in a system and produce a higher value for the final customer
Principles |Iterative cycles, an implementation of the agile manifesto
Feedback vs. Forecast
Seven Eliminate Waste: spend time only on what adds real customer value
Rules Amplify Learning: When you have tough problems, increase feedback

Decide as late as possible: Evaluate various options, delay decisions until they can be made based on facts
Deliver as fast as possible: Deliver value to customers as sonn as they ask for it

Empower the team: Let the people who add value use their full potential

Build integrity in: Don't try to tack on integrity after the fact — built it in

See the whole: Beware of the temptation to optimize parts at the expense of the whole

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 17 von 18

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng
Vortrage

Evolving NoQSL Problembeschreibung:

Databases without | Datenbankevolution: New requirements, split/merge objects, add fields, rename keys

downtime Wie bleibt die Datenbank immer verflgbar, und wie geht man mit bestehenden Daten um.

Nicola Lenherr und
Florian BiihImann

Typen

Relationale Datenbank mit RDBMS
(z.B. MySQL, Microsoft QSL Server, SQlite, ...)
ACID, Festes Schmea

NoSQL Datenbanken
viele verschieden Arten (z.B. Cassandra, Vertia, Duid)
Ohne festes Schema, ACID nicht weit verbreitet

Ansaze

Offline Eager Upgrade
1) alle Applikationen herunterfahren
2) Updateskript
3) Applikationen upgraden

Online Lazy Upgrade
1. Applikationen updaten
2. Update einzelner Werte beim ersten Zugriff

Pro/Cons

Pro: klarer Datenbankzustand
Cons: downtime

Pro: No downtime
Cons: Viele if-else, performance impact

Lésung

2.B. KVolve

Versionierung jedes Wertes, Funktion fiir das update (z.B. v1 ->v2),
On-demand lazy Transformation (nur benétigte Werte updaten, ohne Abhangigkeiten) -> performance

Paper: Enabling Agility Through Architecture

in brief Should | take a certain action today in anticipation of increased benefit and reduced cost in the future?

Conclusion Reliable agile software development is only possible when coupled with Architectural Agility.

Vortrag 05.04.2018

Modularity Challenges: Cooperation, consistence, architecture

SAVI System architecture virtual integration
Architecture centric, one repository, component-based framework

Marcel Meschenmoser

Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 18 von 18

