
ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 1 von 18

SOFTWARE ENGINEERING

Software Evolution

Evolution is the set of activities (technical and managerial), that ensures that software continues to meet organizational
and business objects in a cost effective way over its lifetime. Driven by changes from stakeholders.

Types Requirements, Architecture, Design, Test case, Traceability, Data, Runtime, Language,

Classical Engin. Waterfall model: when we are done after testing, then why does maintenance cost 70-80% off all cost

Agile Engin. Software evolution is a ingredient of agile software development (iterative development, allow change)

Software
Maintenance

functionality stays
the same!

• Corrective: Errors need to be fixed (Bugfixing)

• Preventive: Prevent problems in the future (e.g. fix design issues)

• Adaptive: Something has changed in the environment (e.g new version)

• Perfective: Improve system qualities (e.g. performance)

Software Aging Causes Lack of Movement (product owner don't see that changes are needed), e.g. DOS
Ignorant Surgery (caused by changes which do not understand the original design concept)

Cost Inability to keep up (with the market) e.g. VMS; Reduced performance
Decreasing Reliability (buggy, accidental bugging) e.g. MS-Office

Prevent Design and code for change; Keep records (docu); Second opinion (reviews)

Treat old
software

retroactive documentation (build afterwards); retroactive incremental modularization;
amputation (remove unused code); major surgery - restructing

Maintenance
vs Evolution

Maintenance: software is already delivered
Evolution: from the very beginning

Types of
Programs

S-Programs, can be completely and formally specified (e.g. sort an array)
P-Programs, can be completely specified, but makes an approximation of the real world (e.g. chess)
E-Programs, mechanize a human or societal activity (e.g. ERP-system)

Lehman’s Law Software systems have to evolve, otherwise they gradually become useless.

Roadmap Initial development stage

• Research challenge: design for change

• Outcome: architecture & team knowledge
Evolution stage

• Goal: implement changes

• Research challenge: program comprehension

• Management issue: keep team
Servicing stage

• Goal: tactical changes at minimum cost

• Research challenge: program compehension
Phase-out

• servicing discontinued
Close-down

• switch-off

Legacy Systems old computer-based systems, which are still in use by organizations

• still business critical

• many changes over the years

• many people involved

• replacing is risky (no/incomplete docu, change
at high costs, no knowledge/understanding)

• difficult to modify

Reverse engin. trying to understand the architecture or behaviour of a large software system from source code

Re-engineering trying to re-structure a legacy system, to produce a new system that is more evolvable

Forward engin. traditional process of moving from design to implementation

Deal with
change

Program comprehension: Understanding the existing program in order to change it.
Methods: Source code/Runtime/Performance/Design/Architecture analysis, Metrics, Visualization tools
Tools: Sotograph, Metric, Checkstyle, CodeCrawler, Sonar
Change impact analysis: Identification of parts of the system that will be affected by a proposed change.
Change propagation: Making sure that all affected parts are changed correctly.
Restructuring/Refactoring: Improving the software structure or architecture without changing behavior.
Regression testing: Verifying that the change should not have an impact on the previous behavior.
Program transformation: One or multiple modifications applied to a program

• Translations (other language) e.g. Program Migration, Reverse Engineering

• Rephrasing (same language) e.g. Reengineering, Refactoring

Initial
development

Evolution
• evolution

changes

Servicing
• servicing

patches

Phase-out

Close-down

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 2 von 18

Quality Metrics/Analysis and Visualization

Goal Quality Control, determine Quality of legacy code

Levels Code, Design, Architecture

Metrics a measurement scale and method to determine the value of an indicator of a certain software product

Types Size Metrics: LOC, Number of Classes, Number of Methods, Halstead-Metric
Logical Structure Metrics: Cyclomatic Complexity McCabe
Data Structures Metrics: Number of Variables, Duration
Style Metrics: Naming Conventions, Nesting
Metrics for Cohesion and Coupling Fan-In, Fan-Out, Lack-of-Cohesion, Number of called Methods

Pro quick overview, Indikator SW-Quality, Timeline SW-Quality, automatisierbar, motiviert, vergleichbar

Cons absolute Zahlen, nicht immer aussagekräftig, lange Rechenzeit, Zahlenfixiert, keine optimale Schwellwerte

Tools Metrics (for Eclipse), Checkstyle, Emma, CMT, Sonar, SonarQube, …

Visualizations Software visualization tools use graphical techniques to make software visible (e.g. CodeCity)

Types Hierarchical Views: Euclidean cones, Hyperbolic trees; Bottom UP Approach: Filter

Goal read quality, get understanding, various levels, scalable

Approach Polymetric View (=colored rectangles for the entities and edges for the relationships)

Pro Customizable, modifiable, simple, powerful, scalability

Cons Visual language must be learned, can't view inside the classes and strucutres -> go to code

Tools CodeCrawler, Evolizer, Moose, Creole / Shrimp, CodeCity, EvoSpacer, Rigi, JInsight, Sonargraph, …

Technical Dept metaphor to help us think about doing something quick and dirty

FEAST Feedback, Evolution And Software Technology

Code Duplication Goal Avoid code and data duplications / redundancy

Problems Increase size of code, hard to understand and maintain code, more bugs

Types 1: is an exact copy without modifications (except for whitespace and comments)
2: is a syntactically identical copy, only variable type, or function identifiers has changed
3: is a copy with further modifications; statements have changed/added or removed

Cause Unknown change impact; badly, organized reuse; time pressure; Ignorance; shortsightedness

Handling • Preventive: activities to avoid new clones

• Compensative: limit the negative impact of existing clones

• corrective: remove clones from systemk

Solutions Code refactoring, modularization and parameterization

 Polymetric View

 Layout: Checker Layout: Tree Layout: Tree Layout: Stapled Layout: Scatterplot

Target Classes Classes Classes Classes Methods

Scope Full system Full system Subsystem Subsystem Full system

Metrics Width: NOA
Height: NOM
Color: WLOC

Width: NOA.
Height: NOM.
Color: WLOC

Width: NMA.
Height: NMO.
Color: NME

Width: NOM.
Height: WLOC.
Color: NOM

Position (X): LOC.
Position (Y): NOS.

Sort Width - - - -

goal identify large and
small classes
scales up to very
large systems

detect complexity
and structure in
terms of the
functionality

qualifies the inheritance
relationships by
displaying NMA relative
to NMO

relates NOM with
WLOC of classes
detect exceptions in
height

very scalable view shows
all methods using a
compare LOC and NOS as
position metrics

Metrics

Class Metrics
HNL: Number of classes in superclass chain of class
NME: Number of methods extended, override but use base
NMI: Number of methods inherited, defined in superclass
NMO: Number of methods override, redefined
NOA: Number of attributes (= NIV + NCV)
NOC: Number of immediate subclasses of a class
NOM: Number of methods
WLOC: Sum of LOC over all methods
WNOC: Number of all descendant classes

Method Metrics
LOC: Method lines of code
MSG: Number of method message sends
NOP: Number of (input) parameters
NI: Number of invocations of other methods within method body
NMAA: Number of accesses on attributes
NOS: Number of statements in method body
Attribute Metrics
NAA: Number of times directly accessed (= NGA + NLA)
NGA: number of direct accesses from outside of its class
NLA: number of direct accesses from within its class

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 3 von 18

Restructuring Existing Code - Evolution of Legacy Code

Tools There are a lot of tools, but people must do the job.

New
Functionality

Var A) Hack: duplicated code, complex conditionals, abusive inheritance, large classes/methods
-> like taking a loan on your software -> pay back via reengineering

Var B) No Hack: refactor, restructure, reengineer first
-> investment for the future -> paid back during maintainance

Goals Reverse Engineering
Cope with complexity, Recover lost information,
Generate alternative views, Detect side effects,
synthesize higher abstraction, Facilitate reuse

Reengineering
Unbundling, Performance, Port to other platform, Design
extraction, Exploitation of New Technology

Techniques Redocumentation, Design recovery (metrics) Restructuring, Data reengineering, Refactoring

Re*-Patterns

Lifecycle:
1. requirement analysis
2. model capture
3. problem detection
4. problem resolution
5. program transformation

1. Setting Direction

Agree on Maxims (common understanding)
Establish key priorities, Identify guiding principles
Most Valuable First (for customer)
Maximize Commitment, early results, build confidence

2. First Contact

System experts
talk to maintainers to get historical and political context
talk to end users to get an initial feeling for the functionality
Software system
read it (all code in one hour), read about it, compile it

3. Initial Understanding

top-down (recover design)
bottom-up (recover database, identify problems)

4. Detailed Model Capture

Redistributed

Responsibilities
The Law of Demeter (method M of obj O should invoke only methods of O, param of M, obj created by M,
direct component obj of O) -> Don’t talk to strangers

1. Eliminate Navigation Code (this.intermediary.provider.service(); -> remove middle man)
2. Split up God Class (to much intelligence -> split up -> easier said, than done)
3. Move Behavior Close to Data

Transform
Conditionals to
Polymorphism

1. Transform Self Type Checks – 2. Transform Client Checks – 3. Factor out State – 4. Factor out Strategy –
5. Introduce Null Object – 6. Transform Conditionals into Registration

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 4 von 18

Adding Tests to Legacy Code

Tests Your Life Insurance

TDD Test Driven Development

Process Write test code -> Execute test which should fail -> Write functional code until test pass -> Iterate

Pro better design of code -> think about its intended use, simpler code -> only program requirements,
documentation and specifications, faster iterations during impl., breaking dependencies, safely refactoring

Mock Objects simulated objects that mimic the behavior of real objects in controlled ways (Fake)
pro: interface discovery, consider an object's interactions with its collaborators
Need-Driven Development: guides interface design by services that an object requires, not those it provides

Legacy Code is code without tests -> bad code. it doesn’t matter how pretty, well written, object-oriented it is.

Why change? Adding a feature; fixing a bug; improve design; optimize resource usage

How do we
change?

a) Edit and Pray (work with extreme care)
plan carefully -> fully understanding of change -> make change -> run to check -> smoke tests -> pray

b) Cover and Modify (work with a safety net – a test harness)
run tests -> write new tests -> write code -> refactor -> wash/rinse/repeat -> verify by running tests

Change Alg. Identify change points -> Find test points -> Break dependencies -> Write tests -> Make changes and refactor

Why Breaking
Dependencies

a) Sensing (break dependencies to get visibility/understanding what the code is doing)
b) Separation (break dependencies to test in isolation)

Types of
Dependencies

• Singletons -> hope that Singleton-Class is good for your tests too

• Internal instantiations (new Class) -> hope that class runs well in tests

• Concrete Dependencies (give Class per Constructor) -> hope that class let’s you know what is happening

seam (Naht) a seam is a place where you can change the behavior without editing in that place
every seam has an enabling point, a place where you can make the decision to use one behavior or another

type:
object seam

This method call is not a seam, no enabling point
void doSomething() {
 IController c = new BombController();
 c.doAction();
}

This is now a seam, we can change behaviour
void doSomething(IController c) {
 c.doAction(); // change behaviour
}

other types pre-processing seam, link seam
Problems
that can
occur

CUT (Class Under Test)
Object of the class can’t be created easily
Test harness won’t build with the class
Constructor we need to use has bad side effects
Significant work happens in the constructor

MUT (Method Under Test)
The method to test is not accessible
Method needs hard to construct parameters
Method has bad side effects

Changing
Software

Reason: I need to change a monster method and can’t write tests
Action: Introduce sensing variables, Extract what you know, Break out a method object, Skeletonize Methods,
Find Sequences, Extract to the current class first, Extract small pieces, Be prepared to redo extractions
Reason: I need to make a change, but don’t know what tests to write
Action: Characterization tests, Characterizing classes, Targeted Testing

Reason: It takes forever to make a change
Action: Understanding, Lag Time, Breaking Dependencies, Build Dependencies

Breaking
dependencies

Extract and Override Call: Extract the call to a virtual method and then override it in a testing subclass
Extract and Override Factory Method: Extract object creation into factory method and override in tests
Replace Global Reference with Getter: Extract global reference to method and override in tests
Extract Interface: Find member functions to extract, and copy function signatures to a interface
Parameterize method: Identify dependency and make new method with arguments

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 5 von 18

Software Architectures

Role of software architecture

Architecture is a process: design and build; is a role: software architect; results in products: plans, models, prototypes

Definition a software system's architecture is the set of principal design decisions about the system -> Taylor

Design
decisions

• structure e.g. “The elements should be organized and composed exactly like this…”

• behavior e.g. “Data processing, storage, and visualization will be performed in strict sequence”

• interaction e.g. “Communication among all system elements will occur only using event notifications”

• non-functional properties e.g. “the dependability will be ensured by replicated processing modules”

Requirements • fulfills functional and non-functional requirements (Ressource, CPU, RAM, Responsetime, Scalability)

• can be realized (political and organizational)

• can be implemented (e.g. proof through prototypes)

Prove prototype, vertical slice

Types Enterprise architecture (defines how an enterprise uses many applications -> metaphor: city planning)
Application architecture (defines the pieces that compose an application -> metaphor: building architecture)

Document UML (Diagramme/Modelle) or Kruchten's View 4+1 (Logical=functional; Development=programmer;
Process=dynamic; Physical=topology; + Scenarios=UseCases)

Difficulties Multi-dimensional decisions, interdependent factors, strong impact, requirements change

Pro communication among stakeholders (understanding/consensus/discussions/decisions)
document design decisions (guideline/basis/planing/checkpoints)
abstraction of the system (homogeneous systems / outsourcing or acquiring parts)

Misconceptions Architecture is the same as design -> Architect's focus is on the boundaries and interfaces
Architecture is about infrastructure -> Frameworks, application servers, and databases from a minor part of
the problem space only
Architecture solves technical problems -> Changes are your biggest problem, isn't technical
Architecture is rigid and fixed (up front) -> Understand the impact of change
-> Start with a walking skeleton -> Great software is not built, it is grown
Architecture is pure science or pure art -> requires both and more

Mentorsupport A mentor-support onboaring process can have a major positive impact

Role of software architect

Role guarantee fulfillment of requirements (within budget)
demonstrate achievability (with models and/or prototypes)
design and construct (components, interfaces, responsibilities, structure)
coach and consult developer and other stakeholders (technology, project planning, risk management)

Tasks Decide (under uncertainty, but decide), Document (adequately), Proof feasibility, Program, Communicate,
Negotiate (with stakeholders), Simplify, Standardize, Listen, Observe, Think (about the future), Lead

Mistakes Believing the requirements; Being seduced by the technology; Majoring on your strengths and neglecting
other areas; Not stopping designers from designing; Thinking you can do it all yourself.

Requirements • Knowledge and Experience in Architecture

• Technical breadth and technical understanding

• Disciplined, methodical working

• Experience with the whole Software Life Cycle

• leadership qualities

• ability to communicate

Summary Simplicity, Abstraction, Separation, Structure, Interface, Communication, Delivery of working systems

Übung

Was ist architektur? Framework Programming Language

Fowler: "important stuff" ja ja

Taylor: principle design decisions ? nein

Bass: Strukturen, Element, Beziehungen ja nein

Ford: Hard to change later ? / ja ja

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 6 von 18

Interfaces

why? Major aspect of good software design. It's too easy to design bad or wrong interfaces.

types run-time: call (function, method, procedure), event-callback, remote interfaces (synch/asynch)
compile-time: inheritance, use, inclusion/import

examples java interface, UNIX/POSIX for files, REST

types and
styles

data interfaces (methods <-> class attributes) vs service interface (methods <-> parameters)
sequential access (iterator above list) vs random access (get any element in list)
1-to-1 relationship interface vs n-to-1 relationship of interface
stateless interface (no storage) vs stateful interface (with storage)
minimal interface (only needed methods) vs complete interface (methods for convenience/efficiency)
with inheritance (less delegation) vs with interfaces (delay hierarchy until usage is known)

Remote
interfaces

procedural style (req-res, synch, handle failures) vs document style (send/recv messages in document)
synchronous (immediate, blocks, not scalable) vs asynchronous (scalable, parameter validation)
stateless (scalable server, redundancy, more data) vs stateful (state per client, less data, state recovery)

REST Representational State Transfer (Fielding 2000)
Client/Server, Stateless, Cachable
standardisierte Operationen/Daten(JSON)
resources are uniquely identified by the path
WebService APIs offering REST over HTTP

Goal: Uniform interface with 4 Constraints:
Identification of Resources in Requests
Manipulation of Resources through Representations
Self-descriptive messages
Hypermedia as the engine of application state (?!)

HTTP Method Safe (no change of data) Idempotent (multiple exec does not change the data)

GET / HEAD / OPTIONS yes yes

POST / PATCH no no

PUT / DELETE no yes

Design
Principles

• Information Hiding

• Low coupling, high cohesion
Coupling (2 classes): dependency between two classes
Cohesion (1 class): low cohesion means great variety of actions, high means focus on intention

• Separate Query (get) and Action(set) (either obtain state or change state)

• Three Laws of Interfaces (Ken Pugh)
o do what the method say it does; do not harm; notify caller if unable to perform

• Manage Dependencies – SOLID principles (Robert Martin)
o SRP: Single Responsibility: high cohesion, only one reason to change
o Open-Closed Principle – open for extension, closed for change
o ‘Liskov’ substitution principle – subclasses fulfill interface's role
o Interface Segregation Principle – split "fat" interfaces to increase cohesion
o Dependency Inversion Principle:

high-level classes should not depend upon low-level; both should depend on abstraction
abstractions should not depend on details; details should depend on abstractions

• Simplicity

DbC (Design by Contract)

Design by
Contract

a contract defines obligations of both parties (client/supplier) as their benefits
Preconditions (@Requires) – what the client needs to provide as true -> client/caller is responisble
Postconditions (@Ensures) – what the component promises to establish -> supplier is responsible
Invariants (@Invariant) – conditions that remain true -> for supplier

Contracts belong to the interface -> only define contracts for public interface methods

query=get
command=set

1. Separate queries (get) from commands (set)
2. Separate basic queries (e.g. count) from derived queries (e.g. isEmpty)
3. For each derived query, write a postcondition that specifies what result will be returned in terms of

on or more base queries (e.g. postcondition in isEmpty: return (count=0)
4. For each command, write a postcondition that specifies the value of every basic query
5. For every query and command decide on a suitable precondition
6. Write invariants to define unchanging properties of objects

problems lack of language support, not used systematically

pro contracts abstract from implementation; good documentation; clearly defined responsibilities between client
and supplier; simpler code; helps writing better unit tests; less bugs

defensive
programming

ensure the continuing function of code under unforeseen circumstances -> automatically fix failures
opposite of DbC

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 7 von 18

http://www.restapitutorial.com/httpstatuscodes.html#

Architecture Styles and Patterns

Architecture
Style

Set of established architectural organizations – components, relationships, connectors, …
Patterns: well-known organizational structures

• Descriptions of successful engineering stories

• Address recurring problems

• Describe generic solutions that worked
Reference Models: Prescribes specific configurations of components and interactions

Pattern Types Architectural Patterns: Express a fundamental structural organization scheme for software systems
Design Patterns: Scheme for refining subsystems or components.
Idioms: Low level pattern specific to a programming language

Structure of a
pattern

Problem, Tension (Forces to make a problem hard), Resolution of forces (Solution),
Relationship to other Patterns, Consequences (Pro/Cons)

Misconceptions All design patterns are inherently good -> Counter-Example: Singleton
"I invented that pattern" -> rule of three known uses
Design patterns are blueprints -> with copy-paste copy examples NO!
Let you turn off your brain -> they give you a better means to think about design
Are for experts only -> good OO programming without knowing design patterns is impossible today

Dangers Too much flexibility, too many patterns in a design, separate patterns split into separate classes,
over-engineering, misunderstanding the example/diagram for the pattern

Things to know more than 23 patterns, successful solution concept, good patterns are honest -> pro and cons
pattern names give us a common vocabulary to discuss design efficiently and are targets for refactoring
Beware of YAGNI (You ain't gonna need it)! Create simple code!

Summary A pattern consists of more than the solution (diagram) but is a description of a proven engineering
experience that applies in each context and solves a problem generically with stating benefits and liabilities.
Some patterns are obsolete (Singleton)

http://www.restapitutorial.com/httpstatuscodes.html

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 8 von 18

Architectural Pattern

A pattern for software architecture describes a recurring design problem that arises in specific design contexts, and presents a
well-proven generic scheme for its solution.
From Mud to Structure

Layers

structure the software into several layers
each layer has a role and responsibility

Intent
structure applications that can be
decomposed into groups of subtasks
Solution
services and interface per layer,
bottom up
Examples
3-tier architecture, OSI 7 Layer model,
TCP/IP, APIs, Virtual machines

Pro
Reuse of layers
dependencies kept local
exchangeability
Con
cascades of changing behavior
buffering of data
unnecessary work (checksum, encrypt)
difficult to find correct granularity

Pipes and Filters

Divide a large processing task into smaller,
independent steps (filters) that are connected
by channels (Pipes)

Intent
Structure for systems that process a
stream of data
Each step is encapsulated in a filter
Data is passed through pipes between
adjacent filters (Buffering/Sync)
Examples
Compiler, Incoming-Order

Pro
concurrent processing, reusable,
exchangeability, scalable
Cons
efficiency is limited to slowest filter
buffering of data

Blackboard

Intent:
Blackboard as common exchange of
information.
knowledge source with specialized
modules and own representation
control component which selects,
configure and execute modules
Example
Speech recognition, vehicle
identification and tracking

Pro
Easy to add new apps, extend data
space is easy
Cons
modifying the structure of data space
is hard as all apps are affected
need synchronization and access
control

Distributed Systems

Client-Server

Intent:
services are centrally available on a server.
clients request services from the server
server respond relevant services to clients
Examples:
Web-Clients, Document-Sharing

Pro
Good to model a set of services
Con
Thread per Request
IPC can cause overhead

Master-Slave

Intent
master distribute work among identical slaves
slaves return result to master
master computes a result
Examples
huge computation operation

Pro
Accuracy, Performance
Cons
isolated slaves -> no shared state
latency due to communication
only for decomposable problems

Peer-to-Peer

Intent:
Distributed application
partitioning of tasks or work load
peers are equally privileged
peers can be both clients and servers
Examples
File-sharing networks (G2, Gnutella), Multimedia
protocols (P2PTV),
Multimedia applications (Spotify)

Pro
supports decentralized computing
robust in failure of a peer
scalable in resources and power
Cons
no guarantee about quality, security
performance depends on number of
nodes

Presentation Layer Comp Comp

Business Layer Comp Comp

Database Layer

Filter
Decrypt

Filter
Auth

Out In
Filter

De-Dup

Pipe Pipe Pipe Pipe

Control

Knowledge
Source

Blackboard

Client

Server

Client

Client

TCP/IP
TCP/IP

Slave

Master

Slave

Slave

P

P P

P P

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 9 von 18

SOA (Service Oriented
Architecture)

Intent:
independent products/service/technologies
can be access remotely
services are implemented through messaging

Pro:
Loose coupling, information hiding,
stateless, reusable, compose services
Cons:
not scalable because of shared interface

MVC (Model View Controller)

Intent:
Model contains the core functionality and data.
Views display information to the user.
Controllers handle user input. Views and
Controllers together comprise the UI.
Solution
Identify core functionality and model classes
Implement change-propagation mechanism
Design view/controller/relationship/init
Examples:
MFC, Swing, Web frameworks (Django, Rails)

Variants:
merge view and controller
Pro
Multiple, synchronized, pluggable view;
exchange of "look and feel", framework
potential
Cons:
increased complexity
potential excessive number of updates
private, intimate coupling between view
and controller; close coupling of views
and controllers to a model

Publisher-Subscribe or
Event-bus pattern

Intent
keep the state of components synchronized.
Enables one-way propagation of changes: one
publisher notifies any number of subscribers
about changes to its state.
Solution
subscribers register their interest in an event and
are subsequently asynchronously notified of
events generated by publishers.
Loosely coupled form of interaction required
decoupling: nobody knows each other, scalable
Examples
Android development, Notification services

 Variants
Filtering: not all events are of interest
Pro
Decoupling, can come and go,
effective for highly distributed systems
Cons
Event service may need to store events
Authenticity of events: trust each other
difficult to scale

Broker

Intent
Server publish their services to broker
Client request a service from the broker
Broker redirects client to a suitable server
Example
Apache ActiveMQ, Apache Kafka,
RabbitMQ, JBoss Messaging

Pro
dynamic change, addition, deletion and
relocation of servers
transparent distribution to developer
Cons
requires standardization of server

Interpreter pattern

Intent
Interprets programs written in dedicated
language. class for each symbol
Example
Database query language (SQL)
Communication protocols languages

Pro
Highly dynamic behavior, good for end
user programmability, flexible
Cons
interpreted language is slower than
compiled one

Enterprise Integration Patterns

EAI Pattern provide solutions for the integration of systems and components.

File Transfer Applications generate files for
commonly used data, which are
exchanged

Shared Database Applications read and write into a
shared DB

Remote Procedure
Invocation

Applications offer interfaces that can
be called

Messaging Applications use a shared messaging
system for exchanging data

View
Controller

Model

Publisher
Source

Channel

Subscriber
Listener

Publisher
Source

Subscriber
Listener

Channel Bus
Event Service

Server

Client

Broker

Server Server

Terminal
Expression

Client

Context

Abstract
Expression

NonTerminal
Expression

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 10 von 18

ADD: Attribute Driven Design

ADD quality requirements (general or specific) -> set of tactics -> architecture

Qualität
requirements

observable via execution: performance, security, availability, functionality, usability
not observable via execution: modifiability, portability, reusability, testability

six quality attributes
from Bass 2003

Quality
Attribute
Scenario

1. External
2. Unanticipated msg
3. Normal operation
4. Process
5. Inform operator,
continue to operate
6. No downtime

Tactic A tactic is a design decision that influences the control of a quality attribute response.

Modifiability
tactics

• Localize modifications – Reduce the number of modules directly affected by a change
o maintain semantic coherence – responsibility work together -> Layer, SRP
o anticipate expected changes – minimize effect on change -> Adapter, Strategy, Interp, Facad
o generalize module – broader range of functions due to its input type -> Interpreter
o limit possible options – limit set of options -> Layer, Common Abstraction Layer
o abstract common services – through specialized modules -> Helper/lookup service, ...

• Prevent ripple effects – limit modifications to the localized modules
o Types of Dependencies: Syntax, Semantic, Sequence, Identity of an interface,

Runtime location, Quality of service / data provided, Existence, Resource assumption
o Information hiding – decompose and choose private-public -> Facade, Adapter, Proxy
o Maintain existing interfaces – separate interface from implementation -> layering, adapter
o Restrict communication paths – restrict data production and data consumption -> coupling
o Use intermediary – introduce an intermediary to manage dependency -> MVC/PAC, mediat.

• Defer binding time – Control deployment time
o Runtime registration – plug-and-play operation -> Lookup services, registries, plug-and-play
o Configuration files – set parameters at start-up -> dependency injection
o Polymorphism – late binding of method calls -> good class hierarchies, abstraction
o Component replacement – load time binding -> dynamic loadable modules
o Adherence to defined protocols – Runtime binding of independent processes -> e.g. SOAP

Availability
Tactics

• Fault Detection -> Ping/Echo, Heartbeat, Exception

• Recovery-Preparation and Repair -> Voting, Active Redundancy, Passive Redundancy, Spare

• Recovery-Reintroduction -> Shadow, State Resynchronization, Rollback

• Prevention -> Removal from Service, Transactions, Process Monitor

Security
Tactics

• Resisting Attacks -> Authenticate Users, Authorize Users, Maintain Data Confidentiality, Maintain
Integrity, Limit Exposure, Limit Access

• Detecting Attacks -> Intrusion Detection

• Recovering from an Attack -> Restoration (see availability), Identification (Audit Trail)

Testability
Tactics

• Manage Input / Output -> Record/Playback, Separate Interface from Implementation, Specialized
Access Routines/Interfaces

• Internal Monitoring (Build-in Monitors)

Usability
Tactics

• Separate User Interface

• Support User Initiative (Cancel, Undo, Aggregate)

• Support System Initiative (User Model, System Model, Task Model)

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 11 von 18

Performance
Tactics

• Event: single or stream - Message arrival, time expiration, significant state change, ...

• Latency - Time between arrival of an event and the generation of a response to it

• Event arrives – System processes it or processing is blocked

• Resource Demand
o Increase Computation Efficiency -> Better algorithm, cache data (Proxy)
o Reduce Computational Overhead -> Simpler protocols, data compression
o Manage Event Rate -> avoid oversampling
o Control Frequency of sampling -> perhaps by queuing requests

• Resource Management
o Introduce Concurrency -> processes, threads, load balancing
o Maintain Multiple Copies -> copy-on-demand (proxy), caching
o Increase available resources -> faster, additional processors, more memory, faster network

• Resource Arbitration
o Scheduling Policy -> FIFO, fixed priority, dynamic priority, static/pre-emptying scheduling

Software Architecture Documentation and Analysis

ATAM – Architecture Tradeoff Analysis Method (Architectural Evaluation)

Why? Architecture tells about system properties
Architecture drives the software system
Good evaluation methods

When? Early in the lifecycle -> to be cost-effective

Costs Staff time (accomplishments, training

Benefits Financial, recorded rationales for decisions, early detection of problems, validation of requirements, improve

Participants Evaluation Team (3 to 5 people, competent, unbiased, no hidden agenda)
Project decision makers (architect, project manager, customer)
Stakeholder (developer, tester, integrators, maintainers, performance engineer, users, system builds, …)

Outputs Documentation, business goals, quality requirements, mapping of decisions to quality requirements, risks,
non-risks, prioritization of risks, better understanding

Performance Phase 0: Preparation
Project representative’s brief evaluators
Phase 1 and 2: Evaluation
1-1: present ATAM
1-2: present business drivers (functions, constraints, business goals, stakeholders, architectural drivers)
1-3: present the current architecture (1h) (context diagrams, component/behavioral/deployment views)
1-4 catalog architectural approaches (architectural patterns, style, and tactics)
1-5: generate quality attribute utility table
1-6: examine the highest ranked scenarios, evaluate architectural approaches, identify risks and non-risks
-> time-out, gather more stakeholders for phase 2
2-7: brainstorm and prioritize scenarios (utility table as input)
2-8: analyze architectural approach
2-9: present results (documentation, scenarios, utility table, risks, non-risks, sensitive points)
Phase 3: Follow-up
Evaluation team produces and delivers written evaluation report

Summary Architecture analysis method
Based on evaluating quality scenarios
Helps mitigate architectural risks

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 12 von 18

Process and Architecture

Process User needs -> Requirement -> Design -> Implement -> Test/Document -> Install/Deploy -> Check

Waterfall
Model

sometimes no backward arrow,
but in paper of Royce are they drawn.

V-Modell

RUP
Rational
Unified
Process

Principles
Risk as primary driver, Architecture
centric, Iterative and incremental
Each phase ends with a milestone
Phases
Inception: Lifecycle objectives (scope!)
Elaboration: Lifecycle Architecture
Construction: Initial operational
capability
Transition: Product Release
Issues
Heavy: Lots of documents (in UML),
roles and process specification

Extreme
Programming
XP

Lean => Less documentation. Delivers capabilities quickly
Belief that architecture will gradually emerge (because of YAGNI and BDUF)
YAGNI: You Ain’t Gonna Need it
BDUF: No Big Design Up Front

Agile
Architecture

A system or software architecture that is versatile, easy to evolve, and easy to modify, while resilient enough
not to degrade after a few changes
An agile way to define an architecture, using an iterative lifecycle, allowing the architectureal design to
tactically evolve over time

The zipper
model

Architecturing design and building the system must go hand in hand
e.g. each second sprint is an architecture sprint

SODA Software Development Process @ HSLU

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 13 von 18

Agile Software Development

Agile Manifesto and eXtreme Programming

Agiles
Manifest

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan
While there is value on the right, we value the items on the left more.

Scrum

XP

Agile
Principles

Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.
Welcome changing requirements, even late in development for the customer's competitive advantage.
Deliver working software frequently (couple of weeks/months), with a preference to the shorter timescale.
Business people and developers must work together daily throughout the project.
Build projects around motivated individuals. Give them the environment, support and trust they need.
The most efficient and effective method of conveying infos to and within a team is face-to-face conversation.
Working software is the primary measure of progress. Not documentation.
Promote sustainable development. Sponsors/developers/users should maintain a constant pace indefinitely.
Continuous attention to technical excellence and good design enhances agility.
Simplicity - the art of maximizing the amount of work not done - is essential and elegance.
The best architectures, requirements, and designs emerge from self-organizing teams.
At regular intervals, the team reflects on how to get more effective, then adjusts its behavior accordingly.

XP
eXtreme
Programming

The role of XP is to
give us principles and
practices in order to
deal with the risks!

Problem 4 Variables: Time/Resources/Quality (external forces – customer/manager), Scope (our control variable)
Cost of change: slow rate

Core Values Simplicity: We will do what is needed and asked for, but no more. This will maximize the value created for the
investment made to date. We will take small simple steps to our goal and mitigate failures as they happen. We
will create something we are proud of and maintain it long term for reasonable costs.
Communication: Everyone is part of the team and we communicate face to face daily. We work together on
everything from requirements to code. We will create the best solution to our problem that we can together.
Feedback: We will take every iteration commitment seriously by delivering working software. We
demonstrate our software early and often then listen carefully and make any changes needed. We will talk
about the project and adapt our process to it, not the other way around.
Courage: We will tell the truth about progress and estimates. We don't document excuses for failure because
we plan to succeed. We don't fear anything because no one ever works alone and. We adapt to any changes.
Respect: Everyone gives and feels the respect they deserve as a valued team member. Everyone contributes
value even if it's simply enthusiasm. Developers respect the expertise of the customers and vice versa.
Management respects our right to accept responsibility and receive authority over our own work.

XP Practives The Planning Game: Balance between business and technical considerations to estimate work load.
Business people decide about: Scope + Priority + Composition of releases + Dates of releases
Technical people decide about: Estimates + Consequences + Process + Detailed Scheduling
Small releases: Every Releases should be as small as possible, containing the most valuable business
requirements. The release has to make sense as a whole (no half-working features).
Metaphor: Everybody on the team needs to have a common understanding for the system and a shared
vocabulary. This applies for technical and non-technical people.
Simple design: The right design for a software system is one that: runs all tests, has no duplicated logic, has
the fewest possible classes/methods, “put in what need when you need it”, emergent, growing design.
Testing: Any program feature without an automated test simply doesn’t exist. The tests become part of the
system and allow the system to accept change. Development cycle (TDD) – Listen (requirements), Test (write
tests), Code (simplest), Design (refactor).
Refactoring: When implementing a feature, ask yourself if there is a way to improve the existing source code,
so that implementing the feature is easier. Automated tests provide a safety-net for refactoring without fear.

Agile
values

Collboratian
practices

technical practices

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 14 von 18

Pair programming: All product code is written by two people looking at one screen with one keyboard and one
mouse. The programmer on the keyboard focuses on the current method, the other thinks about the broader
context (refactoring, etc.). Pairs change frequently.
Collective ownership: Anybody who sees an opportunity to add value to any portion is required to do so.
Everybody takes responsibility for the whole of the system. Not everybody knows every part, but everyone
knows something about every part.
Continuous integration: Code is integrated and tested at least once a day (sometimes more), Build process
must be automated, on a dedicated machine. Automated tests are run and detect problems early.
40 hours week: Sustainable development. Effort should be spread out evenly. Extended periods of overtime
have a negativ impact on productivity. Goal: Be fresh every morning, be tired and satisfied every evening. Not
being in front of a computer does not mean forgetting about the system… taking a step back often leads to
“Aha!” moments.
On-site customer: A real customer must be physically with the team, available to answer their questions. Real
customer = user who will use the system. The real customer does not work on the project 100% of his time,
but needs to be “there” to answer questions rapidly. The real customer also help with prioritization.
Coding standards: collective ownership + constant refactoring means that coding practices must be unified

Literatur Clean Code, Clean Coder, Clean Architecture

Conclusion There is no “magic” process that would work exactly the same way for every project, in every environment.
Agile methodologies and XP describe core values and key principles that you need to integrate and customize
in your particular context. Agile teams need to continuously reflect on their work. XP looks like it is less
“formal” than traditional methodologies. But while there are certainly less roles, less workflows and less
artifacts, XP requires a lot of discipline to work well.

Extreme
Programming
Project

XP Game

Description The XP Game is a playful way to familiarize the players with some of the more difficult concepts of the XP
Planning Game, like velocity, story estimation, yesterday’s weather and the cycle of life. Anyone can
participate. The goal is to make development and business people work together in 1 team. Both will have the
experience of performing the other role. It’s especially useful when a company starts adopting XP.

Outline In real life Planning Game, development and business people are sitting on opposite sides of the table. Both
participate, but in different roles. The XP Game makes the players switch between developer and customer
roles, so that they understand each other’s behaviour very well.
Some of the concepts in the Planning Game are difficult to grasp, for developers and for customers. This XP
Game is a practical way to demonstrate how the rules of the XP Planning Game make up an environment in
which it becomes possible to make predictable plans. After all, the easiest way to get a feeling for the way it
works is to experience it.
It differs from the classical Mousetrap or Coffeemaker Game in several ways:

• The developers and customers are not separated. Everybody get to play the developer and customer role.

• The stories are really very simply, everybody will understand them,

• but they’re also very concrete.

• We do a real implementation, with real, unambiguous acceptance tests,

• but not a bit technical!!! (I guess everybody can inflate a balloon…)

• There’s a small element of competition in it that makes it a really fun game to play.

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 15 von 18

Agile estimating and planning

Why do we
plan?

Plans help us to know: Who works on the project during the period. Is the project on track to deliver the
functionality the user needs. When will you be done.
Organisations demand estimates (budget, marketing campaigns, product release date, training internal users).

How do we
plan?

Create a coarse-grained long-term plan to know where the target is and
a fine-grained short-term plan for the next week or month

Goals Reduces risk, reduces uncertainty, supports better decision making, establishes trust, transport information)

plan vs
planning

Plans are documents or figures, planning is an activity
Agile planning shifts the emphasis from the plan to the planning.

Plans change Agile plans often (and gladly) changed: During a project we learn new thinks from the customer / complexity

business value Geld verdienen oder Geld sparen.

key idea A project rapidly and reliably generates a flow of useful new capabilities and new knowledge. Aha Effekt.

Levels 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 – 𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 – 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 – 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 – 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 – 𝐷𝑎𝑦⏟
𝑎𝑔𝑖𝑙𝑒 𝑡𝑒𝑎𝑚𝑠 𝑝𝑙𝑎𝑛 𝑡ℎ𝑒𝑠𝑒 𝑙𝑒𝑣𝑒𝑙𝑠

Estimate with
Story poins

Story points are a relative measure of the complexity of a user story.
Velocity is a measure of a team’s rate of progress per iteration.
Number of iterations = Total number of story points / velocity of the team.

Planning
Poker

Everybody has card with number of Fibonacci, and estimate without an influence of others.
Makes fun. Add cards like Coffee, infinit, or question mark.

User Stories Describes a WHO, WHAT, and WHY scenario from user perspective. Delivers value to the user.
Is small enough to estimate. Is accurate enough to be testable.
A large user story is called an epic. A set of related user stories may be combined to a theme.

Deriving an
Estimate

Ask an expert: Pro: Usually does not take long, Con: Less useful on agile projects
Analogy: There is evidence that we are better at estimating relative size than absolute size.
Disaggregation: Pro: Break a large story into smaller items. Cons: easy to go to fare.

 Read Reading: No Silver Bullet.

Release
planning

Release planning is the process of creating a very high-
level plan that covers a period longer than an iteration
(3-9) months. What will be build by when.

Estimate User Stories: Let the team do the estimates
(not the product owner). Don’t spend too much time.
Not Commitments.
Iteration length: Use 4 weeks iterations.
Estimate Velocity: Use historical values, run an
iteration (or two/three). Make a forecast (with hours
per day per week).
Prioritize User Stories: Product owner priorize
features.
Select stories and a release date: Feature-driven
project or Date-driven project.
Important: Update Release plan at start of iteration

Iteration
planning

more detail than release plan
looks at the specific work of a single iteration
decompose user stories into tasks, estimate each task
in terms of the number of ideal hours to complete
planning for value:
- prioritization of the User Stories
- financial value of having the features
- cost of developing (story points)
- new knowledge by developing the feature
- risk removed by developing the feature

Tracking Burndown-Chart

Task Board

Parking-Lot Chart

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 16 von 18

Scrum

Ursprung vom Rugby – Ball vor-/zurück hin/-her geben

Goal Scrum is an agile process that allows us to focus on delivering the highest business value in the shortest time.
It allows us to rapidly and repeatedly inspect actual working software (after every sprint).
The business sets the priorities. Teams self-organize to determine the best way to deliver the highest priority
features. Every two weeks to a month anyone can see real working software and decide to release it as is or
continue to enhace it for another spring.

Characteristics Self-organizing teams
Product progresses in a series of month-long “sprints”
Requirements are captured as items in a list of “product backlog.
No specific engineering practices prescribed.
Uses generative rules to create an agile environment for delivering projects.
One of the “agile processes”

Process

Roles Product owner: defines features, decide release date and content, responsible for the ROI,

prioritize features according to market value, accept or reject work results
Scrum master: responsible for scrum values and practices, removes obstacles, ensure team functionality,
enable close cooperation, shield team from external interferences
Team: 5-9 people, cross-functional (tester/developer/designer), should be full-time, self-organizing

Ceremonies Sprint planning

teams select items from the product backlog
task are identified and estimated
collaboratively (not by the scrum master)
user stories are decomposed to tasks
-> sprint backlog is created
sprint goal: short statement what to focus

Sprint review: whole team presents the world what it achieved during the sprint (2h preparation, no slides)
Sprint retrospective: what is working and what is not, 15-30min, after every sprint
discuss what they'd like to start/stop/continue doing
Daily scrum meeting

15-min, stand-up,
not for problem solving, invite whole world,
only team members / scrum master / product owner can talk,
helps avoid other unnecessary meetings
these are not status for the scrum master
they are commitments in front of peers

Artifacts Product backlog: list of all tasks
Spring backlog: individuals sign up for work they choose, work is never assigned, update estimations daily, any
team member can add/delete/change sprint backlog
Burndown charts: charts which indicates how well the sprint is progressing

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 17 von 18

Kanban

Origin Original author: Taiichi Ohno (Inventor of Just-In-Time manufacturing 1995)

Principles Visualize the workflow: Split the work into pieces, write each on a card and put on the wall
Limit work in progress (WIP): assigne explicit limits to how many items may be in progress at each state.
Measure the lead time (average time to complete one item aka "cycle time"), optimize process

Kanban
vs Scrum

Scrum is more prescriptive (more rules to follow) than Kanban

Kanban
board

Pro Bottlenecks become clearly visible.

Provides a more gradual evolution path from waterfall to agile software development.
Provides a way to do agile software development without necessarily having to use time-boxed fixed-commitment
iterations such as Scrum sprints.
Tends to naturally spread throughout the organization to other departments.

Lean

Definition Reduce the waste in a system and produce a higher value for the final customer

Principles Iterative cycles, an implementation of the agile manifesto
Feedback vs. Forecast

Seven
Rules

Eliminate Waste: spend time only on what adds real customer value
Amplify Learning: When you have tough problems, increase feedback
Decide as late as possible: Evaluate various options, delay decisions until they can be made based on facts
Deliver as fast as possible: Deliver value to customers as sonn as they ask for it
Empower the team: Let the people who add value use their full potential
Build integrity in: Don't try to tack on integrity after the fact – built it in
See the whole: Beware of the temptation to optimize parts at the expense of the whole

ZHAW/HSR/FHNW Druckdatum: 27.08.18 TSM_SoftwEng

Marcel Meschenmoser Dozent: Martin Kropp & Thomas Koller & Andreas Meier Seite 18 von 18

Vorträge

Evolving NoQSL
Databases without
downtime
Nicola Lenherr und
Florian Bühlmann

Problembeschreibung:
Datenbankevolution: New requirements, split/merge objects, add fields, rename keys
Wie bleibt die Datenbank immer verfügbar, und wie geht man mit bestehenden Daten um.

Typen Relationale Datenbank mit RDBMS
(z.B. MySQL, Microsoft QSL Server, SQLite, ...)
ACID, Festes Schmea

NoSQL Datenbanken
viele verschieden Arten (z.B. Cassandra, Vertia, Duid)
Ohne festes Schema, ACID nicht weit verbreitet

Ansäze Offline Eager Upgrade
1) alle Applikationen herunterfahren
2) Updateskript
3) Applikationen upgraden

Online Lazy Upgrade
1. Applikationen updaten
2. Update einzelner Werte beim ersten Zugriff

Pro/Cons Pro: klarer Datenbankzustand
Cons: downtime

Pro: No downtime
Cons: Viele if-else, performance impact

Lösung z.B. KVolve
Versionierung jedes Wertes, Funktion für das update (z.B. v1 -> v2),
On-demand lazy Transformation (nur benötigte Werte updaten, ohne Abhängigkeiten) -> performance

Paper: Enabling Agility Through Architecture

in brief Should I take a certain action today in anticipation of increased benefit and reduced cost in the future?

Conclusion Reliable agile software development is only possible when coupled with Architectural Agility.

Vortrag 05.04.2018

Modularity Challenges: Cooperation, consistence, architecture

SAVI System architecture virtual integration
Architecture centric, one repository, component-based framework

